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Brownian occupation time

e Let W (t) be a Brownian motion.
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e Let W (t) be a Brownian motion.
e How much time does W (t) spend at 07

o Let T'(t) = fot ]l{W(S):O}dS.
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Brownian occupation time

e Let W (t) be a Brownian motion.
e How much time does W (t) spend at 07
t
o Let T'(t) = fO ﬂ{W(S):O}dS.
o We easily check that E(7'(t)) = 0. Brownian motion crosses 0
infinitely many times, but spends no time there.
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Brownian occupation time

Let W (t) be a Brownian motion.
How much time does W (t) spend at 07
t
Let T'(t) = fO Liw (s)=0yds.
We easily check that E(T'(¢)) = 0. Brownian motion crosses 0
infinitely many times, but spends no time there.

Topologically, the set {¢t > 0: W (t) = 0} is a zero-measure Cantor
set.
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Brownian local time

@ A much more interesting object is called the Brownian local time.
Consider the limit

1
L¥(t,2) = lim 5 /0 L (1w ()l <5) 5.
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@ A much more interesting object is called the Brownian local time.
Consider the limit

1
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@ Properties
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Brownian local time

@ A much more interesting object is called the Brownian local time.
Consider the limit

1
L¥(t,2) = lim 5 /0 L (1w ()l <5) 5.

@ Properties

LY (0,2) = 0.

t — LY (t,z) is non-decreasing.

t = LW (t,z) is constant when W (¢) # 0.
Ito formula for absolute value

W (t) — x| — |z| = /0 sign(W(s) — x)dW (s) + LW (t, z).
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Brownian local time

@ A much more interesting object is called the Brownian local time.
Consider the limit

1
L¥(t,2) = lim 5 /0 L (1w ()l <5) 5.

@ Properties

LY (0,2) = 0.

t — LY (t,z) is non-decreasing.

t = LW (t,z) is constant when W (¢) # 0.
Ito formula for absolute value

W (t) — x| — |z| = /0 sign(W(s) — x)dW (s) + LW (t, z).

Random density. For any f € L*(R),

/ wenas = [ @ e

— 00
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Symmetric local time

e For any one-dimensional semi-martingale X, the symmetric local
time is defined for any ¢t > 0, z € R,

1t
LX(t, x) :151%125/0 11X (s)—al<s3d (X)s
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Symmetric local time

e For any one-dimensional semi-martingale X, the symmetric local
time is defined for any ¢t > 0, z € R,

1t
LX(t, x) :151%125/0 11X (s)—al<s3d (X)s

o Alternate definition

LY (t,x) = | X (t) — 2| — | X(0) — x| —/ sign(X (s) — z)dX (s).
0
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Symmetric local time

e For any one-dimensional semi-martingale X, the symmetric local
time is defined for any ¢t > 0, z € R,

1t
LX(t, x) :151%125/0 11X (s)—al<s3d (X)s

o Alternate definition

LY (t,x) = | X (t) — 2| — | X(0) — x| —/ sign(X (s) — z)dX (s).
0

o It is a non-decreasing random process which is constant on the set
{t>0:X(t) #z}.
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Symmetric local time

e For any one-dimensional semi-martingale X, the symmetric local
time is defined for any ¢ > 0, € R,

LX(t,z) = 151%1 25/ L1x(s)—af<s3d (X

o Alternate definition

LY (t,x) = | X (t) — 2| — | X(0) — x| —/ sign(X (s) — z)dX (s).
0

o It is a non-decreasing random process which is constant on the set
{t>0:X(t) #z}.

@ Meyer-Tanaka formula says that for any measurable f,

/ FEENAN), = [ F@1¥ s
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Classical averaging principle

@ Suppose that X (¢) is a deterministic 1-periodic function.
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Classical averaging principle

@ Suppose that X (¢) is a deterministic 1-periodic function.

@ b: R — R is a continuous function.

Salins (Boston University) Null-recurrent avera August 15, 2016



Classical averaging principle

@ Suppose that X (¢) is a deterministic 1-periodic function.
@ b:R — R is a continuous function.

e Find the limiting behavior as ¢ — 0 of

dY<(t) = b(X (t/<))dt.
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Classical averaging principle

Suppose that X () is a deterministic 1-periodic function.
b:R — R is a continuous function.

Find the limiting behavior as € — 0 of

dY<(t) = b(X (t/<))dt.

Since X is periodic, X (t/¢) spins very, very fast before Y¢ moves
very much. The limiting behavior of Y¢ is essentially averaged
over the behavior of X.
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Classical averaging principle

o Time change

t t/e
Ye(t) — YE(0) = /0 b(X (s/¢))ds = & /O b(X (s))ds
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Classical averaging principle

o Time change

t t/e
Ye(t) — YE(0) = /0 b(X (s/¢))ds = & /O b(X (s))ds

@ Because X is periodic,

e t/e 1 -
tin = | b(X(s))ds:/O b(X (s))ds = b
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Classical averaging principle

o Time change

t t/e
Ye(t) — YE(0) = /0 b(X (s/¢))ds = & /O b(X (s))ds

@ Because X is periodic,

e t/e
gl_rf(l)g ; b(X (s))ds
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Classical averaging principle
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Classical averaging principle

@ See, for example, works by Bolgolyubov, Khasminskii, Freidlin,
and Wentzell.
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Classical averaging principle

@ See, for example, works by Bolgolyubov, Khasminskii, Freidlin,
and Wentzell.

e Let b(z,y) be Lipschitz continuous. Assume that X (t) is a
one-dimensional process satisfying

1

- T
by) = lm /0 b(X (1), ).

Salins (Boston University) Null-recurrent aver g August 15, 2016 7/ 18



Classical averaging principle

@ See, for example, works by Bolgolyubov, Khasminskii, Freidlin,
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e Let b(z,y) be Lipschitz continuous. Assume that X (t) is a
one-dimensional process satisfying
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Classical averaging principle

@ See, for example, works by Bolgolyubov, Khasminskii, Freidlin,
and Wentzell.

e Let b(z,y) be Lipschitz continuous. Assume that X (t) is a
one-dimensional process satisfying

1

- T
by) = lm /0 b(X (1), ).

e This is the case if X(t) is periodic, or if X (¢) has unique invariant
measure

L1t _
fim_ 7 [ WX O.) = [ bo ().

T—+oco T
R
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Classical averaging principle

@ See, for example, works by Bolgolyubov, Khasminskii, Freidlin,
and Wentzell.

e Let b(z,y) be Lipschitz continuous. Assume that X (t) is a
one-dimensional process satisfying

1

- T
by) = lm /0 b(X (1), ).

e This is the case if X(t) is periodic, or if X (¢) has unique invariant
measure

L1t _
fim_ 7 [ WX O.) = [ bo ().

T—+oco T
R

o Let dYe(t) = b(X(t/c), Y(£))dt, YE(0) = yo.
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Classical averaging principle

@ See, for example, works by Bolgolyubov, Khasminskii, Freidlin,
and Wentzell.

e Let b(z,y) be Lipschitz continuous. Assume that X (t) is a
one-dimensional process satisfying

1

- T
by) = lm /0 b(X (1), ).

e This is the case if X(t) is periodic, or if X (¢) has unique invariant
measure

L1t _
fim_ 7 [ WX O.) = [ bo ().

T—+oco T
R

o Let dYe(t) = b(X(t/c), Y(£))dt, YE(0) = yo.
o Let g(t) = b(y(t)).
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Classical averaging principle

e Ase — 0, X(t/e) changes on a much faster timescale than Y¢(¢).
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Classical averaging principle

e Ase — 0, X(t/e) changes on a much faster timescale than Y¢(¢).
e For small ¢ > 0,
Ye(t)—yo _ 1

02 [ veenas ~ ¢ [ 6/ mpds
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Classical averaging principle

e Ase — 0, X(t/e) changes on a much faster timescale than Y¢(¢).
e For small ¢ > 0,

YE(t)t—yO: 1/0 b(X(s/e),ye(s))dszi/o b(X(s/€), yo)ds
t/e B
~ i/o b(X (), 50)ds — B(yo).
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Classical averaging principle

e Ase — 0, X(t/e) changes on a much faster timescale than Y¢(¢).
e For small ¢ > 0,

YE(t)t—yO: 1/0 b(X(s/e),ye(s))dszi/o b(X(s/€), yo)ds
t/e B
~ i/o b(X (), 50)ds — B(yo).

o This suggests that

lim sup [Y*(¢) — y(t)| = 0.
e—0 t<T
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Toy Model

e Consider a fast/slow system where the fast motion is Brownian.
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Toy Model

e Consider a fast/slow system where the fast motion is Brownian.

e Brownian motion doesn’t have an invariant measure. It is
null-recurrent.
dXe(t) = 1dwy(t), X°(0) ==,
dYe(t) = b(Xe(t),Ye(t))dt, Y=(0) =y.
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Toy Model

e Consider a fast/slow system where the fast motion is Brownian.

e Brownian motion doesn’t have an invariant measure. It is
null-recurrent.
dXe(t) = 1dwy(t), X°(0) ==,
dYe(t) = b(Xe(t),Ye(t))dt, Y=(0) =y.

@ When ¢ is small X¢(¢) is very likely near positive or negative
infinity.
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Toy Model

e Consider a fast/slow system where the fast motion is Brownian.

e Brownian motion doesn’t have an invariant measure. It is
null-recurrent.

dXe(t) = 1dwy(t), X°(0) ==,
dY=(t) = b(XE(t),Ye(t))dt, Y=(0) = .

@ When ¢ is small X¢(¢) is very likely near positive or negative
infinity.
o If by(y) = lim b(x,y) exists, then lim Y =: Y solving
x—+o00

e—0

dY°(t) = (Lywr 1030+ (YO (1) + L, )<oyb— (YO(1))) dt
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Null-recurrent averaging

e Krylov, Khasminskii 2001 studied null recurrent averaging for the
system

{dfcf(t) = e lp(Xe(t
),

) YE(2))dW (1)
dY*(t) = b(X*(t),Y*

(t
Ye())dt + o (X5 (t), YE(£))dW (1)
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Null-recurrent averaging

e Krylov, Khasminskii 2001 studied null recurrent averaging for the
system

dX=(t) = e p(X=(t), YE(1)dW (1)

dY*(t) = b(X=(t), Y*(t))dt + o(X°(t), Y<(t))dW ().

o X¢ is one-dimensional, Y¢ is d-dimensional, W (t) is k-dimensional.
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Null-recurrent averaging

e Krylov, Khasminskii 2001 studied null recurrent averaging for the
system
dX°(t) = e p(X°(1), Y*(¢))dW (2)
dY*(t) = ( (1), Y (1)dt + o (X°(1), Y(1))dW (1).
o X¢ is one-dimensional, Y¢ is d-dimensional, W (t) is k-dimensional.
o p: R 5 RIXE 5 RIFd 5 RAXE,
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Null-recurrent averaging

e Krylov, Khasminskii 2001 studied null recurrent averaging for the
system
dX°(t) = e p(X°(1), Y*(¢))dW (2)
dY*(t) = ( (1), Y (1)dt + o (X°(1), Y(1))dW (1).
o X¢ is one-dimensional, Y¢ is d-dimensional, W (t) is k-dimensional.
o : R L RIXE 5 RIFD 5 RIXE (0 < ¢ < |p(z,9)]? < o,
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Null-recurrent averaging

e Krylov, Khasminskii 2001 studied null recurrent averaging for the
system
dX=(t) = e p(X=(t), YE(1)dW (1)
dY*(t) = b(X=(t), Y*(t))dt + o(X°(t), Y<(t))dW ().

o X¢ is one-dimensional, Y¢ is d-dimensional, W (t) is k-dimensional.
@ RIFE S RIXF o RIFD 5 RIXE (< ¢ < |o(z,9)]? < cay

Let a(z,y) = (‘P(xvy)> <90(%y)>T _ (Isﬂ(g,y)P Wf(w,y)>

o(z,y)) \o(z,y) o’ (z,y) oo’ (x,y).
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Cesaro limits

o Assume that p(z,y) := 1/|¢(z,y)|* has Cesaro limits

A
p(2,y) = (mggloo - /0 p(s, y)d8> X{z>0}

1 X
lim — .
+ (x;mm - /0 p(s,y)d8> X{a<0}
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Cesaro limits

o Assume that p(z,y) := 1/|¢(z,y)|* has Cesaro limits

. 1 [
px(,y) :( lim — /0 p(s,y)d8> X{a>0}

=400 T
+ m  — d .
- z Jo pis;y)as | X{z<0}

o Notice that pointwise limits imply Cesaro limits.
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Cesaro limits

o Assume that p(z,y) := 1/|¢(z,y)|* has Cesaro limits

A
p(2,y) = (mggloo - /0 p(s, y)d8> X{z>0}

1 X
lim — .
+ (x;mm - /0 p(s,y)d8> X{a<0}

o Notice that pointwise limits imply Cesaro limits.
o Also assume (b;p)+ and (a;jp)+ exist in the Cesaro sense.
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Cesaro limits

o Assume that p(z,y) := 1/|¢(z,y)|* has Cesaro limits

. 1 [
px(,y) :( lim — /0 p(s,y)d8> X{a>0}

=400 T
+ m  — d .
- z Jo pis;y)as | X{z<0}

o Notice that pointwise limits imply Cesaro limits.

o Also assume (b;p)+ and (a;jp)+ exist in the Cesaro sense.

o Let

(aijp)+(,y)
p£(,y)

= (bp)+(z,y)

b(.’L’,y): py(z ?;) ) dzg(may):
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Cesaro limits

Salins

Assume that p(z,y) := 1/|¢(z,y)|* has Cesaro limits

A
p(2,y) = (mggloo - /0 p(s, y)d8> X{z>0}

1 X
lim — .
+ (x;mm - /0 p(s,y)d8> X{a<0}

Notice that pointwise limits imply Cesaro limits.

Also assume (b;p)+ and (ai;p)+ exist in the Cesaro sense.
- (Bp):(a.) (a59)s(.9)
T _ QijP)+\T, Y
b(zx, P)x\Y , Gii(x,y) = J
@) ==y Y= e

= (X(),Y(#)) in law.
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Zero Cesaro limits

o We studied the case where the Cesaro limits of b and o are 0.
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Zero Cesaro limits

o We studied the case where the Cesaro limits of b and o are 0.

{dfcf(t): P(XE(t), Y=(t))dW (t)
) £

(t
dYE(t) = b(X=(t), YE(1))dt + o (XE(L), YE(£))dW (L),
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Zero Cesaro limits

o We studied the case where the Cesaro limits of b and o are 0.

{dfcf(t) = e 1p(X(1), YE(t)dW (1)
dYe(t) = b( £(t),Ye(t ))dt+a(X5( ), YE(t)dW (t).

sup/ |bi(z,y)|dr < 400, sup/ (00 ij(,y)|dx < +oc.

Y —00 Yy —00

Salins (Boston University) Null-recurrent averaging August 15, 2016 12 / 18



Zero Cesaro limits

o We studied the case where the Cesaro limits of b and o are 0.

{dfcf(t) Lp(XE (L), YE(t))dW (t)
dY*(t) = b(X°(1), YE(1))dt + o (X=(£), Y*(£))dW ().

sup/ |bi(z,y)|dr < 400, sup/ (00 ij(,y)|dx < +oc.

Y —00 Yy —00

e Then by Khasminskii, Krylov, Y¢(t) — yo uniformly on finite time
intervals.
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Zero Cesaro limits

o We studied the case where the Cesaro limits of b and o are 0.

{dfcf(wz P(XE(t), Y=(t))dW (t)
dY*(t) = b(X°(1), YE(1))dt + o (X=(£), Y*(£))dW ().

sup/ |bi(z,y)|dr < 400, sup/ (00 ij(,y)|dx < +oc.

Y —00 Yy —00

e Then by Khasminskii, Krylov, Y¢(t) — yo uniformly on finite time
intervals.

e We study nontrivial limiting behavior of the form

Ye(t) —yo

Ye(t/e®
o or (t/e%)
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Zero Cesaro limits example

o Fast motion is Brownian. Slow motion has no stochastic term
dXe(t) = e 1dW (t)
dY=(t) = b(XE(t))dt.
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Zero Cesaro limits example

o Fast motion is Brownian. Slow motion has no stochastic term
dXe(t) = e 1dW (t)
dY=(t) = b(XE(t))dt.

o Assume b € L(R) (Césaro limits are zero).
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Zero Cesaro limits example

o Fast motion is Brownian. Slow motion has no stochastic term
dXe(t) = e 1dW (t)
dY=(t) = b(XE(t))dt.

o Assume b € L(R) (Césaro limits are zero).

t
YE(t) — Y2(0) = /0 b(e= W (s))ds
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Zero Cesaro limits example

o Fast motion is Brownian. Slow motion has no stochastic term
dXe(t) = e 1dW (t)
dY=(t) = b(XE(t))dt.

o Assume b € L(R) (Césaro limits are zero).

t
YE(t) — Y2(0) = /0 b(e= W (s))ds

e Meyer-Tanaka formula

_ / T (e ) LY (¢, 2)de = & / (@) LY (¢, ) da
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Zero Cesaro limits example

o Fast motion is Brownian. Slow motion has no stochastic term
dXe(t) = e 1dW (t)
dY=(t) = b(XE(t))dt.

o Assume b € L(R) (Césaro limits are zero).

t
YE(t) — Y2(0) = /0 b(e= W (s))ds

e Meyer-Tanaka formula

_ / T (e ) LY (¢, 2)de = & / (@) LY (¢, ) da

o This implies that

lim L) = Y70 _ (/OO b(z)daz) LY (t,0).

e—0 )
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Martingale example

o Fast motion is Brownian. Slow motion has no stochastic term
dXe(t) = e LdWi ()
dY=(t) = o(XE(t))dWs.

Salins (Boston University) Null-recurrent av August 15, 2016 14 / 18



Martingale example

o Fast motion is Brownian. Slow motion has no stochastic term
dXe(t) = e LdWi ()
dY=(t) = o(XE(t))dWs.

o Assume o € L?(R) (Césaro limits are zero). Wy and Wo
independent.
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Martingale example

o Fast motion is Brownian. Slow motion has no stochastic term
dXe(t) = e LdWi ()
dY=(t) = o(XE(t))dWs.

o Assume o € L?(R) (Césaro limits are zero). Wy and Wo
independent.

YE(t) — YE(0) = /0 (e WA () V.
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Martingale example

o Fast motion is Brownian. Slow motion has no stochastic term
dXe(t) = e LdWi ()
dY=(t) = o(XE(t))dWs.

o Assume o € L?(R) (Césaro limits are zero). Wy and Wo
independent.

YE(t) — YE(0) = /0 (e WA () V.

e This is a Martingale with quadratic vaiation

(Y€>t:/0 o2 (e 1 Wi (s))ds.
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Martingale example

o Fast motion is Brownian. Slow motion has no stochastic term
dXe(t) = e LdWi ()
dY=(t) = o(XE(t))dWs.

o Assume o € L?(R) (Césaro limits are zero). Wy and Wo
independent.

t
YE(t) — YE(0) = / o (== (5))dWV.
0
e This is a Martingale with quadratic vaiation

(Y€>t:/0 o2 (e 1 Wi (s))ds.

e We showed on the last slide that this expression is of order ¢.
Then Y¢(t) — Y5(0) is of order /e
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Martingale example

lim

e—0 \/E - VWl (t)

o where V"1 is a martingale with quadratic variation

(VW) = ( / b UQ(x)dx> Vi),

—00
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Martingale example

lim

e—0 \/E - VWl (t)

o where V"1 is a martingale with quadratic variation

(VW) = ( / b 02(:5)611‘> Vi),

—00

o A martingale that is constant except on a set of zero Lebesgue
measure.
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Martingale example

lim

e—0 \/E - VWl (t)

o where V"1 is a martingale with quadratic variation

(VW) = ( / b 02(:5)611‘> Vi),

—00

o A martingale that is constant except on a set of zero Lebesgue
measure.

e Convergence in distribution.
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A more general problem

e Consider the following fast-slow system
dXE(t) = p(e71X5(t), YE(t)dW (2)
dYe(t) = (b1(YE(t)) + ba(e 71 XE(t), YE(t)))dt
+o(e71XE(t), YE(t)dW ().
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e Driving noises not assumed to be independent.
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e Consider the following fast-slow system

dXEe(t) = p(e71XE(t), YE(t))dW (t)
dYe(t) = (b (YE(t)) + ba(e 71 XE(2), YE(t)))dt
+o(e71XE(t),YE(t)dW ().

e Driving noises not assumed to be independent.
o Central limit
Ye(t) — Ye(t) —
iy YO v YWy
VE 5
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e Long-time limit. Assume by = 0. Then Y*(¢) — yo.
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A more general problem

e Consider the following fast-slow system

dXEe(t) = p(e71XE(t), YE(t))dW (t)
dYe(t) = (b (YE(t)) + ba(e 71 XE(2), YE(t)))dt
+o(e71XE(t),YE(t)dW ().

e Driving noises not assumed to be independent.
o Central limit
Ye(t) — Ye(t) —
iy YO v YWy
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o Long-time limit. Assume by =0. Then Y*(¢) — vo.
Let X¢(t) = eX®(e7%t) and Y¢(t) = Ye(e~%¢).
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A more general problem

e Consider the following fast-slow system
dXE(t) = p(e71X5(t), YE(t)dW (2)
dYe(t) = (b1(YE(t)) + ba(e 71 XE(t), YE(t)))dt
+o(e71XE(t),YE(t)dW ().

e Driving noises not assumed to be independent.
o Central limit

= YO v YOy

VE 5

o Long-time limit. Assume by =0. Then Y*(¢) — vo.
Let X¢(t) = eX®(e7%t) and Y¢(t) = Ye(e~%¢).

{dXE(t) = (e 2X=(t), V=(t))dW (1),

dYe(t) = e~ 2by (=2 X5 (1), YE(1))dt + e~ o (2K (L), V(1)) dW ().

Salins (Boston University) Null-recurrent averaging August 15, 2016 16 / 18



Long-time limit

Theorem (Zs. Pajor-Gyulai, M.S. 2015)

The long-time limit converges to (X,Y) solving
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The long-time limit converges to (X,Y) solving

o 1/¢3% is the Cesaro limit of 1/]p|%.
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Long-time limit

Theorem (Zs. Pajor-Gyulai, M.S. 2015)

The long-time limit converges to (X,Y) solving

o 1/¢3% is the Cesaro limit of 1/]p|%.

o A weak solution to the SDE is a quadruple (X, Y, W, VX), where
W is a one-dimensional Brownian motion and V¥ is a martingale
with quadratic variation

<v;f<, VJX>t = 6, L% (¢,0), <V;X, W>t = 0.
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Long-time limit

Theorem (Zs. Pajor-Gyulai, M.S. 2015)

The long-time limit converges to (X,Y) solving

o 1/¢3% is the Cesaro limit of 1/]p|%.

o A weak solution to the SDE is a quadruple (X, Y, W, VX), where
W is a one-dimensional Brownian motion and V¥ is a martingale
with quadratic variation

<v;f<, VJX>t = 6, L% (¢,0), <V;X, W>t = 0.

LX is the symmetric local time of X at 2 = 0.
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Thank you
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