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Topological entropy
Definition

I (X , d) compact, f : X → X continuous surjective.

I Topological entropy htop(f ) measures “how fast points spread
out when iterate f ”.

I N(n, ε) := max{#F : F ⊂ X ,max0≤i≤n d(f i (x), f i (y)) ≥ ε for
any x , y ∈ F}.

Definition

htop(f ) := lim
ε→0

lim sup
n→∞

logN(n, ε)

n
∈ [0,∞].
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Topological entropy
Properties

I htop(f ) is an topological invariant: If (X , d) ∼= (X , d ′), then
one gets the same topological entropy.

I f n = idX =⇒ htop(f ) = 0.

Theorem (Gromov, Yomdin)

X compact Kähler manifold, f : X → X holomorphic surjective.

htop(f ) = log ρ(f ∗).

Here ρ is the spectral radius of f ∗ : H∗(X ;C)→ H∗(X ;C).
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I D = Db(X ).

I Standard autoequivalences: ⊗L, Aut(X ), [n].

I Bondal–Orlov ’01: When KX is (anti-)ample, the group of
autoequivalences is generated by the standard ones.
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Examples of autoequivalences
Spherical twists (Seidel–Thomas ’01)

I Let X be a Calabi–Yau manifold of dimension d .

I E ∈ Db(X ) is spherical if

Hom(E ,E [∗]) ∼= H∗(Sd ;C).

e.g. Lagrangian sphere in derived Fukaya category.

e.g. OX is spherical iff H i (OX ) = 0 for 0 < i < d , i.e. X is
strict CY.
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Autoequivalences from monodromies

I Kähler moduli of CY hypersurface X ⊂ CPd+1:
<--- Large Volume Limit

<--- Conifold point

<--- Gepner point

I Monodromies  Autoequivalences on Db(X )

I Kontsevich ’96, Horja ’99:
LVL  ⊗O(1), Conifold  TOX

, Gepner  TOX
◦ ⊗O(1).

I Ballard–Favero–Katzarkov ’12: (TOX
◦ ⊗O(1))d+2 = [2].



Categorical entropy
Results

I Entropy: Measures “complexity” of an autoequivalence.

e.g. ⊗O(1), TOX
, TOX

◦ ⊗O(1) all have zero entropy.

Theorem (d ≥ 3)

TOX
◦ ⊗O(−1) has positive entropy.

Its exponential is the unique λ > 1 satisfying∑
k≥1

χ(O(k))

λk
= 1.

(e.g. quintic CY3: λ4 − 9λ3 + 11λ2 − 9λ+ 1 = 0.)
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=⇒ Counterexamples of Kikuta–Takahashi conjecture.



Categorical entropy
Definition (Dimitrov–Haiden–Katzarkov–Kontsevich ’13)

Definition
For E ,F ∈ D, the complexity of F relative to E is

δ(E ,F ) := inf

k

∣∣∣∣∣∣
0 A1

. . . Ak−1 F ⊕ F ′

E [n1] . . . E [nk ]

//

��

__ //

��

__


Definition
If D has a split generator G , then the categorical entropy of an
autoequivalence Φ is

hcat(Φ) := lim
n→∞

log δ(G ,ΦnG )

n
∈ [−∞,∞).
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I The limit exists. And is independent of the choice of G .

I Φn = [m] =⇒ hcat(Φ) = 0.

Conjecture (Kikuta–Takahashi)

For D = Db(X ) and Φ an autoequivalence on D,

hcat(Φ) = log ρ(ΦH∗).

Proved: dimX = 1; standard autoequivalences.
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Reason to expect counterexamples

I Thurston: examples of pseudo-Anosov maps on Riemann
surface S (g > 1) that act trivially on H∗. These maps are
symplectomorphisms, but not holomorphic.

Gromov–Yomdin
fails in these cases: htop(f ) = log λ > 0 = log ρ(f ∗).

I DHKK: hcat(f∗) = log λ > 0. Here f∗ is the induced
autoequivalence on Fuk(S).

I Idea: If there are autoequivalences on Fuk(X ) with
hcat(Φ) > log ρ(HH•(Φ)) for some Calabi–Yau X , then by
homological mirror symmetry, one may expect to find
counterexamples of the conjecture on the mirror.
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Counterexamples

Theorem (d ≥ 3)

Φ := TOX
◦ ⊗O(−1) has positive categorical entropy. Its

exponential is the unique λ > 1 satisfying∑
k≥1

χ(O(k))

λk
= 1.

Claim
d ≥ 4 even. X ⊂ CPd+1 CY hypersurface of degree d + 2. Then

ρ(ΦH∗) = 1.

Hence hcat(Φ) > 0 = log ρ(ΦH∗). So Kikuta–Takahashi conjecture
fails in this case.
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Proof of Claim

I d ≥ 4 even. X ⊂ CPd+1 CY hypersurface of degree d + 2.

I Recall that (TOX
◦ ⊗O(1))d+2 = [2].

=⇒ (TOX
◦ ⊗O(1))d+2

H∗ = idH∗ .

I Fact: (T2
S)H∗ = idH∗ when X is of even dimension.

=⇒ Φd+2
H∗ = (TOX

◦ ⊗O(−1))d+2
H∗ = idH∗ .

=⇒ ρ(ΦH∗) = 1.
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Sketch of proof of Theorem

I DHKK: If G and G ′ are both split generators of Db(X ), then

hcat(Φ) = lim
n→∞

1

n
log
∑
a∈Z

dimHom(G ,ΦnG ′[a]).

I Orlov: G = ⊕d+1
i=1 O(i) and G ′ = ⊕d+1

i=1 O(−i) are split
generators.

I Lemma: Recursive formula for the dimension of
Hom(O,Φn(G ′)⊗O(−k)[a]) via Kodaira vanishing.

I + some combinatorics =⇒ Theorem.
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