Construction of Lefschetz fibrations and pencils via mapping class groups

Kenta Hayano (Keio University)

June 26, 2017 @ Boston University

Joint work w/ Refik İnanç Baykur (University of Massachusetts)

Construction of Lefschetz fibrations and pencils via mapping class groups

Kenta Hayano (Keio University)

June 26, 2017 @ Boston University

Joint work w/ Refik İnanç Baykur (University of Massachusetts)

Kenta Hayano (Keio University)

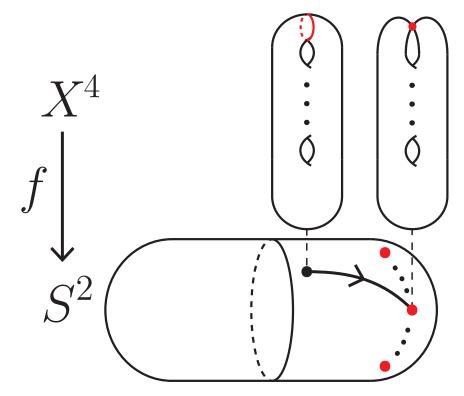
June 26, 2017 @ Boston University

Joint work w/ Refik İnanç Baykur (University of Massachusetts)

§.0 Outline of this talk

* What is a Lefschetz fibraion?

 $\rightarrow f$ w/ good critical pt's (called a Lefschetz singularity)

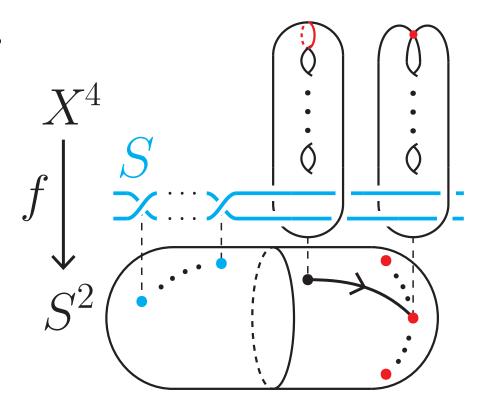


§.0 Outline of this talk

* What is a Lefschetz fibraion?

ightarrow f w/ good critical pt's (called a Lefschetz singularity)

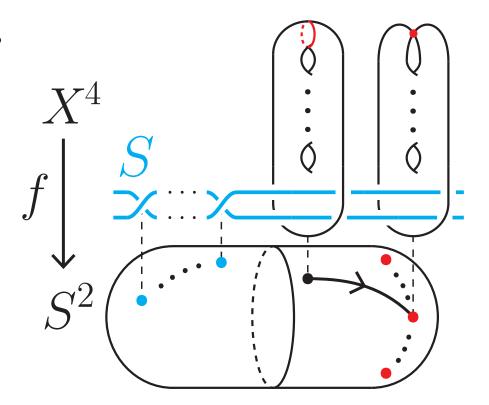
- * What is a multisection?
- ightarrow S : embedded surface s.t. $f|_S$: simple branched cvr. (+ some conditions...)



§.0 Outline of this talk

* What is a Lefschetz fibraion?

- ightarrow f w/ good critical pt's (called a Lefschetz singularity)
- * What is a multisection?
- ightarrow S : embedded surface s.t. $f|_S$: simple branched cvr. (+ some conditions...)



* Roughly speaking, we obtained the following correspondence:

an LF
w/ a multisection
$$\longleftrightarrow$$
 in a mapping class group
of a surface w/ ∂

♦ Why should we care LFs?

 \implies Roughly, LFs are related to symplectic topology:

- $f: X \to S^2$: LF (w/ crit. pt) \longrightarrow symplectic str. on X (Gompf)
- symp. str. on $X \longrightarrow \mathsf{LF}$ on a blow-up of X (Donaldson)

♦ Why should we care LFs?

 \implies Roughly, LFs are related to symplectic topology:

- $f:X o S^2$: LF (w/ crit. pt) \longrightarrow symplectic str. on X (Gompf)
- symp. str. on $X \longrightarrow \mathsf{LF}$ on a blow-up of X (Donaldson)

* LFs are originally studied in complex/algebraic geometry:

- $L \to X$: very ample line bundle on a complex surface \implies generic pencil in |L| is a *Lefschetz pencil*.
- Elliptic fibrations w/o multiple fibers are typical ex's of LFs.

♦ Why should we care multisections?

 Multisections are related to smooth invariants of 4-mfd's. (Taubes, Donaldson-Smith, Usher)

2.

♦ Why should we care multisections?

- Multisections are related to smooth invariants of 4-mfd's. (Taubes, Donaldson-Smith, Usher)
- In some sense, multisections reflect the topology of an LF.
 Indeed, using multisections we can:
 - construct counterex's to "the Stipsicz conjecture" on LFs.
 - construct an exotic pair of surfaces in a 4-manifold.
 - construct pairs of non-isomorphic LFs.
 - construct exotic pairs of LPs.

♦ Why should we care multisections?

- Multisections are related to smooth invariants of 4-mfd's. (Taubes, Donaldson-Smith, Usher)
- In some sense, multisections reflect the topology of an LF.
 Indeed, using multisections we can:
 - construct counterex's to "the Stipsicz conjecture" on LFs.
 - construct an exotic pair of surfaces in a 4-manifold.
 - construct pairs of non-isomorphic LFs.
 - construct exotic pairs of LPs.

\Diamond Plan of this talk

§.1 Multisections and mapping class groups

§.2 Examples of LF with multisections

§.3 Applications

- * We will assume
 - Manifolds : closed, smooth, oriented, connected.
 - Maps between manifolds : smooth.
 - unless otherwise noted.

§.1 Multisections and mapping class groups $f: X^4
ightarrow S^2$, $\operatorname{Crit}(f) := \{x \in X \mid df_x : \mathsf{NOT} \mathsf{surj.}\}$ **Definition** $f: X^4 \to S^2$ is a Lefschetz fibration (LF) if: (a) $\forall q \in \operatorname{Crit}(f), f(z,w) = z^2 + w^2$ under some complex coordinates around q & f(q) compatible with orientations. (b) $f|_{\operatorname{Crit}(f)}$: injective. (c) No fibers contain spheres with self-intersection -1. The genus of a regular fiber is the genus of f.

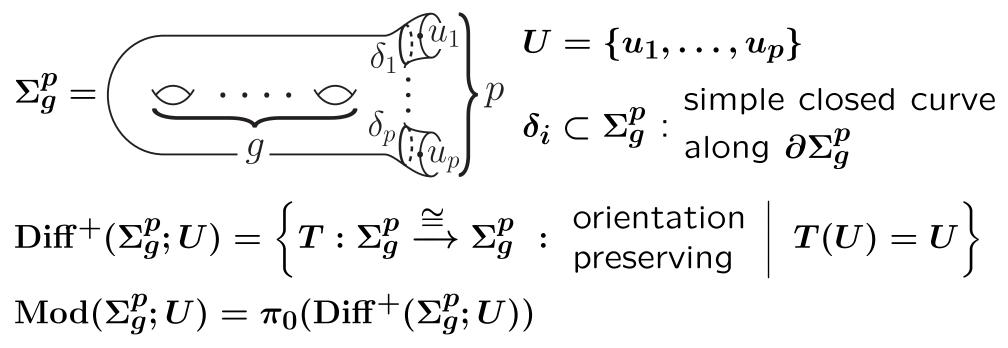
Definition $f: X \to S^2$: genus- $g \ LF$ $S \subset X$: embedded surface is a multisection or *p*-section if: (a) $f|_S$: a *p*-fold simple branched cover.

(b) $\forall q \notin \operatorname{Crit}(f)$: branched point of $f|_S$ is *positive*

(c) S is *compatible* with Lefschetz singularities

Definition $f\colon X o S^2$: genus-g LF $S \subset X$: embedded surface is a **multisection** or *p*-section if: (a) $f|_{S}$: a p-fold simple branched cover. (b) $\forall q \notin \operatorname{Crit}(f)$: branched point of $f|_S$ is positive i.e. $df_q: NS_q \to T_{f(q)}S^2$ preserves the orientations. (NS : normal bundle of S)(\iff the monodromy around f(q) is a **positive** half twist.) (c) S is *compatible* with Lefschetz singularities i.e. $\forall q \in S \cap \operatorname{Crit}(f), \frac{\exists (U, \varphi)}{\exists (V, \psi)}$: complex coordinates of $\frac{X}{S^2}$ at $\frac{q}{f(q)}$ s.t. $(U, U \cap S) \stackrel{arphi}{
ightarrow} (\mathbb{C}^2, \Delta_{\mathbb{C}^2})$ $ig| (z,w) {\mapsto} zw$, where $\Delta_{\mathbb{C}^2} = \{(z,z) \in \mathbb{C}^2\}$ f

♦ Mapping class groups



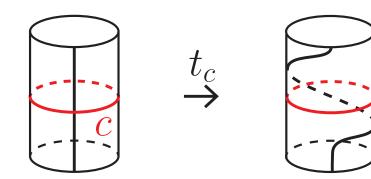
♦ Mapping class groups

Remarks for experts of MCGs...

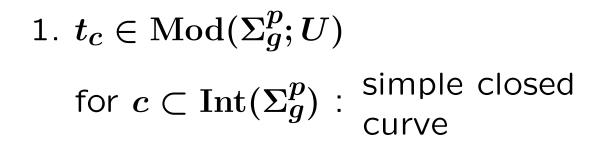
- $\varphi \in \text{Diff}^+(\Sigma_g^p; U)$ may interchange ∂ -comp's, in contrast with usual MCGs of surfaces w/ ∂ .
- $t_{\delta_i} \in \operatorname{Mod}(\Sigma_g^p; U)$ is not trivial since an isotopy has to preserve u_i .

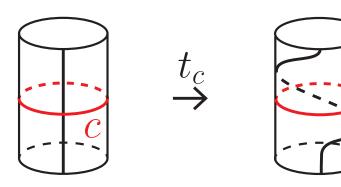
\diamond Important elements in $\operatorname{Mod}(\Sigma^p_q;U)$

1. $t_c \in \operatorname{Mod}(\Sigma_g^p; U)$ for $c \subset \operatorname{Int}(\Sigma_g^p)$: simple closed curve



\diamond Important elements in $\operatorname{Mod}(\Sigma_g^p; U)$



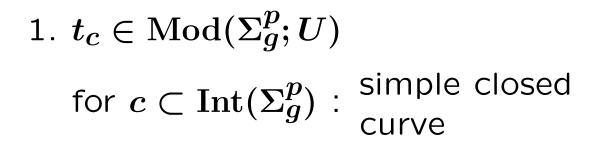


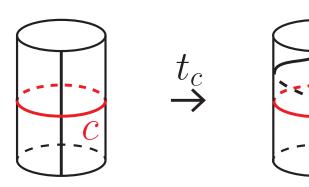
 au_{γ}

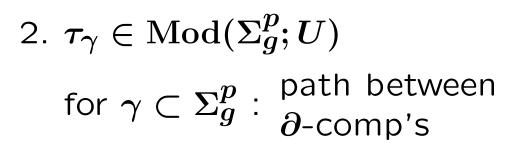
2.
$$au_\gamma \in \operatorname{Mod}(\Sigma_g^p; U)$$

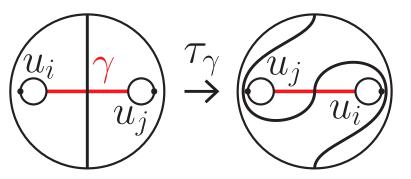
for $\gamma \subset \Sigma_g^p$: path between ∂ -comp's

\diamond Important elements in $\operatorname{Mod}(\Sigma_{m{g}}^{p};U)$

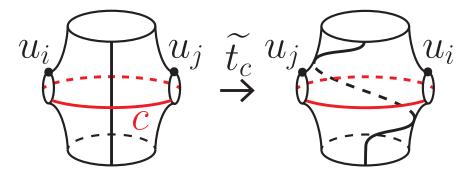








3. $\widetilde{t_c} \in \operatorname{Mod}(\Sigma_g^p; U)$ for $c \subset \Sigma_g^p$: pair of paths between ∂ -comp's



Theorem (Baykur-H.)

From an equality

$$\tau_{\gamma_1}\cdots\tau_{\gamma_k}\cdot \widetilde{t_{c_1}}\cdots\widetilde{t_{c_r}}\cdot t_{c_{r+1}}\cdots t_{c_l} = t_{\delta_1}^{a_1}\cdots t_{\delta_p}^{a_p}$$
(1)

in $\operatorname{Mod}(\Sigma_g^p; U)$, we can construct

•
$$f: X \to S^2$$
 : genus- $g \ LF$,
• $S: p$ -sec. w/
2. self-intersection $-(\sum_{i=1}^p a_i) + 2k + r$.

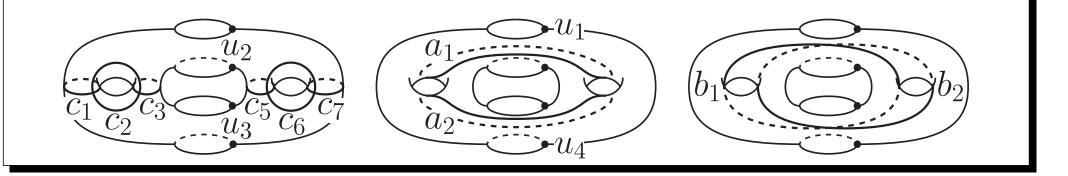
* Conversely, a monodromy of f & S yields the equality (1).

* Generalization of Kas ('80) & Matsumoto ('96)'s result. (for Lefschetz fibrations without multisections)

§.2 Examples of LF with multisections

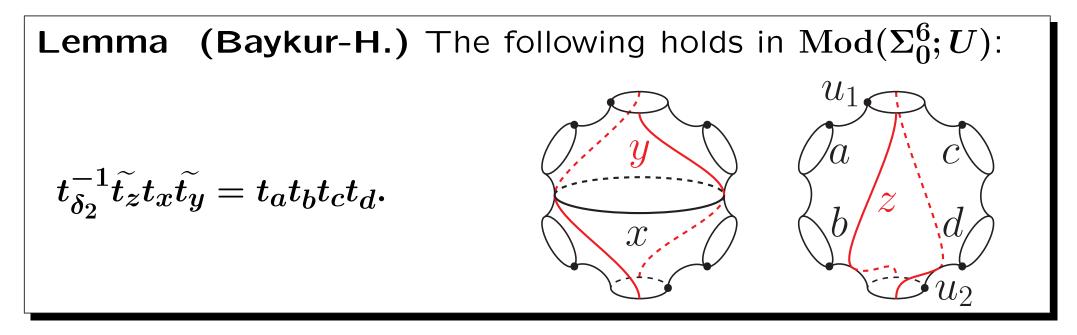
Example (Baykur-H.) The following holds in $\mathrm{Mod}(\Sigma^4_3;U)$:

 $(t_1t_3t_5t_7t_2t_6t_{a_1}t_{a_2}t_{b_1}t_{b_2}t_1t_3t_5t_7t_{b_1}t_{b_2}t_2t_6)^2 = t_{\delta_1}t_{\delta_2}t_{\delta_3}t_{\delta_4}.$



- * ${}^{\exists}f_{1,1,1,1}: X \to S^2$: genus-3 LF with four (disjoint) sections. (these are NOT multisections so far...)
- $* \ X$ is homeomorphic to $\mathrm{K3} \sharp 4 \overline{\mathbb{CP}^2}$.

* To modify $f_{1,1,1,1}$ to LFs w/ multisections, we need:



* Generalization of Lantern relation in $Mod(\Sigma_0^4)$.

♦ Construction of multisections

Apply the Lantern substitution at a, b and c, along the spheres (a), (b) and (c), respectively.

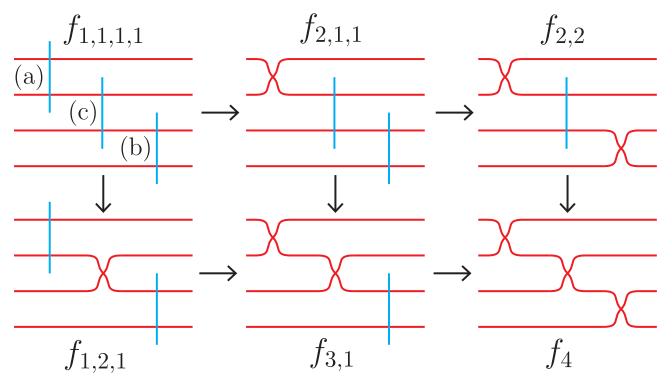
$$t_{\delta_4} t_{\delta_3} t_{\delta_2} t_{\delta_1} = (t_1 t_3 t_5 t_7 t_2 t_6 t_{a_1} t_{a_2} t_{b_1} t_{b_2} t_1 t_3 t_5 t_7 t_{b_1} t_{b_2} t_2 t_6)^2$$

$$\sim \underbrace{t_1 t_3 t_5 t_7}_{a} t_2 t_6 t_{a_1} t_{a_2} t_{b_1} t_{b_2} \underbrace{t_1 t_3 t_5 t_7}_{b} t_{b_1} t_{b_2} t_2 t_6$$

$$\cdot t_1 t_5 t_7 t_{t_3} (c_2) t_6 \underbrace{t_3 t_{a_1} t_{a_2} t_3}_{c} t_{b_1} t_{t_3}^{-1} (b_2) t_1 t_5 t_7 t_{b_1} t_{b_2} t_2 t_6.$$

$$(a) \qquad (b) \qquad (c)$$

* We can obtain LFs with multisections using the Lemma.



Red : multisections, Blue : spheres (a), (b) and (c).

- * The total space X' of $f_{2,2}$ is diffeomorphic to that of $f_{3,1}$. (cf. Gompf '95 and Endo '10)
- * All the multisections are spheres w/ self-intersection -1.

§.3 Applications

◊ Counterexamples to the Stipsicz's conjecture

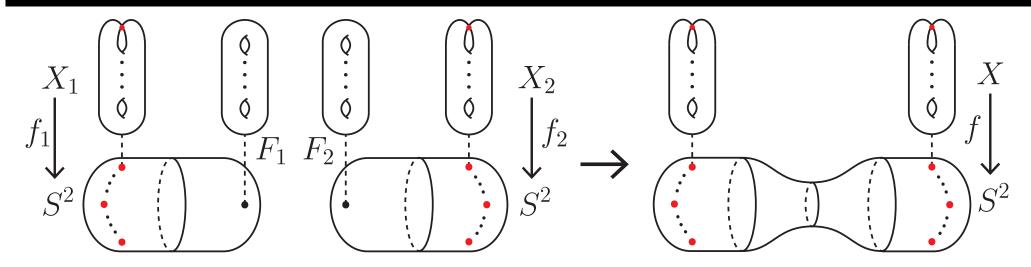
Definition

 $f_i: X_i
ightarrow S^2$: genus-g LF (i=1,2), $F_i \subset X_i$: reg. fiber

 $\Longrightarrow X = (X_1 \setminus
u F_1) \cup_arphi (X_2 \setminus
u F_2)$ admits a genus-g LF

 $(
u F_i : \text{tubular nbh. of } F_i, \ arphi : \partial
u F_1 o \partial
u F_2 : ext{diffeo.})$

 $f = f_1 \sharp_f f_2$: new LF is called a fiber-sum of f_1 and f_2



Definition

f : LF is fiber-sum indecomposable

 $\displaystyle \mathop{\Longleftrightarrow}_{\mathsf{def}} {}^{\nexists}f_i$: LF w/ critical pts. (i=1,2) s.t. $f=f_1 \sharp_f f_2$

Theorem (Stipsicz '00, Smith '01)

f : LF has a section w/ self-intersection -1

 $\implies f$ is fiber-sum indecomposable.

Conjecture (Stipsicz's Conjecture)

The converse is also true.

Theorem (Sato '08)

Stipsicz's conj. is false.

Precisely, \exists genus-2 LF s.t. • fiber-sum indecomposable.

• $\stackrel{\text{\tiny \ddagger}}{=}$ section w/ self-int. -1

Theorem (Baykur-H.)

 $f_{2,2} \& f_4$ are genus-3 counterex's to Stipsicz's conj.

- * Our examples are the first genus-3 counterexamples. (genus-2 LF in Sato's thm. was the only counterexample.)
- * We can further construct counterex's to Stipsicz's conj. **w/ arbitarary genus**- $g \ge 3$ in another way. (by examining spin structures on LPs. Baykur-Monden-H. in preparation)

Theorem (Sato '08)

$$f: X \to S^2$$
: genus- $g \ LF$, $F \subset X$: regular fiber
Suppose X is NOT rational or ruled (e.g. $b^+(X) \ge 3$).
 $\mathcal{E}_X = \left\{ [S] \in H_2(X; \mathbb{Z}) \mid \begin{array}{l} S \subset X : \text{sphere w/ self-int.} -1 \\ \omega|_S \ge 0 \end{array} \right\}$
Then, $|\mathcal{E}_X| < \infty$, $F \cdot e \ge 1$ for $\forall e \in \mathcal{E}_X$ and
 $\sum_{e \in \mathcal{E}_X} F \cdot e \le 2g - 2$.

* For $f_{2,2}: X_{2,2} o S^2$, $\mathcal{E}_{X_{2,2}} = \{E_1, E_2\}$ and $F \cdot E_1 = F \cdot E_2 = 2$. * For $f_4: X_4 o S^2$, $\mathcal{E}_{X_4} = \{E\}$ and $F \cdot E = 4$.

\diamond An exotic pair of surfaces in a 4-manifold

Theorem (Baykur-H.) $F_{i,j} \subset X'$: a regular fiber of $f_{i,j}$. • $(X', F_{2,2})$ and $(X', F_{3,1})$ are pairwise homeo, but not diffeo. • $\exists \omega_{i,j}$: symp. form s.t. $\begin{aligned} \omega_{i,j} \text{ makes } F_{i,j} \text{ symplectic,} \\ \omega_{2,2}, \omega_{3,1} \text{ : deformation equivalent.} \end{aligned}$

* Many exotic pairs are known.

(Finashin, Fintushel-Stern, Kim-Ruberman, Mark, etc.).

- some of them are known to be non-symplectic,
- none of them are proved to be symplectic.

* The second statement immediately follows from

Mcduff-Symington's result on Gompf's symplectic sums.

- * Existence of homeo.
- 1. Prove that $\pi_1(X' \setminus F_{i,j}) = 1$, $[F_{i,j}]$: NOT characteristic.
- 2. $\exists \phi$: automorphism of $H_2(X')$ s.t. $\phi(F_{2,2}) = F_{3,1}$ (Wall).
- 3. ϕ can be realized by a self-homeo. φ of X' (Freedman).
- 4. $X' \setminus F_{3,1}, X' \setminus \varphi(F_{2,2})$: simply connected, $[F_{3,1}] = [\varphi(F_{2,2})]$ $\implies \varphi(F_{2,2})$ and $F_{3,1}$ are topologically isotopic (Sunukujian).
 - * Non-existence of diffeo.
- 1. X': NOT rational or ruled. Thus $\forall \Phi : X' \xrightarrow{\cong} C^{\infty} X'$ preserves the homology classes E_1, E_2 of two exceptional spheres (Li).
- 2. $\{F_{3,1}\cdot E_1, F_{3,1}\cdot E_2\} = \{3,1\}$, while $\{F_{2,2}\cdot E_1, F_{2,2}\cdot E_2\} = \{2,2\}$.

Thank you for your attention!!

Summary

- Motivations to study multisections.
- The definition of Lefschetz fibrations.
- The definition of multisections.
- Relation between multisections and MCG.
- The braiding Lantern relation.
- Construction of Lefschetz fibrations with multisections.
- Counterexamples to the Stipsicz's conjecture.
- An exotic pair of surfaces in a 4-manifold.