Entropy of an autoequivalence on Calabi–Yau manifolds (arXiv:1704.06957)

Yu-Wei Fan

Harvard University

June 2017 BU-Keio workshop

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- ► Topological entropy and Gromov–Yomdin theorem.
- Background on autoequivalences.
- Categorical entropy and Kikuta–Takahashi conjecture.
- Reason to expect counterexamples via Homological Mirror Symmetry.

Counterexamples.

Definition

Topological entropy Definition

• (X, d) compact, $f : X \to X$ continuous surjective.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Topological entropy Definition

- (X, d) compact, $f : X \to X$ continuous surjective.
- Topological entropy h_{top}(f) measures "how fast points spread out when iterate f".

Definition

- (X, d) compact, $f : X \to X$ continuous surjective.
- Topological entropy h_{top}(f) measures "how fast points spread out when iterate f".
- ► $N(n, \epsilon) := \max\{\#F : F \subset X, \max_{0 \le i \le n} d(f^i(x), f^i(y)) \ge \epsilon \text{ for any } x, y \in F\}.$

Definition

$$h_{\mathrm{top}}(f) := \lim_{\epsilon \to 0} \limsup_{n \to \infty} \frac{\log N(n, \epsilon)}{n} \in [0, \infty].$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Properties

Properties

▶ h_{top}(f) is an topological invariant: If (X, d) ≅ (X, d'), then one gets the same topological entropy.

Properties

▶ h_{top}(f) is an topological invariant: If (X, d) ≅ (X, d'), then one gets the same topological entropy.

•
$$f^n = \operatorname{id}_X \implies h_{\operatorname{top}}(f) = 0.$$

Properties

▶ h_{top}(f) is an topological invariant: If (X, d) ≅ (X, d'), then one gets the same topological entropy.

•
$$f^n = \operatorname{id}_X \implies h_{\operatorname{top}}(f) = 0.$$

Theorem (Gromov, Yomdin)

X compact Kähler manifold, $f : X \rightarrow X$ holomorphic surjective.

$$h_{\mathrm{top}}(f) = \log \rho(f^*).$$

Here ρ is the spectral radius of $f^* : H^*(X; \mathbb{C}) \to H^*(X; \mathbb{C})$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Standard autoequivalences

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Standard autoequivalences

$$\blacktriangleright \mathcal{D} = \mathcal{D}^b(X).$$

Standard autoequivalences

- $\mathcal{D} = \mathcal{D}^b(X).$
- Standard autoequivalences: $\otimes \mathcal{L}$, $\operatorname{Aut}(X)$, [n].

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Standard autoequivalences

- $\mathcal{D} = \mathcal{D}^b(X).$
- Standard autoequivalences: $\otimes \mathcal{L}$, $\operatorname{Aut}(X)$, [n].
- Bondal–Orlov '01: When K_X is (anti-)ample, the group of autoequivalences is generated by the standard ones.

Spherical twists (Seidel-Thomas '01)

Spherical twists (Seidel-Thomas '01)

Let X be a Calabi–Yau manifold of dimension d.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Spherical twists (Seidel-Thomas '01)

Let X be a Calabi–Yau manifold of dimension d.

• $E \in \mathcal{D}^b(X)$ is spherical if

 $\operatorname{Hom}(E,E[*])\cong H^*(S^d;\mathbb{C}).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Spherical twists (Seidel-Thomas '01)

Let X be a Calabi–Yau manifold of dimension d.

• $E \in \mathcal{D}^b(X)$ is spherical if

 $\operatorname{Hom}(E, E[*]) \cong H^*(S^d; \mathbb{C}).$

e.g. Lagrangian sphere in derived Fukaya category.

Spherical twists (Seidel-Thomas '01)

Let X be a Calabi–Yau manifold of dimension d.

• $E \in \mathcal{D}^b(X)$ is spherical if

 $\operatorname{Hom}(E, E[*]) \cong H^*(S^d; \mathbb{C}).$

e.g. Lagrangian sphere in derived Fukaya category.

e.g. \mathcal{O}_X is spherical iff $H^i(\mathcal{O}_X) = 0$ for 0 < i < d, i.e. X is *strict* CY.

Spherical twists (Seidel-Thomas '01)

- Let X be a Calabi–Yau manifold of dimension d.
- $E \in \mathcal{D}^b(X)$ is spherical if

 $\operatorname{Hom}(E, E[*]) \cong H^*(S^d; \mathbb{C}).$

Spherical twist $T_E : F \mapsto Cone(Hom^{\bullet}(E, F) \otimes E \to F)$.

Spherical twists (Seidel-Thomas '01)

- Let X be a Calabi–Yau manifold of dimension d.
- $E \in \mathcal{D}^{b}(X)$ is spherical if

 $\operatorname{Hom}(E, E[*]) \cong H^*(S^d; \mathbb{C}).$

▶ Spherical twist $T_E : F \mapsto Cone(Hom^{\bullet}(E, F) \otimes E \rightarrow F).$

e.g. Dehn twist along Lagrangian sphere.

Autoequivalences from monodromies

• Kähler moduli of CY hypersurface $X \subset \mathbb{CP}^{d+1}$:

- Monodromies \rightsquigarrow Autoequivalences on $\mathcal{D}^b(X)$
- ► Kontsevich '96, Horja '99: LVL $\rightsquigarrow \otimes \mathcal{O}(1)$, Conifold $\rightsquigarrow T_{\mathcal{O}_X}$, Gepner $\rightsquigarrow T_{\mathcal{O}_X} \circ \otimes \mathcal{O}(1)$.
- ▶ Ballard-Favero-Katzarkov '12: (T_{O_X} ⊗O(1))^{d+2} = [2].

・ロト ・ 通 ト ・ ヨ ト ・ ヨ ・ うへで

<□ > < @ > < E > < E > E のQ @

Results

► Entropy: Measures "complexity" of an autoequivalence.

(ロ)、(型)、(E)、(E)、 E) の(の)

► Entropy: Measures "complexity" of an autoequivalence. e.g. ⊗O(1), T_{O_X}, T_{O_X} ∘ ⊗O(1) all have zero entropy.

 Entropy: Measures "complexity" of an autoequivalence. e.g. ⊗O(1), T_{O_X}, T_{O_X} ∘ ⊗O(1) all have zero entropy.
 Theorem (d ≥ 3) T_{O_X} ∘ ⊗O(-1) has positive entropy.

Entropy: Measures "complexity" of an autoequivalence.
 e.g. ⊗O(1), T_{O_X}, T_{O_X} ∘ ⊗O(1) all have zero entropy.
 Theorem (d ≥ 3)
 T_{O_X} ∘ ⊗O(-1) has positive entropy.
 Its exponential is the unique λ > 1 satisfying

$$\sum_{k\geq 1}\frac{\chi(\mathcal{O}(k))}{\lambda^k}=1.$$

 Entropy: Measures "complexity" of an autoequivalence. e.g. ⊗O(1), T_{O_X}, T_{O_X} ∘ ⊗O(1) all have zero entropy.
 Theorem (d ≥ 3) T_{O_X} ∘ ⊗O(-1) has positive entropy.
 Its exponential is the unique λ > 1 satisfying

$$\sum_{k\geq 1}\frac{\chi(\mathcal{O}(k))}{\lambda^k}=1.$$

(e.g. quintic CY3: $\lambda^4 - 9\lambda^3 + 11\lambda^2 - 9\lambda + 1 = 0.$)

Entropy: Measures "complexity" of an autoequivalence.
 e.g. ⊗O(1), T_{O_X}, T_{O_X} ∘ ⊗O(1) all have zero entropy.
 Theorem (d ≥ 3)
 T_{O_X} ∘ ⊗O(-1) has positive entropy.
 Its exponential is the unique λ > 1 satisfying

$$\sum_{k\geq 1}\frac{\chi(\mathcal{O}(k))}{\lambda^k}=1.$$

 \implies Counterexamples of Kikuta–Takahashi conjecture.

Definition (Dimitrov-Haiden-Katzarkov-Kontsevich '13)

(ロ)、

Definition (Dimitrov-Haiden-Katzarkov-Kontsevich '13)

Definition For $E, F \in D$, the *complexity* of F relative to E is

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

Definition (Dimitrov-Haiden-Katzarkov-Kontsevich '13)

Definition For $E, F \in \mathcal{D}$, the *complexity* of F relative to E is

Definition

If $\mathcal D$ has a split generator ${\it G},$ then the categorical entropy of an autoequivalence Φ is

$$h_{\mathrm{cat}}(\Phi) := \lim_{n \to \infty} \frac{\log \delta(G, \Phi^n G)}{n} \in [-\infty, \infty).$$

Properties

Categorical entropy Properties

▶ The limit exists. And is independent of the choice of *G*.

Categorical entropy Properties

▶ The limit exists. And is independent of the choice of *G*.

$$\bullet \ \Phi^n = [m] \implies h_{\text{cat}}(\Phi) = 0.$$

Properties

▶ The limit exists. And is independent of the choice of *G*.

•
$$\Phi^n = [m] \implies h_{\text{cat}}(\Phi) = 0.$$

Conjecture (Kikuta–Takahashi) For $\mathcal{D} = \mathcal{D}^b(X)$ and Φ an autoequivalence on \mathcal{D} ,

$$h_{\mathrm{cat}}(\Phi) = \log \rho(\Phi_{H^*}).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Categorical entropy

Properties

▶ The limit exists. And is independent of the choice of *G*.

•
$$\Phi^n = [m] \implies h_{\text{cat}}(\Phi) = 0.$$

Conjecture (Kikuta–Takahashi) For $\mathcal{D} = \mathcal{D}^{b}(X)$ and Φ an autoequivalence on \mathcal{D} ,

$$h_{\mathrm{cat}}(\Phi) = \log \rho(\Phi_{H^*}).$$

<u>Proved</u>: dim X = 1; standard autoequivalences.

<ロ>

Thurston: examples of pseudo-Anosov maps on Riemann surface S (g > 1) that act trivially on H*. These maps are symplectomorphisms, but not holomorphic.

・ロト・日本・モート モー うへぐ

► Thurston: examples of pseudo-Anosov maps on Riemann surface S (g > 1) that act trivially on H*. These maps are symplectomorphisms, but not holomorphic. Gromov-Yomdin fails in these cases: h_{top}(f) = log λ > 0 = log ρ(f*).

▶ Thurston: examples of pseudo-Anosov maps on Riemann surface S (g > 1) that act trivially on H^* . These maps are symplectomorphisms, but not holomorphic. Gromov–Yomdin fails in these cases: $h_{top}(f) = \log \lambda > 0 = \log \rho(f^*)$.

▶ DHKK: h_{cat}(f_{*}) = log λ > 0. Here f_{*} is the induced autoequivalence on Fuk(S).

- ▶ Thurston: examples of pseudo-Anosov maps on Riemann surface S (g > 1) that act trivially on H^* . These maps are symplectomorphisms, but not holomorphic. Gromov–Yomdin fails in these cases: $h_{top}(f) = \log \lambda > 0 = \log \rho(f^*)$.
- ► DHKK: h_{cat}(f_{*}) = log λ > 0. Here f_{*} is the induced autoequivalence on Fuk(S).
- Idea: If there are autoequivalences on Fuk(X) with h_{cat}(Φ) > log ρ(HH_•(Φ)) for some Calabi–Yau X, then by homological mirror symmetry, one may expect to find counterexamples of the conjecture on the mirror.

くしゃ (雪) (雪) (雪) (雪) (雪) (雪) (

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Theorem $(d \ge 3)$ $\Phi := T_{\mathcal{O}_X} \circ \otimes \mathcal{O}(-1)$ has positive categorical entropy. Its exponential is the unique $\lambda > 1$ satisfying

$$\sum_{k\geq 1}\frac{\chi(\mathcal{O}(k))}{\lambda^k}=1.$$

Theorem $(d \ge 3)$ $\Phi := T_{\mathcal{O}_X} \circ \otimes \mathcal{O}(-1)$ has positive categorical entropy. Its exponential is the unique $\lambda > 1$ satisfying

$$\sum_{k\geq 1}\frac{\chi(\mathcal{O}(k))}{\lambda^k}=1.$$

Claim

 $d \geq$ 4 even. $X \subset \mathbb{CP}^{d+1}$ CY hypersurface of degree d+2. Then

$$\rho(\Phi_{H^*}) = 1.$$

Theorem $(d \ge 3)$ $\Phi := T_{\mathcal{O}_X} \circ \otimes \mathcal{O}(-1)$ has positive categorical entropy. Its exponential is the unique $\lambda > 1$ satisfying

$$\sum_{k\geq 1}\frac{\chi(\mathcal{O}(k))}{\lambda^k}=1.$$

Claim

 $d \geq 4$ even. $X \subset \mathbb{CP}^{d+1}$ CY hypersurface of degree d+2. Then

$$\rho(\Phi_{H^*})=1.$$

Hence $h_{\text{cat}}(\Phi) > 0 = \log \rho(\Phi_{H^*})$.

Theorem $(d \ge 3)$ $\Phi := T_{\mathcal{O}_X} \circ \otimes \mathcal{O}(-1)$ has positive categorical entropy. Its exponential is the unique $\lambda > 1$ satisfying

$$\sum_{k\geq 1}\frac{\chi(\mathcal{O}(k))}{\lambda^k}=1.$$

Claim

 $d \geq$ 4 even. $X \subset \mathbb{CP}^{d+1}$ CY hypersurface of degree d+2. Then

$$\rho(\Phi_{H^*}) = 1.$$

Hence $h_{cat}(\Phi) > 0 = \log \rho(\Phi_{H^*})$. So Kikuta–Takahashi conjecture fails in this case.

► $d \ge 4$ even. $X \subset \mathbb{CP}^{d+1}$ CY hypersurface of degree d + 2.

▶ $d \ge 4$ even. $X \subset \mathbb{CP}^{d+1}$ CY hypersurface of degree d + 2.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Recall that $(T_{\mathcal{O}_X} \circ \otimes \mathcal{O}(1))^{d+2} = [2].$

▶ $d \ge 4$ even. $X \subset \mathbb{CP}^{d+1}$ CY hypersurface of degree d + 2.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Recall that $(T_{\mathcal{O}_X} \circ \otimes \mathcal{O}(1))^{d+2} = [2].$

$$\implies (\mathrm{T}_{\mathcal{O}_X} \circ \otimes \mathcal{O}(1))_{H^*}^{d+2} = \mathrm{id}_{H^*}.$$

▶ $d \ge 4$ even. $X \subset \mathbb{CP}^{d+1}$ CY hypersurface of degree d + 2.

(ロ)、(型)、(E)、(E)、 E) の(の)

► Recall that
$$(T_{\mathcal{O}_X} \circ \otimes \mathcal{O}(1))^{d+2} = [2].$$

 $\implies (T_{\mathcal{O}_X} \circ \otimes \mathcal{O}(1))^{d+2}_{H^*} = \mathrm{id}_{H^*}.$

• Fact: $(T_S^2)_{H^*} = id_{H^*}$ when X is of even dimension.

▶ $d \ge 4$ even. $X \subset \mathbb{CP}^{d+1}$ CY hypersurface of degree d + 2.

▶ $d \ge 4$ even. $X \subset \mathbb{CP}^{d+1}$ CY hypersurface of degree d + 2.

▲ロト ▲圖 → ▲ 国 ト ▲ 国 - - - の Q ()

• DHKK: If G and G' are both split generators of $\mathcal{D}^b(X)$, then

$$h_{\mathrm{cat}}(\Phi) = \lim_{n \to \infty} \frac{1}{n} \log \sum_{a \in \mathbb{Z}} \dim \mathrm{Hom}(G, \Phi^n G'[a]).$$

• DHKK: If G and G' are both split generators of $\mathcal{D}^b(X)$, then

$$h_{\mathrm{cat}}(\Phi) = \lim_{n \to \infty} \frac{1}{n} \log \sum_{a \in \mathbb{Z}} \dim \mathrm{Hom}(G, \Phi^n G'[a]).$$

• DHKK: If G and G' are both split generators of $\mathcal{D}^b(X)$, then

$$h_{\mathrm{cat}}(\Phi) = \lim_{n \to \infty} \frac{1}{n} \log \sum_{a \in \mathbb{Z}} \dim \mathrm{Hom}(G, \Phi^n G'[a]).$$

- Orlov: $G = \bigoplus_{i=1}^{d+1} \mathcal{O}(i)$ and $G' = \bigoplus_{i=1}^{d+1} \mathcal{O}(-i)$ are split generators.
- Lemma: Recursive formula for the dimension of Hom(O, Φⁿ(G') ⊗ O(-k)[a]) via Kodaira vanishing.

• DHKK: If G and G' are both split generators of $\mathcal{D}^b(X)$, then

$$h_{\mathrm{cat}}(\Phi) = \lim_{n \to \infty} \frac{1}{n} \log \sum_{a \in \mathbb{Z}} \dim \mathrm{Hom}(G, \Phi^n G'[a]).$$

- Orlov: $G = \bigoplus_{i=1}^{d+1} \mathcal{O}(i)$ and $G' = \bigoplus_{i=1}^{d+1} \mathcal{O}(-i)$ are split generators.
- Lemma: Recursive formula for the dimension of Hom(O, Φⁿ(G') ⊗ O(−k)[a]) via Kodaira vanishing.
- + some combinatorics \implies Theorem.

Thank you!