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Part I

Motivation: Accelerating Monte Carlo
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Motivation: Accelerating Monte Carlo

Motivation

Sampling from a given high dimensional distribution is a classical
problem.

One knows the target distributions only up to normalizing constants.
Hence approximations are necessary.

Often, such approximations are based on constructing Markov
processes that have the target distribution as their target distribution,
e.g., MCMC.

The degree of how good the approximation is depends on
1 the approximating Markov process, and
2 on the criterion used for comparison.
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Motivation: Accelerating Monte Carlo

Problem formulation-Steady state simulation
Let us assume that target distribution is of Gibbs type

π̄(dx) =
e−2U(x)dx∫
E e−2U(x)dx

Often one is interested in quantities of the form

f̄ ≡
∫
E
f (x)π̄(dx)

One may consider a Markov process Xt which has π̄ as its invariant
distribution and under the assumption that Xt is positive recurrent, the
ergodic theorem gives

1

t

∫ t

0
f (Xs)ds →

∫
E
f (x)π̄(dx), a.s. as t →∞ , (1)

for all f ∈ L1(π̄). Hence the estimator ft ≡ 1
t

∫ t
0 f (Xs)ds can be used to

approximate the expectation f̄ .
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Motivation: Accelerating Monte Carlo

Detailed Balance Condition

Most of the times, a Markov chain is constructed that is time-reversible or
in other words satisfies the detailed balance condition (DBC).
If for example that target stationary distribution is π = (π1, · · · , πN), then
a sufficient condition to guarantee that

lim
t→∞

Pi (t) = πi

is the detailed balance condition

πipij = πjpji or π(x)P(x , y) = π(y)P(y , x)

But DBC is only sufficient and not necessary!!
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Motivation: Accelerating Monte Carlo

Questions.

1 What is the best Markov process Xt ?

2 What would be a reasonable criterion of optimality?

Can we use large deviations theory in an effective way? Connections with
variance reduction?
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Part II

Investigation of convergence criteria
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Investigation of convergence criteria

Overdamped Langevin equation.

To sample the Gibbs measure π̄ on the set E

π̄(dx) =
e−2U(x)dx∫
E e−2U(x)dx

one can consider the (time-reversible) Langevin equation

dXt = −∇U(Xt)dt + dWt . (2)

How should we describe the rate of convergence

1

t

∫ t

0
f (Xs)ds →

∫
E
f (x)π̄(dx), ? (3)

Important remark: Need to use a performance measure that works directly
with the empirical measure, which is what is used in practice!!!!
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Investigation of convergence criteria

Standard measures of performance and their problems.
Spectral gap and 2nd eigenvalue.Consider the transition kernel

p(t, x0, dx) = P [Xt ∈ dx |X0 = x0]

Under the appropriate conditions, we have that the limit

p(t, x0, dx)→ π(dx)

is determined by the spectral gap of the generator corresponding to X and
the rate is exponential. In other words:∥∥E·f (Xt)− f̄

∥∥
L2(π̄)

≤ C0

∥∥f − f̄
∥∥ e−λt

where

λ = inf{real part of non-zero eigenvalues in the spectrum of the operator}.

Is spectral gap the most appropriate measure to characterize convergence?
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Investigation of convergence criteria

Another standard measures of performance.

Asymptotic variance: Hard to compute and it is a property of the
algorithm only when we are at equilibrium. This is ok if we are interested
in steady-state simulation.

t1/2

(
1

t

∫ t

0
f (Xs)ds −

∫
fd π̄

)
⇒ N(0, σ2

f )

and the asymptotic variance σ2
f is given in terms of the integrated

autocorrelation function,

σ2
f = 2

∫ ∞
0

Eπ̄
[(
f (X0)− f̄

) (
f (Xt)− f̄

)]
dt

Hard to compute.
Question: Are there other possible Markov processes to use? How to
compare their performance?
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Investigation of convergence criteria

Overdamped Langevin equation.
To sample the Gibbs measure π̄ on the set E

π̄(dx) =
e−2U(x)dx∫
E e−2U(x)dx

one can consider the (time-reversible) Langevin equation

dXt = −∇U(Xt)dt + dWt . (4)

There are however many other stochastic differential equations with the
same invariant measure and we may consider instead the family of
equations

dXt = [−∇U(Xt) + C (Xt)] dt + dWt

where the vector field C (x) satisfies the condition

div(Ce−2U) = 0

In this case the Markov process is not time-reversible!!
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Investigation of convergence criteria

Overdamped Langevin equation.

There are many such C , indeed since div(Ce−2U) = 0 is equivalent to

div(C ) = 2C∇U ,

so that we, for example, can choose C to be both divergence free and
orthogonal to ∇U.

One can always pick C = S∇U for any antisymmetric matrix S .

More generally, it is proved in [Barbarosie, 2011] that in dimension d
any divergence free vector field can be written, locally, as the exterior
product C = ∇V1 ∧ · · ·∇Vn−1 for some for Vi ∈ C1(E ;R). Therefore
we can pick C of the form

C = ∇U ∧∇V2 · · · ∇Vn−1 .

for arbitrary V2, · · ·Vn−1.
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Investigation of convergence criteria

Donsker-Varadhan and Gärtner large deviations theory.

From a practical Monte-Carlo point of view one is interested in the
distribution of the ergodic average t−1

∫ t
0 f (Xs) ds and how likely it is that

this average differs from
∫
fd π̄.

Define the empirical measure

πt ≡
1

t

∫ t

0
δXs ds

which converges to π̄ almost surely. If we have a large deviation for the
family of measures πt , which we write, symbolically as

P {πt ≈ µ} � e−tIC (µ)

Note that rate function IC (µ) quantifies the exponential rate at which the

random measure πt converges to π̄. Clearly, the larger IC is, the faster the
convergence occurs.
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Donsker-Varadhan and Gärtner large deviations theory.

From a practical Monte-Carlo point of view one is interested in the
distribution of the ergodic average t−1

∫ t
0 f (Xs) ds and how likely it is that

this average differs from
∫
fd π̄.

Define the empirical measure

πt ≡
1

t

∫ t

0
δXs ds

which converges to π̄ almost surely. If we have a large deviation for the
family of measures πt , which we write, symbolically as

P {πt ≈ µ} � e−tIC (µ)

Note that rate function IC (µ) quantifies the exponential rate at which the

random measure πt converges to π̄. Clearly, the larger IC is, the faster the
convergence occurs.

Konstantinos Spiliopoulos ( Department of Mathematics & Statistics, Boston University Partially supported by NSF-DMS 1312124 and career award NSF-DMS 1550918 )Irreversible Langevin samplers and variance reduction: a large deviations approach14 / 72



Investigation of convergence criteria
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Investigation of convergence criteria

Standard measures of performance and their problems.
How should we describe the rate of convergence

1

t

∫ t

0
f (Xs)ds →

∫
E
f (x)π̄(dx), ? (5)

Important remark: None of the standard measures of performance works
directly with the empirical measure, which is what is used in practice!!!!
Spectral gap and 2nd eigenvalue.Consider the transition kernel

p(t, x0, dx) = P [Xt ∈ dx |X0 = x0]

Under the appropriate conditions, we have that the limit

p(t, x0, dx)→ π(dx)

is determined by the spectral gap of the generator corresponding to X and
the rate is exponential.

Is spectral gap the most appropriate measure to characterize convergence?
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Investigation of convergence criteria

Other standard measures of performance.

Asymptotic variance: Hard to compute and it is a property of the
algorithm only when we are at equilibrium. This is ok if we are
interested in steady-state simulation.

Large deviations rate function. It quantifies the exponential rate at
which the empirical measure πt converges to the Gibbs measure π̄.
The larger the rate function is, the fastest the convergence is (e.g.,
Dupuis, Liu, Plattner, and J. D. Doll (2012)).

Moreover, it turns out that we can characterize asymptotic variance, using
the large deviations rate function!
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Investigation of convergence criteria

Standard measures of performance.

Is spectral gap the most appropriate measure to characterize convergence?
The problem with spectral gap is that the information is on the density at
fixed time t and not on the empirical measure. But empirical measure
depends on sample path. Hence, spectral gap neglects potentially
significant effects of time averaging in empirical measure.

Counter example. Let us consider the family of diffusions

dXt = δdt + dWt

on the circle S1 with generator

Lδ = ∆ + δ∇

For any δ ∈ R the Lebesgue measure on S1 is invariant but the diffusion is
reversible only if δ = 0.
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Investigation of convergence criteria

Standard measures of performance.
The eigenvalues and eigenfunctions of Lδ are

en = e inx , λn = −n2 + inδ, n ∈ Z .

The spectral gap is −1 for all δ ∈ R, i.e. the spectral gap does not move.
However the asymptotic variance does decrease. For any real-valued
function f with

∫
S1 fdx = 0 we have for the asymptotic variance of the

estimator

σ2
f (δ) =

∫ ∞
0
〈etLf (x) , f (x)〉L2(dx) dt = 〈L−1

δ f , f 〉L2(dx)

where L−1
δ is the inverse of Lδ on the orthogonal complement of the

eigenfunction 1. Expanding in the eigenfunctions we find

σ2
f (δ) =

∑
n∈Z,n 6=0

|cn|2

n2 + inδ
=

∞∑
n=1

2|cn|2

n2 + δ2
.

In this example, even though the spectral gap does not decrease at all, the
variance not only decreases, but it can be made as small as we want by
increasing δ2.Konstantinos Spiliopoulos ( Department of Mathematics & Statistics, Boston University Partially supported by NSF-DMS 1312124 and career award NSF-DMS 1550918 )Irreversible Langevin samplers and variance reduction: a large deviations approach18 / 72



Investigation of convergence criteria

What is known in the literature?
Spectral gap decreases under a natural non-degeneracy condition on
adding some irreversibility The corresponding eigenspace should not
be invariant under the action of the added drift C (Hwang,
Hwang-Ma and Sheu, (2005)).
Let U = 0 and consider a one-parameter family of perturbations
C = δC0 for δ ∈ R and C0 is some divergence vector field. If the flow
is weak-mixing then the second largest eigenvalue tends to 0 as
δ →∞ (Constantin-Kiselev-Ryshik-Zlatos, (2008)).
Detailed analysis of the Gaussian case, i.e., when U(x) = 1

2x
TAx and

C = JAx for a antisymmetric J can be found in Hwang-Ma-Sheu
(1993) and Lelievre-Nier-Pavliotis (2012).
Evidence that violation of detailed balance accelerates relaxation in
recent physics literature, Ichiki-Ohzeki (2013).
Use of large deviations to analyze parallel tempering type of
algorithms in Dupuis, Liu, Plattner, and J. D. Doll (2012) (infinite
swapping algorithm)
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Part III

What can large deviations theory say?
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What can large deviations theory say?

Approximation via diffusions
To sample the Gibbs measure π̄ on the set E

π̄(dx) =
e−2U(x)dx∫
E e−2U(x)dx

one can consider the (time-reversible) Langevin equation

dXt = −∇U(Xt)dt + dWt . (6)

There are however many other stochastic differential equations with the
same invariant measure and we may consider instead the family of
equations

dXt = [−∇U(Xt) + C (Xt)] dt + dWt

where the vector field C (x) satisfies the condition

div(Ce−2U) = 0

In this case the Markov process is not time-reversible!! Can we somehow
optimize by choosing C?
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What can large deviations theory say?

Donsker-Varadhan and Gärtner theory
Define the empirical measure

πt ≡
1

t

∫ t

0
δXs ds

which converges to π̄ almost surely. If we have a large deviation for the
family of measures πt , which we write, symbolically as

P {πt ≈ µ} � e−tIC (µ)

The information in IC (µ) can be used to study observable: we have for
f ∈ C(E ;R) the large deviation principle

P
{

1

t

∫ t

0
f (Xs) ds ≈ `

}
� e−tĨf ,C (`)

where
Ĩf ,C (`) = inf

µ∈P(E)
{IC (µ) : 〈f , µ〉 = `} ,
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What can large deviations theory say?

Donsker-Varadhan and Gärtner theory
In particular, if A is the generator of the Markov process and D its
domain, then the Dosnker-Varadhan functional takes the form

I (µ) = − inf
u∈{u∈D,u>0}

∫
E

Au
u

dµ

A more explicit formula due to Gärtner:

Theorem (Gärtner).

Consider the SDE
dXt = b(Xt) + dWt

on a compact manifold E with b ∈ C1(E ;Rd ). The Donsker-Vardhan rate function I (µ) takes
the form

I (µ) =
1

2

∫
E
|∇φ(x)|2 dµ(x) (7)

where φ is the unique (up to constant) solution of the equation

∆φ+
1

p
(∇p,∇φ) =

1

p
L∗p (8)
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What can large deviations theory say?

Simplifications

In the special case where b = −∇U is a gradient, then φ(x) = 1
2

log p(x) + U(X ) + constant
and we get

I (µ) =
1

2

∫
E

∣∣∣∣12 ∇p(x)

p(x)
+∇U(x)

∣∣∣∣2 dµ(x) (9)

which the usual explicit formula for the rate function in the reversible case. Motivated, by this if
we set φ(x) = 1

2
log p(x) + ψ(x), then we get the following representation.

Lemma

We have

I (µ) =
1

8

∫
E

∣∣∣∣∇p(x)

p(x)

∣∣∣∣2 dµ(x) +
1

2

∫
E
|∇ψ(x)|2 dµ(x)−

1

2

∫
E

b∇p
p

dµ(x)

where ψ is the unique (up to constant) solution of the equation

div [p (b +∇ψ)] = 0.
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What can large deviations theory say?

Behavior of rate function
Recall that we are comparing

dXt = [−∇U(Xt)] dt + dWt

dXt = [−∇U(Xt) + C (Xt)] dt + dWt

Same invariant measure but reversible versus irreversible!
Theorem

Assume that C 6= 0 such that divC = 2C∇U. For any µ ∈ P(E) we have IC (µ) ≥ I0(µ). If
µ(dx) = p(x)dx is a measure with positive density p ∈ C(2+α)(E) for some α > 0 and µ 6= π̄
then we have

IC (µ) = I0(µ) +
1

2

∫
E
|∇ψC (x)−∇U(x)|2 dµ(x) .

where ψC is the unique solution (up to a constant) of the equation

div [p (−∇U + C +∇ψC )] = 0.

Moreover we have IC (µ) = I0(µ) if and only if the positive density p(x) satisfies div (p(x)C(x)) =
0. Equivalently such p have the form p(x) = e2G(x) where G is such that G + U is an invariant
for the vector field C (i.e., C∇(G + U) = 0).
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What can large deviations theory say?

Behavior of rate function

To obtain a slightly more quantitative result let us consider a
one-parameter family C (x) = δC0(X ) where δ ∈ R and C0 6= 0 such that
divC0 = 2C0∇U.

Theorem

Assume that C0 6= 0 such that divC0 = 2C0∇U. Consider the measure µ(dx) = p(x)dx with
positive density p ∈ C(2+α)(E) for some α > 0. Then we

IδC0
(µ) = I0(µ) + δ2K(µ) .

where the functional K(µ) is strictly positive if and only if div (p(x)C(x)) 6= 0.

Namely, rate function, is quadratic in δ!
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What can large deviations theory say?

What about observables?

For f ∈ C(E ,R), by the contraction principle,

P
{

1

t

∫ t

0
f (Xs) ds ≈ `

}
� e−tĨf ,C (`)

where
Ĩf ,C (`) = inf

µ∈P(E)
{IC (µ) : 〈f , µ〉 = `}

Theorem

Consider f ∈ C(α)(E) and ` ∈ (minx f (x),maxx f (x)) with ` 6=
∫
fd π̄. Fix a vector field C as in

assumption (H). Then we have
Ĩf ,C (`) ≥ Ĩf ,0(`) .

Moreover if there exists `0 such that for this particular field C , Ĩf ,C (`0) = Ĩf ,0(`0) then we must
have

β̂(`0)f =
1

2
∆(G + U) +

1

2
|∇G |2 −

1

2
|∇U|2 , (10)

where G is such that G + U is invariant under the particular vector field C .
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What can large deviations theory say?

What about observables?

Letting L0 denote the infinitesimal generator of the reversible process
Xt (i.e., when C = 0), we get that (10) can be rewritten as a
nonlinear Poisson equation of the form

H(G + U) = β̂(`0)f , (11)

where

H(G + U) = e−(G+U)L0e
G+U =

1

2
∆(G + U) +

1

2
|∇G |2 − 1

2
|∇U|2.

This result does not mean that there are observables f , for which
variance reduction cannot be attained. It only means, that for a given
observable, one should choose a vector field C , such that there is no
G that satisfies both C∇(G + U) = 0 and (10).
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What can large deviations theory say?

Sketch of the proof 1/5.

Overview of the proof:

1 Recall that we already know that IC (µ) > I0(µ).

2 Since Ĩf ,C (`) = infµ∈P(E) {IC (µ) : 〈f , µ〉 = `}, is the minimizer µ
achieved?

3 The mimimizer µ is achieved for “good“ functions f .

4 Exploiting these properties, a contradiction argument gives us that
Ĩf ,C (`) ≥ Ĩf ,0(`) and the condition under which the inequality is strict.
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What can large deviations theory say?

Sketch of the proof 2/5.

The proof of the existence and characterization of the minimizer µ is
based on the representation of the rate function in terms of a Legendre
transform

Ĩf ,C (`) = sup
β∈R
{β`− λ(βf )} .

where the eigenvalue λ(βf ) is a smooth strictly convex function of β

λ(βf ) = lim
t→∞

1

t
logE

[
e
∫ t

0 βf (Xs)ds
]
.

If ` belongs to the range of f we have

Ĩf ,C (`) = β̂`− λ(β̂f ) , with β̂ given by ` =
d

dβ
λ(β̂f ) .
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What can large deviations theory say?

Sketch of the proof 3/5.

Since f ∈ C(α), λ(βf ) is the maximal eigenvalue of LC + βf

(LC + βf )u(βf ) = λ(βf )u(βf ) , (12)

and is a smooth convex function of β. Here u(βf ) is the corresponding
eigenfunction.
With u(βf ) = eφ(βf ), the eigenvalue equation can be equivalently written
as

LCφ(βf ) +
1

2
|∇φ(βf )|2 = λ(βf )− βf (13)

Differentiating with respect to β and setting ψ(βf ) = ∂φ
∂β (βf ) we see that

ψ(βf ) satisfies the equation

LCψ(βf ) + (∇φ(βf ),∇ψ(βf )) = λ′f (β)− f
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What can large deviations theory say?

Sketch of the proof 4/5.

Equivalently
LC+∇φ(βf )ψ = λ′f (β)− f

Thus, the constraint 〈f , µ〉 = `, implies that in order to have ` = λ′f (β̂) for

some β̂, µβ̂ should be the invariant measure for the process with generator
LC+∇φ(β̂f ).

Since ∇φ ∈ C(1+α) the corresponding invariant measure µβ̂ is strictly

positive and has a density p(x) ∈ C(2+α).
To conclude the proof, by Gärtner’s result we have
IC (µβ̂) = µ(β̂f )− λ(β̂f ). But since µ(f ) = ` this is also equal to If ,C (`).
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What can large deviations theory say?

Sketch of the proof 5/5.

Hence, we have obtained

Ĩf ,C (`) = IC (µC ,β̂) with µC ,β̂(dx) = pC ,β̂(x)dx .

The rest is standard.

1 Let div(CpC ,β̂) 6= 0. Assume that the rate functions with C = 0 and
C 6= 0 are equal and get a contradiction.

2 Let div(CpC ,β̂) = 0. Let us write pC ,β̂ = e−2G , so we must have
C · ∇G = 2div(C ). Keeping in mind that pC ,β̂(x) is invariant density
corresponding to a known operator gives us that we must have
pC ,β̂ = p0,β̂ = e2(φ(βf )−U)+const . Thus φ(βf ) = G + U and

C · ∇φ(βf ) = 2div(C ) and (13) reduces to (L0 + β̂f )eφ = λ(β̂f )eφ.
Solving for f gives the nonlinear Poisson equation (11):

β̂f = e−φL0e
φ + const. (14)
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Part IV

What about variance reduction?
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What about variance reduction?

Asymptotic variance

Under our assumptions the central limit theorem holds for the ergodic
average ft and we have

t1/2

(
1

t

∫ t

0
f (Xs)ds −

∫
fd π̄

)
⇒ N(0, σ2

f )

and the asymptotic variance σ2
f is given in terms of the integrated

autocorrelation function,

σ2
f = 2

∫ ∞
0

Eπ̄
[(
f (X0)− f̄

) (
f (Xt)− f̄

)]
dt
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What about variance reduction?

Asymptotic variance

This is a convenient quantity from a practical point of view since there exists easily
implementable estimators for σ2

f . On the other hand the asymptotic variance σ2
f is related to the

curvature of the rate function If (`) around the mean f̄ we have

Ĩ ′′f (f̄ ) =
1

2σ2
f

.

From previous theorem it follows immediately that σ2
f ,C ≤ σ

2
f ,0 but in fact the addition of an

irreversible drift strictly generically decreases the asymptotic variance.

Theorem

Assume that C 6= 0 is a vector field such that divC = 2C∇U. Let f ∈ C(α)(E) such that for
some ε > 0 and ` ∈ (f̄ − ε, f̄ + ε) \

{
f̄
}

we have Ĩf ,C (`) > Ĩf ,0(`). Then we have

σ2
f ,C < σ2

f ,0.

Konstantinos Spiliopoulos ( Department of Mathematics & Statistics, Boston University Partially supported by NSF-DMS 1312124 and career award NSF-DMS 1550918 )Irreversible Langevin samplers and variance reduction: a large deviations approach36 / 72



What about variance reduction?

Sketch of the proof

It is clear that the relation σ2
f = 1

2Ĩ ′′f (f̄ )
implies that it is enough to prove

that for C 6= 0 and f ∈ C(α)(E )

Ĩ ′′f ,C (f̄ )− Ĩ ′′f ,0(f̄ ) > 0

The proof of this statement follows by precise computation of first and
then second order Gâteaux derivatives.

The formula of the second order derivative Ĩ ′′f ,C (f̄ ) that is derived, provides
a natural optimization problem for the choice of C .
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What about variance reduction?

Sketch of the proof

It is clear that the relation σ2
f = 1

2Ĩ ′′f (f̄ )
implies that it is enough to prove

that for C 6= 0 and f ∈ C(α)(E )

Ĩ ′′f ,C (f̄ )− Ĩ ′′f ,0(f̄ ) > 0

The proof of this statement follows by precise computation of first and
then second order Gâteaux derivatives.

The formula of the second order derivative Ĩ ′′f ,C (f̄ ) that is derived, provides
a natural optimization problem for the choice of C .
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Part V

Increasing irreversibility and diffusion on

graphs
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Increasing irreversibility and diffusion on graphs

Increasing Irreversibility.

Recall the result:

Let U = 0 and consider a one-parameter family of perturbations
C = 1

εC0 for ε ∈ R and C0 is some divergence vector field. If the flow
is weak-mixing then the second largest eigenvalue tends to 0 as ε→ 0
(Constantin-Kiselev-Ryshik-Zlatos, (2008)).

Questions. (1): What happens when U 6= 0? (2): How does the
underlying process behaves? (3): How does the asymptotic variance
behaves as ε→ 0? (4): What about metastability effects?

Konstantinos Spiliopoulos ( Department of Mathematics & Statistics, Boston University Partially supported by NSF-DMS 1312124 and career award NSF-DMS 1550918 )Irreversible Langevin samplers and variance reduction: a large deviations approach39 / 72



Increasing irreversibility and diffusion on graphs

Increasing Irreversibility.

Consider

dX ε
t =

[
−∇U(X ε

t ) +
1

ε
C (X ε

t )

]
dt + dWt

where the vector field C (x) satisfies the condition

div(Ce−2U) = 0

Theorem

Assume that C 6= 0 is a vector field such that divC = 2C∇U. If Ĩf , 1
ε
C (`) > Ĩf ,0(`) in a

neighborhood of f̄ =
∫
E f (x)π(dx), but excluding f̄ , then the map |ε| 7→ σ2

f , 1
ε

is a monotone

increasing function and thus its limit as ε→ 0 exists.

In order to understand the limiting behavior of σ2
f , 1
ε

as ε→ 0, we need to

first understand the limiting behavior of X ε
t as ε→ 0.

Konstantinos Spiliopoulos ( Department of Mathematics & Statistics, Boston University Partially supported by NSF-DMS 1312124 and career award NSF-DMS 1550918 )Irreversible Langevin samplers and variance reduction: a large deviations approach40 / 72



Increasing irreversibility and diffusion on graphs

Limiting behavior of the underlying process.

Assume that U has finitely many non-degenerate critical points and that each connected
level set component of U contains at most one critical point.

Following Freidlin and Wenztell, let us consider a finite graph Γ, which represents the
structure of the level sets of the potential function U on E .

Identify the points that belong to the connected components of each of the level sets of U.

Each of the domains that is bounded by the separatrices gets mapped into an edge of the
graph. At the same time the separatrices gets mapped to the vertexes of Γ.

Exterior vertexes correspond to minima of U, whereas interior vertexes correspond to
saddle points of U. Edges of Γ are indexed by I1, · · · , Im
Each point on Γ is indexed by a pair y = (z, i) where z is the value of U on the level set
corresponding to y and i is the edge number containing y . Clearly the pair y = (z, i)
forms a global coordinate on Γ.

For any given point x ∈ Rd , let Q : E 7→ Γ by Q(x) = (U(x), i(x)) be the corresponding
projection on the graph.
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Increasing irreversibility and diffusion on graphs

Limiting behavior of the underlying process.

Theorem (Freidlin and Wenztell)

Under appropriate assumptions, for any 0 < T <∞, the process Y εt = Q(X εt ), converges weakly
in C([0,T ], Γ) to a certain Markov process, denoted by Yt , on Γ with continuous trajectories,
which is also exponentially mixing.
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Increasing irreversibility and diffusion on graphs

Limiting behavior of the asymptotic variance.
Theorem
Let us assume that the Condition of the previous theorem hold and let Yt be the continuous
Markov process on the graph Γ indicated in the previous theorem. Let f ∈ C2+α(E) such that

f̄ = 0. For (z, i) ∈ Γ, define f̂ (z, i) to be the average of f on the graph Γ over the corresponding
connected component of the level set U. Namely, let

f̂ (z, i) =

∮
di (z)

f (x)mz,i (x)`(dx) =
1

Ti (z)

∮
di (z)

f (x)

|∇U(x)|
m(x)`(dx)

Then, we have that σ2
f (0) = limε→0 σ

2
f (ε), where

σ2
f (0) = 2

∫ ∞
0

Eµ
[
f̂ (Y0)f̂ (Yt)

]
dt (15)

and µ = π ◦ Γ−1 is the invariant measure of the process Y on Γ.

It is straightforward to see that this is the asymptotic variance of an
ergodic average on the graph. In particular, we have

σ2
f (0) = lim

t→∞
tVar

(
1

t

∫ t

0
f̂ (Ys)ds

)
. (16)
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Part VI

Related Multiscale Integrators
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Related Multiscale Integrators

A numerical method

Consider

dX ε
t =

[
−∇U(X ε

t ) +
1

ε
C (X ε

t )

]
dt +

√
2βdWt

where the vector field C (x) satisfies the condition

divC = C∇U = 0

Consider a split-step time integrator where for the short time step τ we
use the whole SDE and for the long time step δ − τ we neglect the
irreversible drift.

X̄tn+τ − X̄tn = −τ∇U(X̄tn) +
τ

ε
C (X̄tn) +

√
2βτ ξn; (17a)

X̄tn+δ − X̄tn+τ = −(δ − τ)∇U(X̄tn+τ ) +
√

2β(δ − τ) ξ′n, (17b)

where ξn and ξ′n are independent standard normal random variables.
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Related Multiscale Integrators

Convergence of the numerical method

Theorem

Assume that ε, δ, τ ↓ 0 are such that δε
τ ,

τ
ε ,
(
τ
ε

)3/2 1
δ ↓ 0. Then, for τ < δ <

τ
ε � 1 sufficiently small, the process Q(X̄ ε

nδ) = (U(X̄ ε
nδ), i(X̄

ε
nδ)) converges

in distribution to the process on the tree Y·. In addition, convergence to
the invariant measure µ of the Y process holds, in the sense that for any
bounded and uniformly Lipschitz test function f we have that for all t > 0

lim
h↓0

lim
ε,δ, δε

τ
, τ
ε
,( τε )

3/2 1
δ
↓0

1

h

∫ t+h

t
Eπf (X̄ ε

s )ds = Eµf̂ (Yt) ,

where π is the invariant measure of the continuous process X ε.
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Part VII

On general homogeneous Markov process
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On general homogeneous Markov process

General theory based on generators.

Let X0(t) be an ergodic time reversible continuous-time Markov
process on the state space S with invariant measure π.

Let L2
R(π) be the real Hilbert space with scalar product

〈f , g〉 =
∫
f (x)g(x)π(dx). We denote by T t

0 the corresponding
strongly continuous Markov semigroup as an operator on L2

R(π) with
infinitesimal generator L0 with domain D(L0).

We have for all f , g ∈ D(L0), 〈f ,L0g〉 = 〈L0f , g〉.
Assume the semigroup T t

0 has a spectral gap in L2
R(π), i.e., there

exists λ0 < 0 such that σ(L0) \ {0} ⊂ (−∞, λ0].
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On general homogeneous Markov process

General theory based on generators.
Consider any type of perturbation of the operator L0 of the form

L = L0 + S + A

which maintains the invariant measure. Here S is a negative definite
reversible perturbation and A is an irreversible perturbation. Then, as it is
proven in [Rey-Bellet &S. 2016]

spectral gap, asymptotic variance, large deviations behavior all
improve!

degree of improvement depends on the perturbation applied.

We have implemented this scheme for some concrete situations:

Reversible and irreversible perturbations of continuous time Markov
chains and diffusion processes.

Reversible perturbations of Markov jump processes.

General developed theory covers previous partial results, such the famous
Peskun and Tierney constructions, as special cases.
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Part VIII

Simulation results
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Simulation results

Example.

Consider that we want to sample from the stationary distribution

π̄(dxdy) =
e−

U(x,y)
D∫

R2 e
−U(x,y)

D dxdy
dxdy

where D is some constant and U(x , y) = 1
4 (x2 − 1)2 + 1

2y
2,

-1

0

1

-0.5
0.0

0.5

0.0

0.2

0.4
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Simulation results

Example.

Consider the Markov process

dZt = [−∇U(Zt) + C (Zt)] dt +
√

2DdWt , Z0 = 0

where for z = (x , y), U(x , y) = 1
4 (x2 − 1)2 + 1

2y
2.

Let D = 0.1 and C (x , y) = δC0(x , y) with C0(x , y) = J∇U(x , y).
Here, δ ∈ R, I is the 2× 2 identity matrix and J is the standard 2× 2
antisymmetric matrix, i.e., J12 = 1 and J21 = −1.

Notice that for any δ ∈ R, the invariant measure is

π̄(dxdy) =
e−

U(x,y)
D∫

R2 e
−U(x,y)

D dxdy
dxdy
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Simulation results

Example.

Let us suppose that we want to compute the following observables

f̄i =

∫
R2

fi (x , y) π̄(dxdy), i = 1, 2

where

f1(x , y) = x2 + y2, f2(x , y) = U(x , y) =
1

4
(x2 − 1)2 +

1

2
y2
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Simulation results

Speed of convergence
It is known that an estimator for f̄i is given by

ˆ̄fi (t) =
1

t − v

∫ t

v
fi (Xs ,Ys) ds

where v is some burn-in period that is used with the hope that the bias
has been significantly reduced by time v .
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Simulation results

Variance reduction
In general, a central limit theorem holds and takes the following form

t1/2
(

ˆ̄f (t)− f̄
)
⇒ N(0, σ2

f )

In order to estimate σ2
f , we use the well established method of batch means

Then for κ = 1, · · · ,m (m is number of batches) we define

ˆ̄f (t;κ) =
1

t/m

∫ κt/m

(κ−1)t/m
f (Xs ,Ys) ds,

ˆ̄f (t) =
1

m

m∑
κ=1

ˆ̄f (t;κ)

and

s2
m(t) =

1

m − 1

m∑
κ=1

(
ˆ̄f (t;κ)− ˆ̄f (t)

)2

Konstantinos Spiliopoulos ( Department of Mathematics & Statistics, Boston University Partially supported by NSF-DMS 1312124 and career award NSF-DMS 1550918 )Irreversible Langevin samplers and variance reduction: a large deviations approach55 / 72



Simulation results

Variance reduction

Then, we have in distribution

√
m

ˆ̄f (t)− f̄

sm(t)
⇒ Tm−1, as t →∞

where Tm−1 is the Student’s T distribution with m − 1 degrees of
freedom. So, a (1− α)% confidence interval is given by(

ˆ̄f (t)− tα/2,m−1sm(t)/
√
m, ˆ̄f (t) + tα/2,m−1sm(t)/

√
m
)
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Simulation results

Variance reduction
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Simulation results

Variance reduction
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Simulation results

Variance reduction

δ | t 25 100 160 220 295
0 0.22 0.08 0.038 0.029 0.011

10 0.19 0.01 0.007 0.005 0.002
100 0.09 0.001 3e − 04 2.8e − 04 1.3e − 04

Table: Estimated variance values for different pairs (δ, t).

Variance reduction of about two orders of magnitude when δ = 100 versus
δ = 0!!
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Simulation results

Variance reduction
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Simulation results

Effect on metastable behavior
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irreversible case with delta=10
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irreversible case with delta=100
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Simulation results

Numerical performance of multiscale integrators
Consider the potential

U(x, y) =
1

4

[
(x2 − 1)2((y2 − 2)2 + 1) + 2y2 − y/8

]
+ e−8x2−4y2

with inverse temperature β = 0.2.

We take the observable f (x , y) = (x − 1)2 + y2.
Set δ = 5e-3 and τ = 10δε = 0.05ε. The total simulation time is
T = 2000 with a burn-in period Tburn = 20.
The true average of the observable is obtained by a discretization of
the Gibbs distribution on the phase space with a fine mesh, which
gives approximately f ≈ 2.1986.
Euler-Maruyama scheme loses stability for ε smaller than 0.1.

ε τ δ E(Errf ) sd(Errf ) E(AVarf ) sd(AVarf )
E-M 5 5e-3 5.0964e-1 3.6448e-1 2.4957e00 5.3972e-1

5e-1 5e-3 3.1799e-1 2.3650e-1 1.8792e00 3.7341e-1
1e-1 5e-3 1.0730e-1 8.0109e-2 3.4238e-1 1.0624e-1

M-I 1e-2 5e-4 5e-3 1.0347e-1 7.6486e-2 3.0648e-1 9.2405e-2
1e-3 5e-5 5e-3 1.0255e-1 7.7384e-2 2.9778e-1 9.1258e-2
1e-4 5e-6 5e-3 1.0108e-1 7.7460e-2 2.9760e-1 8.8149e-2

Table: Comparison of the Euler-Maruyama scheme and the multiscale integrator .
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Part IX

Summary and challenges
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Summary and challenges

To summarize, we have developed a systematic approach to the problem.

1 Large deviations action functional is directly related to the empirical
measure.

I Can be used a measure of performance. The bigger it is the better.

2 Asymptotic variance is directly related to the second derivative of the
rate function!

3 A natural optimization problem for the choice of the optimal
perturbation is being defined.

4 Introducing irreversibility speeds up convergence, and reduces
significantly the variance of the estimator.

5 Multiscale integrator numerical methods can help in simulating
efficiently.
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Summary and challenges

Challenges.

1 Characterizing optimal perturbations. Known results only in the
Gaussian case (Lelievre, Nier and Pavliotis). General case seems to be
hard but we have preliminary results...

2 We have developed an appropriate numerical algorithm and studied
its theoretical behavior. More work in this area is certainly needed.

3 Using irreversible proposal within a reversible algorithm like MALA.
This is a natural question to consider and preprint will be available
soon (joint work with Michela Ottobre, Natesh Pillai). It is
questionable whether potential benefits balance the extra
computational work.
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