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Hedging problem

@ Risky assets (e.g. stock): S = (S%,---,S9)T,d > 1
@ Arisk-less asset (e.g. cash, bond ): B
o Financial product: F = F(t,S) (e.g. (S. - K)*,
(T, i =K)*,li e R,K >0, I depend on S/, (S} - S2)¥,d = 2)
A investor sells an option and wants to replicate its payoff F(T, St) by trading in
stocks (liquid assets).

° & = (g-‘tl,- .. ,g-‘td )" and n;: the amount of units of the risky assets and the
risk-free asset an investor holds at time t

@ The market value of the portfolio at time t: Vi = & - S; + ;B¢

Hedging strategy ¢ = (&, 1)

Investment in risky assets and cash in order to reduce the risk related to a
financial product.
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Complete market

@ perfect replication by self-financing strategies

@ martingale representation: V;/B; = Vo + fot £, -dS, and
F=V,+ fOT & -dS;, where S; = :—:.

@ the claim can be replicated at time T with initial investment Vg and the
following strategy at time t :

bt = (é?t’\/0+j0\ g:u 'déu _g'éu)-

Black-Scholes model
@ Stock: dSt = O'Stth +/.lStdt,So > 0,[1 € ]R,O' >0
@ Bond: B; = e"
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Incomplete market

However, it is said that the real market is incomplete in general.
@ jumps, stochastic volatility or trading constraints
@ martingale representation above does not hold
@ ‘every claim attainable and replicated by self-financing strategy’ is not valid.

Hence, we have to choose a suitable hedging method for incomplete market
model. We present in this talk (locally) risk-minimizing that is a well-known
hedging method for contingent claims in a quadratic way for incomplete financial
markets.

@ Mean-variance hedging: min IE[|\7T - F[?], ¢: self-financing strategies

@ Risk-minimizing hedging: min E[(Cr - Ct)?|Ft], ¢: mean self-financing
strategies with V1 = F.
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LRM

@ Locally risk-minimizing (LRM, for short) is a well-known hedging method for

contingent claims in a quadratic way for imcomplete markets.

@ Theoretical aspects of LRM have been developed to a high degree.
(Contributor: Follmer, Schweizer, Sondermann and many others)

@ But the theory does not give its explicit representation.

@ Arai and Suzuki obtained a formula of locally risk-minimizing for Lévy markets
under many additional conditions by using Malliavin calculus for Lévy
processes.

@ In this talk, we obtain an explicit representation of LRM in an incomplete
financial market driven by a multidimensional Lévy process by using Malliavin
calculus because in real markets, investors sell an option and want to
replicate its payoff F(T, St) by trading many stocks (liquid assets).
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Model description

We begin with preparation of the probabilistic framework and the underlying Lévy
process X under which we discuss Malliavin calculus in the sequel (see e.g., Solé
etal. (2007) 1.

@ T > 0: afinite time horizon

® (Qw,Fw,Pw): a one-dimensional Wiener space on [0, T]; and W a
one-dimensional standard Brownian motion with Wy = 0.

@ (9, F3,IP;): the canonical Lévy space for a pure jump Lévy process J on
[0, T] with Lévy measure vo, thatis, Q5 = U®_ ([0, T] x Ro)", where
Rp := R\ {0}; and Ji(wy) = Zinzl Zily <) fort € [0, T] and
w3 = ((t1,21)5-++5(tnszn)) € ([0, T] x Ro)". Note that ([0, T] x R)°
represents an empty sequence.

® We assume that [, z%v(dz) < co.
@ We denote (Q°, F°,P%) = (Qw % Qj, Fw X F3,Pw X Py).
o F0 = {?’to}tE[O,T] : the canonical filtration completed for IP°,

13, L. Solé, F. Utzet, J. Vives, Canonical Lévy process and Malliavin calculus, Stochastic Process.
Appl. 117 (2007) 165-187.
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Model description

e X%: a square integrable centered Lévy process on (2°, ¥°,P°) represented
as

X = ooWy + J; —t f zvo(dz), (1)
Ro

where o > 0.

Denoting by N the Poisson random measure defined as
N(t,A) := Yo 1a(AX?), A € B(Ro) and t € [0, T], where AX? := X2 — X?_,

we have J; = fot fnao zN(ds,dz). In addition, we define its compensated measure
as N(dt,dz) := N(dt,dz) — vo(dz )dt. Thus, we can rewrite (1) as

t
Xt°=a-0Wt+fsz(ds,dz). )
0 [Ro
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Model description

Now, let (@, 71, P),..., (4, F9,1P¢) be d independent copies of (°, F°,P°)
forsomed > 1. We set (2, F,P) = (21 X +++ X Qq, F1 X +++ X Fg, Py X +++ X Py)
and we call it multidimensional canonical space. Let X = (X1,.-- ,X%) be a
d-dimensional square integrable centered Lévy process on (2, ¥, ) where

st [ Aenom s 5o
0

where o > 0, W;, a Brownian motion on (S, #1, ), N; the compensated
Poisson random measure on (€, 7!,P') has Lévy measure v; satisfies
e, 2°vi(dz) < oo
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Model description

Market model

We consider a financial market being composed of one riskfree asset and d risky
assets with finite time horizon T > 0:
Riskfree asset price process:

BI = 1,t € [O,T],

Risky assets price processes:
ds! =S, _|ajdt + B dWi; + f yi,t,zﬁi(dt,dz)], S, >0,i =1,--,d (3)
Ro

where «, B and y are predictable processes satisfying the following:
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Model description
Assumption (A)

@ (3) has a solution S satisfying the so-called structure condition (SC, for
short). That is, S is a special semimartingale with the canonical
decomposition S = Sy + M + A such that

d

)

i=1

)
. |
ML+ [ 1Al

< oo,
L2(P)
where M = (M%,--- ,M9)T A = (AL,... JA9)T,
dM; =S| (BitdWig + [ 7iezNi(dt,dz)) and dA| = S| eidt for
i=1,---,d. Moreover, defining a process

i
t

- ’
Stl— it + flRo yit,zvi(dz))

«
A=

t

we have Al = f Ad(M'). Thirdly, the mean-variance trade-off process
Kti = fot 22d(M')s is finite, that is, K; is finite IP-a.s.
Q vtz > -1, (t,z,w)-ae. fori =1,---,d, thatis,
T
E [fo e 1(yi,l,zs—1)Vj(dZ)dt] =0.

4

v
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Definition of locally risk-minimizing
Definition 2.1
Q Os :={¢ = (&---,6%)7 : RY — valued predictable procesg
S q ST
E[SL, ) (€)2amy + (S, [ 1€10AD?] < col.

@ An L2-strategy is given by a pair ¢ = (£, 1), where £ € Os and pisan
adapted process such that V(¢) := &¢-S +n = Zi":l(f')s' + n is a right
continuous process with E[Vtz(cp)] < oo for every t € [0, T]. Note that &
(resp. 1) represents the amount of units of the risky assets (resp. the
riskfree asset) an investor holds at time t.

@ For F € L2(P), the process CF (¢) defined by
C‘F(go) = Fli=1; + Vi(e) — Zi"=1 fol £.ds| is called the cost process of
@ = (& 1) for F.

@ An L?2-strategy ¢ is said locally risk-minimizing for F if V1 (¢) = 0 and CF(p)
isa martingale orthogonal to each M', 1 < i < d, thatis,

[CF(¢),M](1 < i < d) is a uniformly integrable martingale.

- If ¢ is self-financing, then C(¢) is a constant.
If there exists a self-financing ¢ s.t. V1 (¢) = 0, we have

F = Vo(p) + fOT & - dSs. This is a contradiction!

- An L 2-strategy ¢* for F is risk-minimizing if V1 (¢*) = 0 and
Ri(¢*) < Ri(¢), Yt € [0,T], hold for all ¢ such that V1 (¢) = 0, where
Ri(¢) == E[(Cr(p) - Ci(9))*IF]-

August 19, 2016

13/36



Follmer-Schweizer decomposition |
- In order to obtain a representation of LRM, Féllmer-Schweizer decomposition
(FS decomposition, for short) can be very useful.

Definition 2.2

An F € L%(IP) admits a Follmer-Schweizer decomposition if it can be described by

.
F=F0+f & -dS + L,
0

where Fy € R, &7 € Og and LF is a square-integrable martingale orthogonal to M
with L('): =0.

Proposition 2.3 (Proposition 5.2 of Schweizer 2008.2)

aM. Schweizer, Local Risk-Minimization for Multidimensional Assets and Payment
Streams, Banach Center Publ. 83 (2008) 213-229.

An LRM ¢ = (&, 1) for F exists if and only if F admits an FS decomposition, and
its relationship is given by

t
&=¢, ’7t=F0+f £ dSs +LF —Flgor - & - Si
0

v
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Follmer-Schweizer decomposition |l
We next denote Z := &(— [ A- dM), where &(Y) represents the stochastic

exponential of Y, that is, Z is a solution of the SDE dZ; = — 2 /l' Zi_ Mti. In
addition to Assumption (A), we suppose the following:

Assumption (B)

Z is a positive square integrable martingale; and ZtF € L?(P).

Definition 2.4 (Minimal martingale measure)

A martingale measure IP* ~ [P is called minimal if any square-integrable
IP-martingale orthogonal to M remains a martingale under IP*.

Proposition 2.5

Under Assumption (A), if Z is a positive square integrable martingale, then a
minimal martingale measure P* exists with dIP* = Z;dP.
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Follmer-Schweizer decomposition I

Under Assumptions (A) and (B), we discuss a representation of &F. If Z is a
positive square integrable martingale; and ZtF € LZ(]P), then, The martingale
representation theorem (see, e.g. section 2 of Benth et al. [?]) provides

d T d T o
ZrF = Ep[F] + Zf g, dwi; + Zf f 9,3 Ni(dt, dz)
i=1 Y0 i=1vJ0 JRo 7

for some predictable processes g © and g ,1 <i <d. By the same sort of
calculations as the proof of Theorem 4.4in Suzuk| (2013), we have

P
it

T T 7:t it
S ]EIP'[F]+Zf 9 +IE[Z FlFt-]u

g +E[ZTF|95 16i2

+ f f NP (dt, dz
Z Ro ZI_(l - 0i,t,z) ( )
d T
— i,0 P LGP
= Ew.[F]+Zfo hy%dw +Zfo fm he 2N (dt, dz)
i=1 i=1 0

where uj; 1= ’litsti-ﬁi"’ Oz = /list‘_yi,[,z, dWi”;' = dW,; + uj.dt and
N (dt,dz) := Ni(dt,dz) + 6, (dz)dt. Girsanov's theorem implies that W

and NIP are Brownian motions and the compensated Poisson random measures
of N; under IP*, respectively.
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Follmer-Schweizer decomposition 1V
Additionally, we assume that

ZE [\[; {(hti’o)2 + \L;O(h:i)zvi(dz)} dt

L0 0 _ sici il _ g
Denoting |: = h: - €S Bt |t'i = hl'i - €8] 7igs, and

< oo. (5)

A |
6= 0%+ [ pean (@) ®)
a/'I Ro

we can see
0 g
i Bix + f i Yigzvi(dz) =0
R, U

for any t € [0, T], which implies iti’oui,t + ﬁRU i:’ioi,l,zvi(dz) = 0. We have then
d T d T _

i"%dw ™+ f f i"*N®*(dt, dz
;L t it ; o o [ ( ’ )
d T d T o
Zf idw +Zf f "N (dt, dz).
i=1 Vo i=1 V0 JRo 7

Ryoichi Suzuki (Keio University) LRM for multidimensional L évy markets August 19, 2016 17736

)
F—]EW[F]—L £.d5,



Follmer-Schweizer decomposition 1V
Now we denote

o |
€= 0B+ [ Ny (L)
@, Ro

Under this setting, we can derive the following:
Theorem 2.6

Assuming that Assumptions (A), (B) and
I E [fOT {(ht"°)2 + fo (02)% (dz)} dt] < oo, we have £ = £ defined in
(1.2).

Remark 2.7

The processes h® and h® appeared in (1.1) is implied by the martingale
representation theorem. Thus, it is almost impossible to calculate them explicitly.
We next reduce an explicit representation of &7 by using Malliavin calculus for
Lévy processes.

i
at

S8+ ke, 70 7(d2)

Reminder: /li =

ds; =S|_|ajdt + B dW, +f yi,[,zﬁi(dt,dz)], Sy > 0,i = 1,0+ ,d.
Ro
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Multiple stochastic integral

Definition 3.1
e g(E) = 0'j2 J dtéo(dz) + [L z%dtvi(dz), E € B([0,T] x R),
E € B([0,T] x R)
® Q(E) = gy J dWj80(dz) + [ zNj(dt,dz)
@ We consider the product of the form

d
H,(w) := l_[ Lot (fj,00 ) (@;)

j=1

for any @ € J9, which is the set of indexes of the form @ = (a'¥, ... ,a(®)
with @) = 0,1,--+ ,forj = 1,--+ ,d. Here l,0 (f o0 ) is the @)-fold iterated
It6 integral with respect to random measure Q and f; . is deterministic
function satisfying

L JxR) 0 |fj,a(i)((t19 Z]_),-.- s (ta(j), Za'(i)))lij(dtl, dZ]_) '.'qj(dta(j),dzw(j)) <o
0,T]xR)*

(¢}

v
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Malliavin derivative
The elements H,,a € J9, constitute an orthogonal basis in L2(P). Any real 1
-measurable random variable F € L?(IP) can be written as

F=Z]HL,

aegd

for an appropriate choice of deterministic symmetric integrands in the iterated Itd
integrals.

Definition 3.2
(1) Let D2 denote the set of ¥ -measurable random variables F € L2(P) with the
representation F = ¥ ,c.qa H,, de=1 Lot (fj,o0)) (w)) satisfying

d Do OIfF. 112
Zjmy Zaegt @00l ooy <

(2) Let F € D2, Then we define the Malliavin derivative DF of a random variable
F € D'? as the gradient D ,F = (D! F,--,D! F) where

D:’ZF = Z aVH,_.(t,2),t €[0,T],z € R,j = 1,-++ ,d.
aegd

Here €0) = (0,---,0,1,0,---,0) with 1 in the j-th position.

y
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Clark-Ocone formula

Proposition 3.3 (Clark-Ocone type formula for multidimensional Lévy
functionals)

Let F € D2, Then, we have

E[D, ,FI#:-]1Qi(dt, dz)
TIXR ’

d T . d T ) ~
=E[F]+Zfrifo E[D; oFIFt-]dWi, +Zf0 f}R E[D; ,FIFi-]zNi(dt, dz).
i=1 i=1 9
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Assumption (C)

Q ui,ui2 € Lgl’z; and 2ui,sD:’Zui,s + z(Dtj’Zui,s)2 € L?(q' x IP) for a.e.
s €[0,T],i,j = 1,-+ ,d.

@ 6 +log(1-6) e [ and log (1 - 6) € L2 i,j = 1,--- ,d

©Q Forg-a.e. (s,x) € [0,T] x Ry, there is an & s x € (0,1) such that
ai,s,x <1 _Si,s,xai =1,-..--,d

D! log ZT

Q Zr € L(P); and zT{DtJ"O log Zr1(0)(z) + &———"21g,(2)} € L%(q/ x P).
© F e D'? with FZ; € L*(P); and

ZyD! F 4+ FD! Zr +2D] F-D! Zr € L(q! x P),j = 1,-++ ,d.
o FH::, H:: Dtj,zF. € L1(P*), (t,z) -a.e. where

Hi: = exp (zD:’Z log Zt —log (1 — 6,:2))

al
t

S8+ [, 7% nl(d2))

i,t,z

Reminder: Uit = /]{Sti—ﬂi’t’ ai,t’z = /].isti_'}’i’t,z, /llt =

dS! =S/ _|a;dt + BidWi; + f yi,t,ZNi(dt,dz)], S, > 0.
Ro
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Definition 3.4
For 1 <i,j < d, we define the following:

@ Let 12 denote the space of product measurable and IF -adapted processes

Gi : Q2x[0,T] x R - R satisfying

o
f |Gi,s,x|2qi(ds,dx)] < oo,
[0,TIXR

@ Gisx € D% g'-ae (s,x) € [0,T] xR
o

E

E[j(‘[on - |D",ZGi,s,x|2qi(ds,dx)qi(dt,dz)] < oo.
,T]x

Q ]I);Lz denotes the space of G : [0, T] x 2 — R satisfying
@ Gi; eD'?forae. s €[0,T],
0 E[fy1GiFs | < o,
0 E|forpa fo |D[iqZG‘,S|stqi(dt,dz)] <.
Q ]le’l’z is defined as the space of G : [0, T] X Rg x 2 — R such that
@ Gisx € D2 forg'-ae. (s,x) € [0, T] x R,
@ E| forpa 1Gisx™ (dx)ds] < o,
0 | furpes frpesy 2L, Gras Pri(ax) sl (dt, di2)| < o.
Qo ]ijl’l‘z is defined as the space of G € L2 such that

2
ot ( Sorrese |ei,5,x|vi(dx)ds) ey
. 2
QE fmm(fm% ID",ZG‘NIVi(dx)ds) ql(dt,dz)]<oo.
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Theorem 3.5 (Clark-Ocone type formula under change of measure)

Under Assumptions (B) and (C),
d T : .
— ; i £ _pKl P
F = Ep[F] + E_ (r,fo ]EP*[DI,OF FKt|ﬁ_] aw

+Zf f IE[P‘[F(HJ’ 1) + zHD! FIfi- IN7 (dt, dz), as.

holds, where
d T |s,><
= D u; deIP f f N“”* ds, dx
;jo‘ poHis OV, o +Z o 1= Bion ( )
and
d
H” —exp{ Zf zD u.SdW? Z f(zDJ uis)?ds

+

Nl
s S,
S— I

((1 - ai,s,x)sz ,10g (1 - 6isx) + sz Zai,s,x) vi(dx)ds
0

+Zf fm 2D}, log (1~ 615, )N" (ds, dx)}

a |l

Ryoichi Suzuki (Keio University) LRM for multidimensional L évy markets

August 19, 2016

25/36



Theorem 3.6

Under Assumptions (A), (B), (C), h® and h? are described as

d T |,5><
DF-F D) juisdW f f ———NF'(ds, dx |¢_ ,
t,0 ; j; t,0 S - ko 1= 0o ( )| |7

(2.1)

W0 _
ht = U'JIE]P*

hi” = Ep[F(H)) - 1) + zH!"D] FIF:_]. (2.2

where
: d T d 1 ,T :
Hi: = exp {— Z]; zD“’Zui,SdWi]: - Z Ej(; (ZD:’ZUi,s)ZdS
, . i=1 | i=1 |
+ .Z:‘ fo fmo ((1 - 6.54)2D) log (1 = 6,5,) + 2D!_6is,) vi(dx)ds

d T
j -
+ ; L Lo ZDt,z log (1 - 0i,s,><)Ni (dS, dx )} .
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Theorem 4.3 (Cont'd)

Supposing all conditions of Theorem 2.6 additionally, £ is given by substituting
(2.1) and (2.2) for h® and h? in (1.1) respectively.

Reminder: Theorem 2.6

Assuming that Assumptions (A), (B) and

> E [ N {(hti’o)2 + f (h72)? (dz)} dt] < o0, we have ¢F = ¢ defined in
(1.2).

£ = B+ [ iy (@) (L.1)
a Ry 7

t
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Corollary 3.7

In the case where «, B, and y are given by continuous deterministic functions
satisfying Assumption (D), if F and ZrF € D'?, then &',i = 1,2,---,d is given as

B Ep-[D] (FIF_] + [, Ee-[2D] FIFi-1yi12vi(dz)

5 = _
si_ (82 + [, 72, (@)

Assumption (D)

Q 7wz > -1, (t,z,w)-ae.
Q supepor(laigl +,Bit + f]RO 'yiz’t’zv(dz)) < C for some C > 0.
@ There exists an & > 0 such that

@itYit,z

B + e, 72, vildz)

<1l-¢ and ,Bi2t+f v, vi(dz) > & (t,z,w)-ae.
a7 g, it

V.
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Remark

© LRM for Lévy markets (one dimensional ) has been also discussed in
Vandaele and Vanmaele (2008) without Malliavin calculus. They considered
the case where all coefficients in (3) are deterministic; and studied LRM for
unit-linked life insurance contracts.

@ Benth et al. (2003) also concerned a similar issue by using Malliavin
calculus. They however studied minimal variance portfolio which is different
from LRM, and considered only the case where the underlying asset price
process is a martingale.

@ Yang et al. (2010) derived an explicit representation of LRM for a European
call option in the Hull and White model by using the Malliavin calculus in
Wiener space. They also give a numerical result of it.

© Arai and Suzuki (2015) derived explicit representations of LRM for one
dimensional Lévy markets. They also calculated its concrete expressions for
call options, Asian options and lookback options.
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Swap option

In this section, we consider the case d = 2. We calculate the Malliavin
derivatives of (F; — F,)* by using the mollifier approximation, where x+ = x v 0,

F = (Fl, Fz) € ]D)l’z.
Theorem 4.1

For any F = (F1,F,) € D2 g-a.e. (t,z) € [0, T] x R, we have
(Fl = F2)+ € ]Dl’z,

D, (Fi = F2)*

(FL—F, + thi,Z(F1 -F;))t = (FL - Fy)*

= 1(F1>F2)D:,0(F1 -F2) - 1g(z) + .

1[&0 (Z).
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The deterministic coefficients case

We consider the case where a, 8, and y are continuous deterministic functions
satisfying Assumption (D).

Reminder: Assumption (D)

Q 7.z > -1, (t,z,0)-ae.
Q sup o) (laigl +,Bit + f]RO yiz,t,zv(dz)) < C for some C > 0.
@ There exists an &£ > 0 such that

@itYit,z 5 5
<l-& and B+ | 7 ,vi(dz)>¢5(t,2,0)-ae.
ﬁiz,t + f]Ro ’yiz,t,zyi (dZ) ’ R 77

vy

Moreover, we assume

f {7i4t _+1log (1 + Yit.2)I?vi(dz) < C for some C > 0. (4.1)
IRO oty
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First of all, we calculate the Malliavin derivatives of S‘T for such cases.

Proposition 4.2

D! S! = '6”1(0)(2) 42 T 1g,(z) for gi-a.e. (t,z) € [0,T] x Rand
Dti,zs‘jl' =0,i #]
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An explicit representation of LRM for (S — S2)* is given as follows:
Proposition 4.3

Foranyt € [0, T], we have

L(s1-8H)*T 1

¢, = {.B
Stl_ (ﬂit + flRo % vi(dz ))

1,t,z

2 1
1,1EIP* [1(S$>S$)ST -]

+ f Ep[(S7(L + 7in2) = S2)* = (SZ - Sf)“LI“ﬁ_]n,t,le(dZ)}
Ro

and

1_g2)+
2(st-82)* 1

¢ =
S2 (B2, + f, 72,,72(02))

{ - B Er L5 STIF ]

4F f Ep [-(S2(1 + 7212) + S1)* = (S - 5$)+|ﬁ—]72,t,zV2(dZ)}-
Ro
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Future research
@ LRM for general multidimensional jump diffusion model:

ds! =S/_ [aitdt +30, ,B‘t"olw.,t +30 [ ri" (z)N.(dt,dz)]
S(I) € R++,i =1, ,d

where @, 8 and y are predictable process.
@ Numerical analysis on LRM for multidimensional Lévy markets.

See also my website:
https://sites.google.com/site/ryoichisuzukifinance/
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Thank you for your attention!
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