Entropy of an autoequivalence on Calabi–Yau manifolds
(arXiv:1704.06957)

Yu-Wei Fan

Harvard University

June 2017
BU-Keio workshop
Plan

- Topological entropy and Gromov–Yomdin theorem.
- Background on autoequivalences.
- Categorical entropy and Kikuta–Takahashi conjecture.
- Reason to expect counterexamples via Homological Mirror Symmetry.
- Counterexamples.
Topological entropy

Definition

$\topo(h(f))$ measures "how fast points spread out when iterate f".

$N(n,\epsilon) := \max \{ \# F : F \subset X, \max_{0 \leq i \leq n} d(f^i(x), f^i(y)) \geq \epsilon \text{ for any } x, y \in F \}$.

$\topo(h(f)) := \lim_{\epsilon \rightarrow 0} \limsup_{n \rightarrow \infty} \frac{\log N(n,\epsilon)}{n} \in [0, \infty]$.
Topological entropy

Definition

- (X, d) compact, $f : X \to X$ continuous surjective.
Topological entropy

Definition

- (X, d) compact, $f : X \to X$ continuous surjective.

- Topological entropy $h_{\text{top}}(f)$ measures “how fast points spread out when iterate f”.
Topological entropy

Definition

- (X, d) compact, $f : X \rightarrow X$ continuous surjective.
- Topological entropy $h_{\text{top}}(f)$ measures “how fast points spread out when iterate f”.
- $N(n, \epsilon) := \max \{ \# F : F \subset X, \max_{0 \leq i \leq n} d(f^i(x), f^i(y)) \geq \epsilon \text{ for any } x, y \in F \}.$

Definition

$$h_{\text{top}}(f) := \lim_{\epsilon \rightarrow 0} \limsup_{n \rightarrow \infty} \frac{\log N(n, \epsilon)}{n} \in [0, \infty].$$
Topological entropy
Properties

$h_{\text{top}}(f)$ is a topological invariant: If $(X, d) \overset{\sim}{=} (X, d')$, then one gets the same topological entropy.

$f^n = \text{id}_X \Rightarrow h_{\text{top}}(f) = 0$.

Theorem (Gromov, Yomdin)

X compact Kähler manifold, $f: X \to X$ holomorphic surjective.

$h_{\text{top}}(f) = \log \rho(f^*)$.

Here ρ is the spectral radius of $f^*: H^* (X; \mathbb{C}) \to H^* (X; \mathbb{C})$.
Topological entropy

Properties

- $h_{\text{top}}(f)$ is an topological invariant: If $(X, d) \cong (X, d')$, then one gets the same topological entropy.
Topological entropy

Properties

- $h_{\text{top}}(f)$ is an topological invariant: If $(X, d) \cong (X, d')$, then one gets the same topological entropy.

- $f^n = \text{id}_X \implies h_{\text{top}}(f) = 0$.

Theorem (Gromov, Yomdin)

X compact Kähler manifold, $f: X \to X$ holomorphic surjective.

$h_{\text{top}}(f) = \log \rho (f^*)$.

Here ρ is the spectral radius of $f^*: H^*(X; \mathbb{C}) \to H^*(X; \mathbb{C})$.

Topological entropy

Properties

- $h_{\text{top}}(f)$ is an topological invariant: If $(X, d) \cong (X, d')$, then one gets the same topological entropy.

- $f^n = \text{id}_X \implies h_{\text{top}}(f) = 0$.

Theorem (Gromov, Yomdin)

X compact Kähler manifold, $f : X \to X$ holomorphic surjective.

$$h_{\text{top}}(f) = \log \rho(f^*) .$$

Here ρ is the spectral radius of $f^ : H^*(X; \mathbb{C}) \to H^*(X; \mathbb{C})$.\)
Examples of autoequivalences

Standard autoequivalences
Examples of autoequivalences

Standard autoequivalences

\[\mathcal{D} = \mathcal{D}^b(X). \]
Examples of autoequivalences

Standard autoequivalences

- \(\mathcal{D} = \mathcal{D}^b(X) \).

- Standard autoequivalences: \(\otimes \mathcal{L}, \text{Aut}(X), [n] \).
Examples of autoequivalences

Standard autoequivalences

- \(\mathcal{D} = \mathcal{D}^b(X) \).

- Standard autoequivalences: \(\otimes \mathcal{L}, \text{Aut}(X), [n] \).

- Bondal–Orlov ’01: When \(K_X \) is (anti-)ample, the group of autoequivalences is generated by the standard ones.
Examples of autoequivalences

Spherical twists (Seidel–Thomas '01)

Let X be a Calabi–Yau manifold of dimension d.

$E \in D^{b}(X)$ is spherical if $\text{Hom}(E, E[\ast]) \simeq H^{\ast}(S^{d}; \mathbb{C})$.

e.g. Lagrangian sphere in derived Fukaya category.
e.g. O_X is spherical iff $H^{i}(O_X) = 0$ for $0 < i < d$, i.e. X is strict CY.
Examples of autoequivalences
Spherical twists (Seidel–Thomas '01)

Let X be a Calabi–Yau manifold of dimension d.

[Example: Lagrangian sphere in derived Fukaya category.]

[Example: O_X is spherical iff $H^i(O_X) = 0$ for $0 < i < d$, i.e. X is strict CY.]
Examples of autoequivalences
Spherical twists (Seidel–Thomas '01)

- Let X be a Calabi–Yau manifold of dimension d.

- $E \in \mathcal{D}^b(X)$ is spherical if

 $$\text{Hom}(E, E[*]) \cong H^*(S^d; \mathbb{C}).$$
Examples of autoequivalences
Spherical twists (Seidel–Thomas '01)

- Let X be a Calabi–Yau manifold of dimension d.
- $E \in D^b(X)$ is spherical if
 \[\text{Hom}(E, E[*]) \cong H^*(S^d; \mathbb{C}). \]
 e.g. Lagrangian sphere in derived Fukaya category.
Examples of autoequivalences
Spherical twists (Seidel–Thomas '01)

▶ Let X be a Calabi–Yau manifold of dimension d.

▶ $E \in \mathcal{D}^b(X)$ is **spherical** if

$$\text{Hom}(E, E[*]) \cong H^*(S^d; \mathbb{C}).$$

e.g. Lagrangian sphere in derived Fukaya category.

e.g. \mathcal{O}_X is spherical iff $H^i(\mathcal{O}_X) = 0$ for $0 < i < d$, i.e. X is **strict** CY.
Examples of autoequivalences
Spherical twists (Seidel–Thomas '01)

- Let X be a Calabi–Yau manifold of dimension d.
- $E \in \mathcal{D}^b(X)$ is spherical if
 $$\text{Hom}(E, E[\ast]) \cong H^*(S^d; \mathbb{C}).$$
- Spherical twist $T_E : F \mapsto \text{Cone}(\text{Hom}^\bullet(E, F) \otimes E \rightarrow F)$. e.g. Dehn twist along Lagrangian sphere.
Examples of autoequivalences
Spherical twists (Seidel–Thomas '01)

- Let X be a Calabi–Yau manifold of dimension d.
- $E \in \mathcal{D}^b(X)$ is **spherical** if
 \[
 \text{Hom}(E, E[^*]) \cong H^*(S^d; \mathbb{C}).
 \]
- **Spherical twist** $T_E : F \mapsto \text{Cone}(\text{Hom}^\bullet(E, F) \otimes E \to F)$.
 e.g. Dehn twist along Lagrangian sphere.
Autoequivalences from monodromies

- Kähler moduli of CY hypersurface $X \subset \mathbb{P}^{d+1}$:

 ![Diagram showing Kähler moduli with points labeled Large Volume Limit, Conifold point, and Gepner point.]

- Monodromies \leadsto Autoequivalences on $\mathcal{D}^b(X)$

- Kontsevich ’96, Horja ’99:
 LVL $\leadsto \otimes \mathcal{O}(1)$, Conifold $\leadsto T_{\mathcal{O}_X}$, Gepner $\leadsto T_{\mathcal{O}_X} \circ \otimes \mathcal{O}(1)$.

- Ballard–Favero–Katzarkov ’12: $(T_{\mathcal{O}_X} \circ \otimes \mathcal{O}(1))^{d+2} = [2]$.
Categorical entropy

Results

Entropy: Measures "complexity" of an autoequivalence.

\[e.g. \otimes O(1), T^{O_X}, T^{O_X} \circ \otimes O(1) \text{ all have zero entropy.} \]

Theorem (\(d \geq 3 \)) \(T^{O_X} \circ \otimes O(-1) \) has positive entropy.

Its exponential is the unique \(\lambda > 1 \) satisfying

\[\sum_{k \geq 1} \chi(O(k)) \lambda^k = 1. \]

(e.g. quintic CY3: \(\lambda^4 - 9 \lambda^3 + 11 \lambda^2 - 9 \lambda + 1 = 0. \))
Categorical entropy

Results

- Entropy: Measures “complexity” of an autoequivalence.
Categorical entropy

Results

- Entropy: Measures “complexity” of an autoequivalence.
 e.g. $\otimes \mathcal{O}(1)$, $T_{\mathcal{O}_X}$, $T_{\mathcal{O}_X} \circ \otimes \mathcal{O}(1)$ all have zero entropy.

\[\text{Theorem (} d \geq 3) \quad T_{\mathcal{O}_X} \circ \otimes \mathcal{O}(1)^{-1} \text{ has positive entropy.} \]

Its exponential is the unique $\lambda > 1$ satisfying
\[\sum_{k \geq 1} \chi(\mathcal{O}(k)) \lambda^k = 1. \]
(e.g. quintic CY3: $\lambda^4 - 9 \lambda^3 + 11 \lambda^2 - 9 \lambda + 1 = 0$.)
Categorical entropy

Results

- Entropy: Measures “complexity” of an autoequivalence.
 e.g. \(\otimes\mathcal{O}(1) \), \(T_{\mathcal{O}_X} \), \(T_{\mathcal{O}_X} \circ \otimes\mathcal{O}(1) \) all have zero entropy.

Theorem \((d \geq 3)\)

\(T_{\mathcal{O}_X} \circ \otimes\mathcal{O}(-1) \) has positive entropy.
Categorical entropy

Results

- Entropy: Measures “complexity” of an autoequivalence. e.g. $\otimes O(1)$, T_{O_X}, $T_{O_X} \circ \otimes O(1)$ all have zero entropy.

Theorem ($d \geq 3$)

$T_{O_X} \circ \otimes O(-1)$ has positive entropy. Its exponential is the unique $\lambda > 1$ satisfying

$$
\sum_{k \geq 1} \frac{\chi(O(k))}{\lambda^k} = 1.
$$

(e.g. quintic CY3: $\lambda^4 - 9\lambda^3 + 11\lambda^2 - 9\lambda + 1 = 0$.)
Categorical entropy

Results

- Entropy: Measures “complexity” of an autoequivalence.
 e.g. $\otimes O(1)$, T_{O_X}, $T_{O_X} \circ \otimes O(1)$ all have zero entropy.

Theorem ($d \geq 3$)

$T_{O_X} \circ \otimes O(-1)$ has positive entropy.
Its exponential is the unique $\lambda > 1$ satisfying

$$\sum_{k \geq 1} \frac{\chi(O(k))}{\lambda^k} = 1.$$

(e.g. quintic CY3: $\lambda^4 - 9\lambda^3 + 11\lambda^2 - 9\lambda + 1 = 0.$)
Categorical entropy

Results

- Entropy: Measures “complexity” of an autoequivalence.
 e.g. \(\otimes \mathcal{O}(1), T_{\mathcal{O}_X}, T_{\mathcal{O}_X} \circ \otimes \mathcal{O}(1) \) all have zero entropy.

Theorem \((d \geq 3)\)

\(T_{\mathcal{O}_X} \circ \otimes \mathcal{O}(-1) \) has positive entropy.

Its exponential is the unique \(\lambda > 1 \) satisfying

\[
\sum_{k \geq 1} \frac{\chi(\mathcal{O}(k))}{\lambda^k} = 1.
\]

\(\implies \) Counterexamples of Kikuta–Takahashi conjecture.
Categorical entropy
Definition (Dimitrov–Haiden–Katzarkov–Kontsevich '13)
Categorical entropy
Definition (Dimitrov–Haiden–Katzarkov–Kontsevich '13)

Definition
For $E, F \in \mathcal{D}$, the *complexity* of F relative to E is

\[
\delta(E, F) := \inf \left\{ k \mid \begin{array}{ccc}
0 & \rightarrow & A_1 \\
\downarrow & & \downarrow \\
E[n_1] & \rightarrow & F \oplus F'
\end{array} \cdots \begin{array}{ccc}
A_{k-1} & \rightarrow & F \oplus F'
\end{array} \right. \\
E[n_k] & \rightarrow & \\
\uparrow & & \uparrow
\right\}
\]
Categorical entropy
Definition (Dimitrov–Haiden–Katzarkov–Kontsevich '13)

Definition
For $E, F \in \mathcal{D}$, the *complexity* of F relative to E is

$$\delta(E, F) := \inf \left\{ k \mid \begin{array}{c}
\begin{array}{ccc}
0 & \rightarrow & A_1 \\
\downarrow & & \downarrow \\
E[n_1] & \rightarrow & F \oplus F'
\end{array}
\end{array} \right\}$$

Definition
If \mathcal{D} has a split generator G, then the *categorical entropy* of an autoequivalence Φ is

$$h_{\text{cat}}(\Phi) := \lim_{n \to \infty} \frac{\log \delta(G, \Phi^n G)}{n} \in [-\infty, \infty).$$
Categorical entropy

Properties

The limit exists. And is independent of the choice of G.

$\Phi^n = [m] = \Rightarrow h_{\text{cat}}(\Phi) = 0.$

Conjecture (Kikuta–Takahashi)

For $D = D_b(X)$ and Φ an autoequivalence on D, $h_{\text{cat}}(\Phi) = \log \rho(\Phi_{H^*})$.

Proved: $\dim X = 1$; standard autoequivalences.
Categorical entropy

Properties

- The limit exists. And is independent of the choice of G.

Conjecture (Kikuta–Takahashi)

For $D = D_b(X)$ and Φ an autoequivalence on D, $h_{cat}(\Phi) = \log \rho(\Phi_{H^*})$.

Proved: $\dim X = 1$; standard autoequivalences.
Categorical entropy

Properties

- The limit exists. And is independent of the choice of G.

- $\Phi^n = [m] \implies h_{\text{cat}}(\Phi) = 0$.

Conjecture (Kikuta–Takahashi)

For $D = D_{\text{b}}(X)$ and Φ an autoequivalence on D,

$$h_{\text{cat}}(\Phi) = \log \rho(\Phi^{H^*}).$$

Proven: $\dim X = 1$; standard autoequivalences.
Categorical entropy

Properties

- The limit exists. And is independent of the choice of G.

- $\Phi^n = [m] \implies h_{\text{cat}}(\Phi) = 0$.

Conjecture (Kikuta–Takahashi)

For $\mathcal{D} = \mathcal{D}^b(X)$ and Φ an autoequivalence on \mathcal{D},

$$h_{\text{cat}}(\Phi) = \log \rho(\Phi_{H^*}).$$
Categorical entropy

Properties

- The limit exists. And is independent of the choice of G.

- $\Phi^n = [m] \implies h_{\text{cat}}(\Phi) = 0$.

Conjecture (Kikuta–Takahashi)

For $\mathcal{D} = \mathcal{D}^b(X)$ and Φ an autoequivalence on \mathcal{D},

$$h_{\text{cat}}(\Phi) = \log \rho(\Phi_{H^*}).$$

Proved: $\dim X = 1$; standard autoequivalences.
Reason to expect counterexamples

Thurston: examples of pseudo-Anosov maps on Riemann surface S ($g > 1$) that act trivially on H^\ast. These maps are symplectomorphisms, but not holomorphic.

Gromov–Yomdin fails in these cases: $\text{htop}(f) = \log \lambda > 0 = \log \rho(f^\ast)$.

DHKK: $\text{hcat}(f^\ast) = \log \lambda > 0$. Here f^\ast is the induced autoequivalence on $\text{Fuk}(S)$.

Idea: If there are autoequivalences on $\text{Fuk}(X)$ with $\text{hcat}(\Phi) > \log \rho(\text{HH}^\bullet(\Phi))$ for some Calabi–Yau X, then by homological mirror symmetry, one may expect to find counterexamples of the conjecture on the mirror.
Reason to expect counterexamples

- Thurston: examples of pseudo-Anosov maps on Riemann surface S ($g > 1$) that act trivially on H^*. These maps are symplectomorphisms, but not holomorphic.
Reason to expect counterexamples

- Thurston: examples of pseudo-Anosov maps on Riemann surface S ($g > 1$) that act trivially on H^*. These maps are symplectomorphisms, but not holomorphic. Gromov–Yomdin fails in these cases: $h_{\text{top}}(f) = \log \lambda > 0 = \log \rho(f^*)$.

- Idea: If there are autoequivalences on $\text{Fuk}(X)$ with $h_{\text{cat}}(\Phi) > \log \rho(\mathbb{H}^*(\Phi))$ for some Calabi–Yau X, then by homological mirror symmetry, one may expect to find counterexamples of the conjecture on the mirror.
Reason to expect counterexamples

- Thurston: examples of pseudo-Anosov maps on Riemann surface $S \ (g > 1)$ that act trivially on H^*. These maps are symplectomorphisms, but not holomorphic. Gromov–Yomdin fails in these cases: $h_{\text{top}}(f) = \log \lambda > 0 = \log \rho(f^*)$.

- DHKK: $h_{\text{cat}}(f_*) = \log \lambda > 0$. Here f_* is the induced autoequivalence on $\text{Fuk}(S)$.
Reason to expect counterexamples

- Thurston: examples of pseudo-Anosov maps on Riemann surface S ($g > 1$) that act trivially on H^*. These maps are symplectomorphisms, but not holomorphic. Gromov–Yomdin fails in these cases: $h_{\text{top}}(f) = \log \lambda > 0 = \log \rho(f^*)$.

- DHKK: $h_{\text{cat}}(f^*) = \log \lambda > 0$. Here f^* is the induced autoequivalence on $\text{Fuk}(S)$.

- Idea: If there are autoequivalences on $\text{Fuk}(X)$ with $h_{\text{cat}}(\Phi) > \log \rho(\text{HH}_\bullet(\Phi))$ for some Calabi–Yau X, then by homological mirror symmetry, one may expect to find counterexamples of the conjecture on the mirror.
Counterexamples

Theorem \(d \geq 3 \)
\[
\Phi := \text{OTO} \circ \otimes \text{O}(-1)
\]
has positive categorical entropy. Its exponential is the unique \(\lambda > 1 \) satisfying
\[
\sum_{k \geq 1} \chi(O(k)) \lambda^k = 1.
\]

Claim \(d \geq 4 \) even.
\(X \subset \mathbb{CP}^{d+1} \)
CY hypersurface of degree \(d+2 \).
Then \(\rho(\Phi H^*) = 1 \).

Hence \(h_{\text{cat}}(\Phi) > 0 = \log \rho(\Phi H^*) \).

So Kikuta–Takahashi conjecture fails in this case.
Counterexamples

Theorem \((d \geq 3)\)

\[\Phi := T_{\mathcal{O}_{X}} \circ \otimes \mathcal{O}(-1) \] has positive categorical entropy. Its exponential is the unique \(\lambda > 1\) satisfying

\[
\sum_{k \geq 1} \frac{\chi(\mathcal{O}(k))}{\lambda^k} = 1.
\]
Counterexamples

Theorem \((d \geq 3)\)

\[\Phi := T_{O_X} \circ \otimes \mathcal{O}(-1) \text{ has positive categorical entropy. Its exponential is the unique } \lambda > 1 \text{ satisfying} \]

\[\sum_{k \geq 1} \frac{\chi(\mathcal{O}(k))}{\lambda^k} = 1. \]

Claim

\(d \geq 4 \text{ even. } X \subset \mathbb{CP}^{d+1} \text{ CY hypersurface of degree } d + 2. \text{ Then} \]

\[\rho(\Phi_{H^*}) = 1. \]
Counterexamples

Theorem \((d \geq 3)\)

\(\Phi := T_{O_X} \circ \otimes O(-1)\) has positive categorical entropy. Its exponential is the unique \(\lambda > 1\) satisfying

\[
\sum_{k \geq 1} \frac{\chi(O(k))}{\lambda^k} = 1.
\]

Claim

\(d \geq 4\) even. \(X \subset \mathbb{CP}^{d+1}\) CY hypersurface of degree \(d + 2\). Then

\[
\rho(\Phi_{H^*}) = 1.
\]

Hence \(h_{\text{cat}}(\Phi) > 0 = \log \rho(\Phi_{H^*})\).
Counterexamples

Theorem \((d \geq 3)\)

\[\Phi := T_{O_X} \circ \bigotimes O(-1) \text{ has positive categorical entropy. Its exponential is the unique } \lambda > 1 \text{ satisfying} \]

\[\sum_{k \geq 1} \frac{\chi(O(k))}{\lambda^k} = 1. \]

Claim

\(d \geq 4 \text{ even. } X \subset \mathbb{CP}^{d+1} \text{ CY hypersurface of degree } d + 2. \text{ Then} \]

\[\rho(\Phi_{H^*}) = 1. \]

Hence \(h_{\text{cat}}(\Phi) > 0 = \log \rho(\Phi_{H^*}). \text{ So Kikuta–Takahashi conjecture fails in this case.} \)
Proof of Claim

- $d \geq 4$ even. $X \subset \mathbb{CP}^{d+1}$ CY hypersurface of degree $d + 2$.
Proof of Claim

- $d \geq 4$ even. $X \subset \mathbb{CP}^{d+1}$ CY hypersurface of degree $d + 2$.
- Recall that $(T_{\mathcal{O}_X} \circ \otimes \mathcal{O}(1))^{d+2} = [2]$.
Proof of Claim

- $d \geq 4$ even. $X \subset \mathbb{CP}^{d+1}$ CY hypersurface of degree $d + 2$.

- Recall that $(T_{\mathcal{O}_X} \circ \otimes \mathcal{O}(1))^d + 2 = [2]$.

$\implies (T_{\mathcal{O}_X} \circ \otimes \mathcal{O}(1))^{d+2}_{H^*} = \text{id}_{H^*}$.
Proof of Claim

- $d \geq 4$ even. $X \subset \mathbb{CP}^{d+1}$ CY hypersurface of degree $d + 2$.

- Recall that $(T_{\mathcal{O}_X} \circ \otimes \mathcal{O}(1))^{d+2} = [2]$.

$$\implies (T_{\mathcal{O}_X} \circ \otimes \mathcal{O}(1))_{H^*}^{d+2} = \text{id}_{H^*}.$$

- Fact: $(T_2^2)_{H^*} = \text{id}_{H^*}$ when X is of even dimension.
Proof of Claim

- $d \geq 4$ even. $X \subset \mathbb{CP}^{d+1}$ CY hypersurface of degree $d + 2$.

- Recall that $(T_{\mathcal{O}_X} \circ \otimes \mathcal{O}(1))^{d+2} = [2]$.
 \[\implies (T_{\mathcal{O}_X} \circ \otimes \mathcal{O}(1))^{d+2}_{\ast} = \text{id}_{\ast}. \]

- Fact: $(T_{S}^{2})_{\ast} = \text{id}_{\ast}$ when X is of even dimension.
 \[\implies \Phi^{d+2}_{\ast} = (T_{\mathcal{O}_X} \circ \otimes \mathcal{O}(-1))^{d+2}_{\ast} = \text{id}_{\ast}. \]
Proof of Claim

- $d \geq 4$ even. $X \subset \mathbb{CP}^{d+1}$ CY hypersurface of degree $d + 2$.

- Recall that $(T_{\mathcal{O}_X} \circ \otimes \mathcal{O}(1))^{d+2} = [2]$.

 \[\implies (T_{\mathcal{O}_X} \circ \otimes \mathcal{O}(1))^{d+2}_{H^*} = \text{id}_{H^*}. \]

- Fact: $(T^2_S)_{H^*} = \text{id}_{H^*}$ when X is of even dimension.

 \[\implies \Phi^{d+2} = (T_{\mathcal{O}_X} \circ \otimes \mathcal{O}(-1))^{d+2}_{H^*} = \text{id}_{H^*}. \]

 \[\implies \rho(\Phi_{H^*}) = 1. \]
Sketch of proof of Theorem

DHKK: If G and G' are both split generators of $D^b(X)$, then

$h_{\text{cat}}(\Phi) = \lim_{n \to \infty} \frac{1}{n} \log \sum_{a \in \mathbb{Z}} \text{dim} \text{Hom}(G, \Phi_n G'[a])$.

Orlov: $G = \bigoplus_{d+1}^{\infty} O(i)$ and $G' = \bigoplus_{d+1}^{\infty} O(-i)$ are split generators.

Lemma: Recursive formula for the dimension of $\text{Hom}(O, \Phi_n (G' \otimes O(-k)[a]))$ via Kodaira vanishing.

\Rightarrow Theorem.
Sketch of proof of Theorem

- DHKK: If G and G' are both split generators of $\mathcal{D}^b(X)$, then

$$h_{\text{cat}}(\Phi) = \lim_{n \to \infty} \frac{1}{n} \log \sum_{a \in \mathbb{Z}} \dim \text{Hom}(G, \Phi^n G'[a]).$$

- Orlov: $G = \bigoplus_{d+1} O(i)$ and $G' = \bigoplus_{d+1} O(-i)$ are split generators.

- Lemma: Recursive formula for the dimension of $\text{Hom}(O, \Phi^n (G')) \otimes O(-k)[a]$ via Kodaira vanishing.

- $+$ some combinatorics \Rightarrow Theorem.
Sketch of proof of Theorem

- **DHKK**: If G and G' are both split generators of $D^b(X)$, then

 $$h_{\text{cat}}(\Phi) = \lim_{n \to \infty} \frac{1}{n} \log \sum_{a \in \mathbb{Z}} \dim \text{Hom}(G, \Phi^n G'[a]).$$

- **Orlov**: $G = \bigoplus_{i=1}^{d+1} \mathcal{O}(i)$ and $G' = \bigoplus_{i=1}^{d+1} \mathcal{O}(-i)$ are split generators.
Sketch of proof of Theorem

- **DHKK**: If \(G \) and \(G' \) are both split generators of \(\mathcal{D}^b(X) \), then

 \[
 h_{\text{cat}}(\Phi) = \lim_{n \to \infty} \frac{1}{n} \log \sum_{a \in \mathbb{Z}} \dim \text{Hom}(G, \Phi^n G'[a]).
 \]

- **Orlov**: \(G = \bigoplus_{i=1}^{d+1} \mathcal{O}(i) \) and \(G' = \bigoplus_{i=1}^{d+1} \mathcal{O}(-i) \) are split generators.

- **Lemma**: Recursive formula for the dimension of \(\text{Hom}(\mathcal{O}, \Phi^n(G') \otimes \mathcal{O}(-k)[a]) \) via Kodaira vanishing.
Sketch of proof of Theorem

- DHKK: If G and G' are both split generators of $\mathcal{D}^b(X)$, then

$$h_{\text{cat}}(\Phi) = \lim_{n \to \infty} \frac{1}{n} \log \sum_{a \in \mathbb{Z}} \dim \text{Hom}(G, \Phi^n G'[a]).$$

- Orlov: $G = \bigoplus_{i=1}^{d+1} \mathcal{O}(i)$ and $G' = \bigoplus_{i=1}^{d+1} \mathcal{O}(-i)$ are split generators.

- Lemma: Recursive formula for the dimension of $\text{Hom} (\mathcal{O}, \Phi^n (G') \otimes \mathcal{O}(-k)[a])$ via Kodaira vanishing.

- $+$ some combinatorics \implies Theorem.
Thank you!