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Brownian occupation time

Let W (t) be a Brownian motion.

How much time does W (t) spend at 0?

Let T (t) =
∫ t

0 1{W (s)=0}ds.

We easily check that E(T (t)) = 0. Brownian motion crosses 0
infinitely many times, but spends no time there.

Topologically, the set {t ≥ 0 : W (t) = 0} is a zero-measure Cantor
set.
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Brownian local time

A much more interesting object is called the Brownian local time.
Consider the limit

LW (t, x) = lim
δ→0

1

2δ

∫ t

0
1{|W (s)−x|<δ}ds.

Properties
LW (0, x) = 0.
t 7→ LW (t, x) is non-decreasing.
t 7→ LW (t, x) is constant when W (t) 6= 0.
Ito formula for absolute value

|W (t)− x| − |x| =
∫ t

0

sign(W (s)− x)dW (s) + LW (t, x).

Random density. For any f ∈ L1(R),∫ t

0

f(W (s))ds =

∫ ∞
−∞

f(x)LW (t, x)dx.
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Symmetric local time

For any one-dimensional semi-martingale X, the symmetric local
time is defined for any t ≥ 0, x ∈ R,

LX(t, x) = lim
δ↓0

1

2δ

∫ t

0
1{|X(s)−x|<δ}d 〈X〉s

Alternate definition

LX(t, x) = |X(t)− x| − |X(0)− x| −
∫ t

0
sign(X(s)− x)dX(s).

It is a non-decreasing random process which is constant on the set
{t > 0 : X(t) 6= x}.
Meyer-Tanaka formula says that for any measurable f ,∫ t

0
f(X(s))d 〈X〉s =

∫ ∞
−∞

f(x)LX(t, x)dx.
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Classical averaging principle

Suppose that X(t) is a deterministic 1-periodic function.

b : R→ R is a continuous function.

Find the limiting behavior as ε→ 0 of

dY ε(t) = b(X(t/ε))dt.

Since X is periodic, X(t/ε) spins very, very fast before Y ε moves
very much. The limiting behavior of Y ε is essentially averaged
over the behavior of X.

Salins (Boston University) Null-recurrent averaging August 15, 2016 5 / 18



Classical averaging principle

Suppose that X(t) is a deterministic 1-periodic function.

b : R→ R is a continuous function.

Find the limiting behavior as ε→ 0 of

dY ε(t) = b(X(t/ε))dt.

Since X is periodic, X(t/ε) spins very, very fast before Y ε moves
very much. The limiting behavior of Y ε is essentially averaged
over the behavior of X.

Salins (Boston University) Null-recurrent averaging August 15, 2016 5 / 18



Classical averaging principle

Suppose that X(t) is a deterministic 1-periodic function.

b : R→ R is a continuous function.

Find the limiting behavior as ε→ 0 of

dY ε(t) = b(X(t/ε))dt.

Since X is periodic, X(t/ε) spins very, very fast before Y ε moves
very much. The limiting behavior of Y ε is essentially averaged
over the behavior of X.

Salins (Boston University) Null-recurrent averaging August 15, 2016 5 / 18



Classical averaging principle

Suppose that X(t) is a deterministic 1-periodic function.

b : R→ R is a continuous function.

Find the limiting behavior as ε→ 0 of

dY ε(t) = b(X(t/ε))dt.

Since X is periodic, X(t/ε) spins very, very fast before Y ε moves
very much. The limiting behavior of Y ε is essentially averaged
over the behavior of X.

Salins (Boston University) Null-recurrent averaging August 15, 2016 5 / 18



Classical averaging principle

Time change

Y ε(t)− Y ε(0) =

∫ t

0
b(X(s/ε))ds = ε

∫ t/ε

0
b(X(s))ds

Because X is periodic,

lim
ε→0

ε

t

∫ t/ε

0
b(X(s))ds =

∫ 1

0
b(X(s))ds =: b̄

lim
ε→0

(Y ε(t)− Y ε(0)) = tb̄
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Classical averaging principle

See, for example, works by Bolgolyubov, Khasminskii, Freidlin,
and Wentzell.

Let b(x, y) be Lipschitz continuous. Assume that X(t) is a
one-dimensional process satisfying

b̄(y) := lim
T→+∞

1

T

∫ T

0
b(X(t), y)dt.

This is the case if X(t) is periodic, or if X(t) has unique invariant
measure

lim
T→+∞

1

T

∫ T

0
b(X(t), y) =

∫
R

b(x, y)µ(dx).

Let dY ε(t) = b(X(t/ε), Y ε(t))dt, Y ε(0) = y0.

Let ẏ(t) = b̄(y(t)).
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Let ẏ(t) = b̄(y(t)).

Salins (Boston University) Null-recurrent averaging August 15, 2016 7 / 18



Classical averaging principle

See, for example, works by Bolgolyubov, Khasminskii, Freidlin,
and Wentzell.

Let b(x, y) be Lipschitz continuous. Assume that X(t) is a
one-dimensional process satisfying

b̄(y) := lim
T→+∞

1

T

∫ T

0
b(X(t), y)dt.

This is the case if X(t) is periodic, or if X(t) has unique invariant
measure

lim
T→+∞

1

T

∫ T

0
b(X(t), y) =

∫
R

b(x, y)µ(dx).

Let dY ε(t) = b(X(t/ε), Y ε(t))dt, Y ε(0) = y0.
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Classical averaging principle

As ε→ 0, X(t/ε) changes on a much faster timescale than Y ε(t).

For small t > 0,

Y ε(t)− y0

t
=

1

t

∫ t

0
b(X(s/ε), Y ε(s))ds ≈ 1

t

∫ t

0
b(X(s/ε), y0)ds

≈ ε

t

∫ t/ε

0
b(X(s), y0)ds→ b̄(y0).

This suggests that

lim
ε→0

sup
t≤T
|Y ε(t)− y(t)| = 0.
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Toy Model

Consider a fast/slow system where the fast motion is Brownian.

Brownian motion doesn’t have an invariant measure. It is
null-recurrent.{

dXε(t) = 1
εdW1(t), Xε(0) = x,

dY ε(t) = b(Xε(t), Y ε(t))dt, Y ε(0) = y.

When ε is small Xε(t) is very likely near positive or negative
infinity.

If b±(y) = lim
x→±∞

b(x, y) exists, then lim
ε→0

Y ε =: Y 0 solving

dY 0(t) =
(
1{W1(t)>0}b+(Y 0(t)) + 1{W1(t)<0}b−(Y 0(t))

)
dt
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Null-recurrent averaging

Krylov, Khasminskii 2001 studied null recurrent averaging for the
system{

dX̃ε(t) = ε−1ϕ(X̃ε(t), Y ε(t))dW (t)

dY ε(t) = b(X̃ε(t), Y ε(t))dt+ σ(X̃ε(t), Y ε(t))dW (t).

X̃ε is one-dimensional, Y ε is d-dimensional, W (t) is k-dimensional.

ϕ : R1+d → R1×k, σ : R1+d → Rd×k. 0 < c1 ≤ |ϕ(x, y)|2 ≤ c2,

Let a(x, y) =

(
ϕ(x, y)
σ(x, y)

)(
ϕ(x, y)
σ(x, y)

)T
=

(
|ϕ(x, y)|2 ϕσT (x, y)
σϕT (x, y) σσT (x, y).

)
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Cesàro limits

Assume that p(x, y) := 1/|ϕ(x, y)|2 has Cesàro limits

p±(x, y) =

(
lim

x→+∞

1

x

∫ x

0
p(s, y)ds

)
χ{x>0}

+

(
lim

x→−∞

1

x

∫ x

0
p(s, y)ds

)
χ{x<0}.

Notice that pointwise limits imply Cesàro limits.

Also assume (bip)± and (aijp)± exist in the Cesàro sense.

Let

b̄(x, y) =
(bp)±(x, y)

p±(x, y)
, āij(x, y) =

(aijp)±(x, y)

p±(x, y)

Then (εX̃ε(t), Y ε(t))→ Z̄ = (X̄(t), Ȳ (t)) in law.

dZ̄(t) =

(
0

b̄(Z̄)

)
+
√
ā(Z(t))dW (t)
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, āij(x, y) =

(aijp)±(x, y)

p±(x, y)

Then (εX̃ε(t), Y ε(t))→ Z̄ = (X̄(t), Ȳ (t)) in law.
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Zero Cesàro limits

We studied the case where the Cesàro limits of b and σ are 0.

{
dX̃ε(t) = ε−1ϕ(X̃ε(t), Y ε(t))dW (t)

dY ε(t) = b(X̃ε(t), Y ε(t))dt+ σ(X̃ε(t), Y ε(t))dW (t).

sup
y

∫ ∞
−∞
|bi(x, y)|dx < +∞, sup

y

∫ ∞
−∞
|(σσT )ij(x, y)|dx < +∞.

Then by Khasminskii, Krylov, Y ε(t)→ y0 uniformly on finite time
intervals.

We study nontrivial limiting behavior of the form

Y ε(t)− y0

εα
or Y ε(t/εα)
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Zero Cesàro limits example

Fast motion is Brownian. Slow motion has no stochastic term{
dXε(t) = ε−1dW (t)

dY ε(t) = b(Xε(t))dt.

Assume b ∈ L1(R) (Césaro limits are zero).

Y ε(t)− Y ε(0) =

∫ t

0
b(ε−1W (s))ds

Meyer-Tanaka formula

=

∫ ∞
−∞

b(ε−1x)LW (t, x)dx = ε

∫ ∞
−∞

b(x)LW (t, εx)dx.

This implies that

lim
ε→0

Y ε(t)− Y ε(0)

ε
=

(∫ ∞
−∞

b(x)dx

)
LW (t, 0).
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Martingale example

Fast motion is Brownian. Slow motion has no stochastic term{
dXε(t) = ε−1dW1(t)

dY ε(t) = σ(Xε(t))dW2.

Assume σ ∈ L2(R) (Césaro limits are zero). W1 and W2

independent.

Y ε(t)− Y ε(0) =

∫ t

0
σ(ε−1W1(s))dW2.

This is a Martingale with quadratic vaiation

〈Y ε〉t =

∫ t

0
σ2(ε−1W1(s))ds.

We showed on the last slide that this expression is of order ε.
Then Y ε(t)− Y ε(0) is of order

√
ε.

Salins (Boston University) Null-recurrent averaging August 15, 2016 14 / 18



Martingale example

Fast motion is Brownian. Slow motion has no stochastic term{
dXε(t) = ε−1dW1(t)

dY ε(t) = σ(Xε(t))dW2.

Assume σ ∈ L2(R) (Césaro limits are zero). W1 and W2

independent.

Y ε(t)− Y ε(0) =

∫ t

0
σ(ε−1W1(s))dW2.

This is a Martingale with quadratic vaiation

〈Y ε〉t =

∫ t

0
σ2(ε−1W1(s))ds.

We showed on the last slide that this expression is of order ε.
Then Y ε(t)− Y ε(0) is of order

√
ε.

Salins (Boston University) Null-recurrent averaging August 15, 2016 14 / 18



Martingale example

Fast motion is Brownian. Slow motion has no stochastic term{
dXε(t) = ε−1dW1(t)

dY ε(t) = σ(Xε(t))dW2.

Assume σ ∈ L2(R) (Césaro limits are zero). W1 and W2

independent.

Y ε(t)− Y ε(0) =

∫ t

0
σ(ε−1W1(s))dW2.

This is a Martingale with quadratic vaiation

〈Y ε〉t =

∫ t

0
σ2(ε−1W1(s))ds.

We showed on the last slide that this expression is of order ε.
Then Y ε(t)− Y ε(0) is of order

√
ε.

Salins (Boston University) Null-recurrent averaging August 15, 2016 14 / 18



Martingale example

Fast motion is Brownian. Slow motion has no stochastic term{
dXε(t) = ε−1dW1(t)

dY ε(t) = σ(Xε(t))dW2.

Assume σ ∈ L2(R) (Césaro limits are zero). W1 and W2

independent.

Y ε(t)− Y ε(0) =

∫ t

0
σ(ε−1W1(s))dW2.

This is a Martingale with quadratic vaiation

〈Y ε〉t =

∫ t

0
σ2(ε−1W1(s))ds.

We showed on the last slide that this expression is of order ε.
Then Y ε(t)− Y ε(0) is of order

√
ε.

Salins (Boston University) Null-recurrent averaging August 15, 2016 14 / 18



Martingale example

Fast motion is Brownian. Slow motion has no stochastic term{
dXε(t) = ε−1dW1(t)

dY ε(t) = σ(Xε(t))dW2.

Assume σ ∈ L2(R) (Césaro limits are zero). W1 and W2

independent.

Y ε(t)− Y ε(0) =

∫ t

0
σ(ε−1W1(s))dW2.

This is a Martingale with quadratic vaiation

〈Y ε〉t =

∫ t

0
σ2(ε−1W1(s))ds.

We showed on the last slide that this expression is of order ε.
Then Y ε(t)− Y ε(0) is of order

√
ε.

Salins (Boston University) Null-recurrent averaging August 15, 2016 14 / 18



Martingale example

lim
ε→0

Y ε(t)− Y ε(0)√
ε

= V W1(t)

where V W1 is a martingale with quadratic variation

〈
V W1

〉
t

=

(∫ ∞
−∞

σ2(x)dx

)
LW1(t).

A martingale that is constant except on a set of zero Lebesgue
measure.

Convergence in distribution.
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A more general problem

Consider the following fast-slow system
dXε(t) = ϕ(ε−1Xε(t), Y ε(t))dW (t)

dY ε(t) = (b1(Y ε(t)) + b2(ε−1Xε(t), Y ε(t)))dt

+σ(ε−1Xε(t), Y ε(t))dW (t).

Driving noises not assumed to be independent.

Central limit

ζε(t) =
Y ε(t)− y(t)√

ε
or

Y ε(t)− y(t)

ε
( if σ ≡ 0).

Long-time limit. Assume b1 ≡ 0. Then Y ε(t)→ y0.
Let X̄ε(t) = εXε(ε−2t) and Ȳ ε(t) = Y ε(ε−2t).{
dX̄ε(t) = ϕ(ε−2X̄ε(t), Ȳ ε(t))dW (t),

dȲ ε(t) = ε−2b2(ε−2X̄ε(t), Ȳ ε(t))dt+ ε−1σ(ε−2X̄ε(t), Ȳ ε(t))dW (t).
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Driving noises not assumed to be independent.

Central limit

ζε(t) =
Y ε(t)− y(t)√

ε
or

Y ε(t)− y(t)

ε
( if σ ≡ 0).

Long-time limit. Assume b1 ≡ 0. Then Y ε(t)→ y0.

Let X̄ε(t) = εXε(ε−2t) and Ȳ ε(t) = Y ε(ε−2t).{
dX̄ε(t) = ϕ(ε−2X̄ε(t), Ȳ ε(t))dW (t),

dȲ ε(t) = ε−2b2(ε−2X̄ε(t), Ȳ ε(t))dt+ ε−1σ(ε−2X̄ε(t), Ȳ ε(t))dW (t).
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Long-time limit

Theorem (Zs. Pajor-Gyulai, M.S. 2015)

The long-time limit converges to (X̄, Ȳ ) solving
dX̄(t) =

√
ϕ2
±(X̄(t), Ȳ (t))dW (t),

dȲ (t) =
(∫∞
−∞

b2
|ϕ|2 (x, Ȳ (t))dx

)
LX̄(dt, 0)

+

(√∫∞
−∞

(
σσT

|ϕ|2

)
(x, Ȳ (t))dx

)
dV X̄(t).

1/ϕ2
± is the Cesàro limit of 1/|ϕ|2.

A weak solution to the SDE is a quadruple (X̄, Ȳ ,W, V X̄), where
W is a one-dimensional Brownian motion and V X̄ is a martingale
with quadratic variation〈

V X̄
i , V X̄

j

〉
t

= δijL
X̄(t, 0),

〈
V X̄
i ,W

〉
t

= 0.

LX̄ is the symmetric local time of X̄ at x = 0.
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)
LX̄(dt, 0)

+

(√∫∞
−∞

(
σσT

|ϕ|2

)
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± is the Cesàro limit of 1/|ϕ|2.

A weak solution to the SDE is a quadruple (X̄, Ȳ ,W, V X̄), where
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Thank you
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