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Objectives

     To investigate the validity of this model, we conducted a 
simulation with and sample data     generated using precipitation 
data and following the model. We show the simulation results 
after smoothing in fig.4. symbol “+” stand for generated data 
for simulation. We found that the model is able to estimate 
properly two effects if the model was right for the data. Discussion 
for the simulation results is in next part.

^Smoothing

     In State Space framework, we consider a latent states and 
data consists of the latent states and observation noises. Our 
concern is estimating distributions that followed by states. 
To estimate them, we employ a two stage procedure to estimate 
states called ‘One-ahead-prediction’ and ‘Smoothing’ respectively. 
     Here distributions of observation and state are Gaussian at 
each time. Then using property of multivariate normal distribution, 
we can calculate conditional expectation and variance of state 
distributions as follows.

where       is predictor (precipitation),       and      are coefficients, 
and      is seasonal term. We set j = 1,2, and s = 365(annual).
Now, response variable     is groundwater levels and is scholar. 
Therefore      is scholar.     is identify matrix. 

     The goal of our research is to estimate seasonal effects and 
precipitation effects to groundwater levels at a river which 
normally is without water in Tochigi pref in Japan.

Groundwater levels
seasonal effect

precipitation effect

    We have daily meteorological data observed at the farm 
located in Tochigi pref in Japan. Fig.2 shows that there seems 
to be some relation between groundwater levels and precipitation. 
Changes of groundwater levels are said to be affected by 
precipitation, melting ice and snow from mountain during spring, 
draining water off from a dam and the other sources. So, it can 
not be explained only by precipitation.
     From our data, precipitation and groundwater levels have clear 
seasonal trend. Therefore we considered that changes of groundwater 
levels are explained precipitation effects and seasonal trend. To 
estimate two effects, we consider the linear gaussian state space model.

      We consider the model, called Linear Gaussian State Space 
Model (LGSSM). It consists of two equations, called observation 
equation (1), and the equation (2) is called state equation.
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Estimating state distributions     given �t Y[1:t]
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Notation

     From fig2, we see that there seems to be some relation between 
groundwater levels and precipitation.

Groundwater levels Precipitation

    Groundwater levels and precipitation clearly have annual 
cyclic trend. Precipitation has also similar trend. We consider 
including precipitation as predictor and seasonal term in linear 
gaussian state space model for changes of groundwater levels. 
We define system matrix, state vector and noise vector in observation 
and state equation as follows.
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Results

     We show results after smoothing procedure in fig.3. symbol  
“^” stand for estimated value. Black solid lines are smoothing 
conditional mean, and blue dashed lines are 95% confidence 
interval. 

fig.1 relation between observation and state

fig.2  left : Groundwater levels,  right : Precipitation

fig.3  Smoothed mean (black solid line) and 95% confidence interval 
(blue dashed line) of elements of state vector     .Var(�t|Y[1:n]) = Vt

E(�t|Y[1:n]) = ât,

E(�t+1|Y[1:t]) = at+1

Var(�t+1|Y[1:t]) = Pt+1
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     We estimated effects of seasonal term and precipitation on 
changes of groundwater levels by smoothing. According to our 
results, precipitation rarely has any effects on groundwater 
levels. It is intuitively strange. By simulation, we find this model 
is able to estimate effects of seasonal term and precipitation. 
One of the reasons why it is occurred is seasonal trend of precipitation 
are included cyclic rend in this model like simulation results.
     We confirm that this model is able to estimate properly each 
variance and seasonal trend if model is right by simulation. So, 
main feature works is that considering annual cyclic trend of 
precipitation and extending this model to non-gaussian and non-
linear state space model.

     We have meteorological data observed at a farm in Tochigi pref 
in Japan. A strange river flows near this farm. Usually, that river 
does not have any water, but it floods a few times in a year due to 
heavy rain. One of the reason why people began recording the data 
is observing this river. The temperature, moisture, groundwater 
level,  and flood etc are begin observed. The main purpose is to analyze 
relationship between the groundwater levels and precipitation. 
As is well known, the precipitation affects changes in the groundwater 
levels. Our main goal is to estimate the effects that precipitation 
and other variables have on changes of groundwater levels.
     To estimate these changes, we consider a linear gaussian state 
space model (LGSSM). State space models are widely used for time 
series analysis. In state space framework, we consider latent states 
that we cannot observe and data are observed with noise. The main 
purpose of state space models are estimating state values or 
distributions of states. In linear gaussian state space models, 
from property of multivariate normal distribution, we can estimate 
distributions of states as calculating conditional mean and conditional 
variance of multivariate normal distribution; these methods are 
called ‘one-ahead-prediction’ and ‘smoothing’.
     At first we fitted LGSSM with predictor and seasonal term to 
the data. However, we found that this model could not estimate effects 
of precipitation and seasonal term well. After showing fitting results, 
we consider whether this model could estimate these effects, and show 
the results of simulation for confirming the performance of this model.

         are annual cycle trend. contrary to our expectations, coefficient 
of precipitation nearly zero.

fig.4  Simulation results. Blue solid and dashed lines show smoothing mean 
and 95% confidence  interval. Black lines show true values.
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