Construction of Lefschetz fibrations and pencils via mapping class groups

Kenta Hayano (Keio University)

June 26, 2017 @ Boston University

Joint work w/ Refik İnanç Baykur (University of Massachusetts)

Construction of Lefschetz fibrations and pencils via mapping class groups

Kenta Hayano (Keio University)

June 26, 2017 @ Boston University

Joint work w/ Refik İnanç Baykur (University of Massachusetts)

Construction of Lefschetz fibrations A did via mapping class groups

Kenta Hayano (Keio University)

June 26, 2017 @ Boston University

Joint work w/ Refik İnanç Baykur (University of Massachusetts)

§.0 Outline of this talk

* What is a Lefschetz fibraion?
$\rightarrow f$ w/ good critical pt's

§.0 Outline of this talk

* What is a Lefschetz fibraion?
$\rightarrow f$ w/ good critical pt's
(called a Lefschetz singularity)
* What is a multisection?
$\rightarrow \boldsymbol{S}$: embedded surface s.t. $\left.f\right|_{S}$: simple branched cvr. (+ some conditions...)

§.0 Outline of this talk

* What is a Lefschetz fibraion?
$\rightarrow f$ w/ good critical pt's
(called a Lefschetz singularity)
* What is a multisection?
$\rightarrow \boldsymbol{S}$: embedded surface s.t. $\left.f\right|_{S}$: simple branched cvr. (+ some conditions...)

* Roughly speaking, we obtained the following correspondence:

| an LF |
| :---: | :---: |
| w/ a multisection |\longleftrightarrow| an equality |
| :---: |
| in a mapping class group |
| of a surface w / ∂ |

\diamond Why should we care LFs?

\Longrightarrow Roughly, LFs are related to symplectic topology:

- $f: X \rightarrow S^{2}:$ LF (w/crit. pt) \longrightarrow symplectic str. on \boldsymbol{X} (Gompf)
- symp. str. on $\boldsymbol{X} \longrightarrow$ LF on a blow-up of \boldsymbol{X} (Donaldson)

\diamond Why should we care LFs?

\Longrightarrow Roughly, LFs are related to symplectic topology:

- $\boldsymbol{f}: \boldsymbol{X} \rightarrow \boldsymbol{S}^{\mathbf{2}}:$ LF (w/crit. pt) \longrightarrow symplectic str. on \boldsymbol{X} (Gompf)
- symp. str. on $\boldsymbol{X} \longrightarrow$ LF on a blow-up of \boldsymbol{X} (Donaldson)
* LFs are originally studied in complex/algebraic geometry:
- $L \rightarrow \boldsymbol{X}$: very ample line bundle on a complex surface
\Longrightarrow generic pencil in $|\boldsymbol{L}|$ is a Lefschetz pencil.
- Elliptic fibrations w/o multiple fibers are typical ex's of LFs.

\diamond Why should we care multisections?

1. Multisections are related to smooth invariants of 4 -mfd's.
(Taubes, Donaldson-Smith, Usher)
2.

\diamond Why should we care multisections?

1. Multisections are related to smooth invariants of 4 -mfd's.
(Taubes, Donaldson-Smith, Usher)
2. In some sense, multisections reflect the topology of an LF. Indeed, using multisections we can:

- construct counterex's to "the Stipsicz conjecture" on LFs.
- construct an exotic pair of surfaces in a 4-manifold.
- construct pairs of non-isomorphic LFs.
- construct exotic pairs of LPs.
\diamond Why should we care multisections?

1. Multisections are related to smooth invariants of 4 -mfd's.
(Taubes, Donaldson-Smith, Usher)
2. In some sense, multisections reflect the topology of an LF. Indeed, using multisections we can:

- construct counterex's to "the Stipsicz conjecture" on LFs.
- construct an exotic pair of surfaces in a 4-manifold.
- construct pairs of non-isomorphic LFs.
- construct exotic pairs of LPs.

\diamond Plan of this talk

§. 1 Multisections and mapping class groups
§. 2 Examples of LF with multisections
§. 3 Applications

* We will assume
- Manifolds : closed, smooth, oriented, connected.
- Maps between manifolds : smooth.
unless otherwise noted.
§.1 Multisections and mapping class groups
$f: X^{4} \rightarrow S^{2}, \operatorname{Crit}(f):=\left\{x \in X \mid d f_{x}:\right.$ NOT surj. $\}$
Definition $f: X^{4} \rightarrow S^{2}$ is a Lefschetz fibration (LF) if:
(a) ${ }^{\forall} \boldsymbol{q} \in \operatorname{Crit}(f), f(z, w)=z^{2}+w^{2}$ under some complex coordinates around $q \& f(q)$ compatible with orientations.
(b) $\left.f\right|_{\text {Crit }(f)}$: injective.
(c) No fibers contain spheres with self-intersection $\mathbf{- 1}$.

The genus of a regular fiber is the genus of f.

Definition $f: X \rightarrow S^{2}$: genus- g LF
$\boldsymbol{S} \subset \boldsymbol{X}:$ embedded surface is a multisection or p-section if:
(a) $\left.f\right|_{S}$: a p-fold simple branched cover.
(b) ${ }^{\forall} \boldsymbol{q} \notin \operatorname{Crit}(\boldsymbol{f})$: branched point of $\left.\boldsymbol{f}\right|_{S}$ is positive
(c) \boldsymbol{S} is compatible with Lefschetz singularities

Definition $f: X \rightarrow S^{2}$: genus- g LF
$\boldsymbol{S} \subset \boldsymbol{X}:$ embedded surface is a multisection or p-section if:
(a) $\left.\boldsymbol{f}\right|_{S}$: a \boldsymbol{p}-fold simple branched cover.
(b) ${ }^{\forall} \boldsymbol{q} \notin \operatorname{Crit}(\boldsymbol{f})$: branched point of $\left.\boldsymbol{f}\right|_{S}$ is positive i.e. $d f_{q}: N S_{q} \rightarrow T_{f(q)} S^{2}$ preserves the orientations.
($N S$: normal bundle of S)
(\Longleftrightarrow the monodromy around $f(q)$ is a positive half twist.)
(c) S is compatible with Lefschetz singularities i.e. ${ }^{\forall} \boldsymbol{q} \in S \cap \operatorname{Crit}(f),{ }^{\exists}(\boldsymbol{U}, \boldsymbol{(})$ (V, $)$) complex coordinates of $\boldsymbol{S}^{\boldsymbol{X}}$ at ${ }_{\boldsymbol{f}(\boldsymbol{q})}^{\boldsymbol{q}}$ s.t.

$$
\begin{aligned}
& (U, U \cap S) \xrightarrow{\varphi}\left(\mathbb{C}^{2}, \Delta_{\mathbb{C}^{2}}\right) \\
& \quad \downarrow \downarrow
\end{aligned} \quad \downarrow(z, w) \mapsto z w, \text { where } \Delta_{\mathbb{C}^{2}}=\left\{(z, z) \in \mathbb{C}^{2}\right\}
$$

$$
V \quad \xrightarrow{\psi} \quad \mathbb{C}
$$

\diamond Mapping class groups

$\operatorname{Diff}^{+}\left(\Sigma_{g}^{p} ; \boldsymbol{U}\right)=\left\{\boldsymbol{T}: \Sigma_{g}^{p} \cong{ }_{\boldsymbol{g}}^{\cong}: \left.\begin{array}{c}\text { orientation } \\ \text { preserving }\end{array} \right\rvert\, \boldsymbol{T}(\boldsymbol{U})=\boldsymbol{U}\right\}$
$\operatorname{Mod}\left(\Sigma_{g}^{p} ; U\right)=\pi_{0}\left(\operatorname{Diff}^{+}\left(\Sigma_{g}^{p} ; U\right)\right)$

\diamond Mapping class groups

$\operatorname{Diff}^{+}\left(\Sigma_{\boldsymbol{g}}^{p} ; U\right)=\left\{\boldsymbol{T}: \Sigma_{\boldsymbol{g}}^{p} \cong \Sigma_{\boldsymbol{g}}^{p}: \left.\begin{array}{l}\text { orientation } \\ \text { preserving }\end{array} \right\rvert\, \boldsymbol{T}(\boldsymbol{U})=\boldsymbol{U}\right\}$
$\operatorname{Mod}\left(\Sigma_{g}^{p} ; U\right)=\pi_{0}\left(\operatorname{Diff}^{+}\left(\Sigma_{g}^{p} ; U\right)\right)$
Remarks for experts of MCGs...

- $\varphi \in \operatorname{Diff}^{+}\left(\Sigma_{g}^{p} ; \boldsymbol{U}\right)$ may interchange $\boldsymbol{\partial}$-comp's, in contrast with usual MCGs of surfaces $w / \boldsymbol{\partial}$.
- $\boldsymbol{t}_{\boldsymbol{\delta}_{\boldsymbol{i}}} \in \operatorname{Mod}\left(\boldsymbol{\Sigma}_{\boldsymbol{g}}^{p} ; \boldsymbol{U}\right)$ is not trivial since an isotopy has to preserve $\boldsymbol{u}_{\boldsymbol{i}}$.
\diamond Important elements in $\operatorname{Mod}\left(\Sigma_{\boldsymbol{g}}^{\boldsymbol{p}} ; \boldsymbol{U}\right)$

1. $\boldsymbol{t}_{\boldsymbol{c}} \in \operatorname{Mod}\left(\Sigma_{g}^{p} ; \boldsymbol{U}\right)$
for $c \subset \operatorname{Int}\left(\Sigma_{\boldsymbol{g}}^{\boldsymbol{p}}\right): \begin{aligned} & \text { simple closed } \\ & \text { curve }\end{aligned}$

\diamond Important elements in $\operatorname{Mod}\left(\Sigma_{\boldsymbol{g}}^{\boldsymbol{p}} ; \boldsymbol{U}\right)$
2. $\boldsymbol{t}_{\boldsymbol{c}} \in \operatorname{Mod}\left(\Sigma_{g}^{p} ; \boldsymbol{U}\right)$
for $c \subset \operatorname{Int}\left(\Sigma_{\boldsymbol{g}}^{\boldsymbol{p}}\right): \begin{aligned} & \text { simple closed } \\ & \text { curve }\end{aligned}$
3. $\tau_{\gamma} \in \operatorname{Mod}\left(\Sigma_{g}^{p} ; U\right)$
for $\gamma \subset \Sigma_{g}^{p}: \begin{aligned} & \text { path between } \\ & \partial \text {-comp's }\end{aligned}$

t_{C}

$\diamond \operatorname{Important}$ elements in $\operatorname{Mod}\left(\Sigma_{\boldsymbol{g}}^{\boldsymbol{p}} ; \boldsymbol{U}\right)$
4. $\boldsymbol{t}_{c} \in \operatorname{Mod}\left(\Sigma_{g}^{p} ; \boldsymbol{U}\right)$
for $c \subset \operatorname{Int}\left(\Sigma_{g}^{p}\right): \begin{aligned} & \text { simple closed } \\ & \text { curve }\end{aligned}$
5. $\tau_{\gamma} \in \operatorname{Mod}\left(\Sigma_{g}^{p} ; \boldsymbol{U}\right)$
for $\gamma \subset \Sigma_{g}^{p}: \begin{aligned} & \text { path between } \\ & \partial \text {-comp's }\end{aligned}$
6. $\tilde{\boldsymbol{t}_{c}} \in \operatorname{Mod}\left(\Sigma_{g}^{p} ; \boldsymbol{U}\right)$
for $c \subset \Sigma_{g}^{p}: \begin{aligned} & \text { pair of paths } \\ & \text { between } \partial \text {-comp's }\end{aligned}$

Theorem (Baykur-H.)

From an equality

$$
\begin{equation*}
\tau_{\gamma_{1}} \cdots \tau_{\gamma_{k}} \cdot \widetilde{t_{c_{1}}} \cdots \widetilde{t_{c_{r}}} \cdot t_{c_{r+1}} \cdots t_{c_{l}}=t_{\delta_{1}}^{a_{1}} \cdots t_{\delta_{p}}^{a_{p}} \tag{1}
\end{equation*}
$$

in $\operatorname{Mod}\left(\Sigma_{\boldsymbol{g}}^{\boldsymbol{p}} ; \boldsymbol{U}\right)$, we can construct

- $f: X \rightarrow S^{2}$: genus- g LF,

1. \boldsymbol{k} branched points away from $\operatorname{Crit}(f)$ branched points in $\operatorname{Crit}(f)$,

- S : \boldsymbol{p}-sec. w/ r

2. self-intersection $-\left(\Sigma_{i=1}^{p} a_{i}\right)+2 k+r$.

* Conversely, a monodromy of $f \& S$ yields the equality (1). * Generalization of Kas ('80) \& Matsumoto ('96)'s result. (for Lefschetz fibrations without multisections)

§. 2 Examples of LF with multisections

Example (Baykur-H.) The following holds in $\operatorname{Mod}\left(\Sigma_{3}^{4} ; U\right)$:

$$
\left(t_{1} t_{3} t_{5} t_{7} t_{2} t_{6} t_{a_{1}} t_{a_{2}} t_{b_{1}} t_{b_{2}} t_{1} t_{3} t_{5} t_{7} t_{b 1} t_{b_{2}} t_{2} t_{6}\right)^{2}=t_{\delta_{1}} t_{\delta_{2}} t_{\delta_{3}} t_{\delta_{4}}
$$

${ }^{*}{ }^{\exists} f_{1,1,1,1}: X \rightarrow S^{2}:$ genus-3 LF with four (disjoint) sections.
(these are NOT multisections so far...)

* X is homeomorphic to $\mathrm{K} 3 \sharp 4 \overline{\mathbb{C P}^{2}}$.
* To modify $f_{1,1,1,1}$ to LFs $w /$ multisections, we need:

Lemma (Baykur-H.) The following holds in $\operatorname{Mod}\left(\Sigma_{0}^{6} ; U\right)$:

$$
t_{\delta_{2}}^{-1} \widetilde{t_{z}} t_{x} \tilde{t_{y}}=t_{a} t_{b} t_{c} t_{d}
$$

* Generalization of Lantern relation in $\operatorname{Mod}\left(\Sigma_{0}^{4}\right)$.

\diamond Construction of multisections

Apply the Lantern substitution at a, b and c, along the spheres (a), (b) and (c), respectively.
$t_{\delta_{4}} t_{\delta_{3}} t_{\delta_{2}} t_{\delta_{1}}=\left(t_{1} t_{3} t_{5} t_{7} t_{2} t_{6} t_{a_{1}} t_{a_{2}} t_{b_{1}} t_{b_{2}} t_{1} t_{3} t_{5} t_{7} t_{b 1} t_{b_{2}} t_{2} t_{6}\right)^{2}$ $\sim \underbrace{t_{1} t_{3} t_{5} t_{7}}_{a} t_{2} t_{6} t_{a_{1}} t_{a_{2}} t_{b_{1}} t_{b_{2}} \underbrace{t_{1} t_{3} t_{5} t_{7}}_{b} t_{b_{1}} t_{b_{2}} t_{2} t_{6}$

- $t_{1} t_{5} t_{7} t_{t_{3}\left(c_{2}\right)} t_{6} \underbrace{t_{3} t_{a_{1}} t_{a_{2}} t_{3}}_{c} t_{b_{1}} t_{t_{3}^{-1}\left(b_{2}\right)} t_{1} t_{5} t_{7} t_{b_{1}} t_{b_{2}} t_{2} t_{6}$.

(a)

(b)

* We can obtain LFs with multisections using the Lemma.

Red : multisections, Blue : spheres (a), (b) and (c).

* The total space X^{\prime} of $f_{2,2}$ is diffeomorphic to that of $f_{3,1}$. (cf. Gompf '95 and Endo '10)
* All the multisections are spheres $\mathrm{w} /$ self-intersection -1 .

§. 3 Applications

\diamond Counterexamples to the Stipsicz's conjecture

Definition

$f_{i}: X_{i} \rightarrow S^{2}$: genus- $g \operatorname{LF}(i=1,2), F_{i} \subset X_{i}$: reg. fiber $\Longrightarrow X=\left(X_{1} \backslash \nu F_{1}\right) \cup_{\varphi}\left(\boldsymbol{X}_{2} \backslash \boldsymbol{\nu} \boldsymbol{F}_{2}\right)$ admits a genus- \boldsymbol{g} LF (νF_{i} : tubular nbh. of $F_{i}, \varphi: \partial \nu F_{1} \rightarrow \partial \nu F_{2}:$ diffeo.) $f=f_{1} \sharp_{f} f_{2}$: new LF is called a fiber-sum of f_{1} and f_{2}

Definition

f : LF is fiber-sum indecomposable
$\underset{\text { def }}{\Longleftrightarrow}{ }^{\nexists} f_{i}$: LF w/ critical pts. $(i=1,2)$ s.t. $f=f_{1} \sharp_{f} f_{2}$
Theorem (Stipsicz '00, Smith '01)
f : LF has a section $w /$ self-intersection -1
$\Longrightarrow f$ is fiber-sum indecomposable.
Conjecture (Stipsicz's Conjecture)
The converse is also true.

Theorem (Sato '08)

Stipsicz's conj. is false.
Precisely, ${ }^{\exists}$ genus-2 LF s.t. - fiber-sum indecomposable.

- ${ }^{\ddagger}$ section $w /$ self-int. -1

Theorem (Baykur-H.)

$f_{2,2} \& f_{4}$ are genus- 3 counterex's to Stipsicz's conj.

* Our examples are the first genus-3 counterexamples. (genus-2 LF in Sato's thm. was the only counterexample.)
* We can further construct counterex's to Stipsicz's conj. w/ arbitarary genus- $g \geq 3$ in another way.
(by examining spin structures on LPs. Baykur-Monden-H. in preparation)

Theorem (Sato '08)

$\boldsymbol{f}: \boldsymbol{X} \rightarrow \boldsymbol{S}^{\mathbf{2}}$: genus- \boldsymbol{g} LF, $\boldsymbol{F} \subset \boldsymbol{X}:$ regular fiber Suppose \boldsymbol{X} is NOT rational or ruled (e.g. $\boldsymbol{b}^{+}(\boldsymbol{X}) \geq 3$). $\mathcal{E}_{\boldsymbol{X}}=\left\{\begin{array}{l|l}{[\boldsymbol{S}] \in \boldsymbol{H}_{2}(\boldsymbol{X} ; \mathbb{Z})} & \begin{array}{l}\boldsymbol{S} \subset \boldsymbol{X}: \text { sphere w/ self-int. }-1 \\ \left.\boldsymbol{\omega}\right|_{S} \geq \mathbf{0}\end{array}\end{array}\right\}$
Then, $\left|\mathcal{E}_{\boldsymbol{X}}\right|<\infty, \boldsymbol{F} \cdot \boldsymbol{e} \geq \mathbf{1}$ for ${ }^{\forall} \boldsymbol{e} \in \mathcal{E}_{\boldsymbol{X}}$ and

$$
\sum_{e \in \mathcal{E}_{X}} F \cdot e \leq 2 g-2
$$

* For $f_{2,2}: \boldsymbol{X}_{2,2} \rightarrow \boldsymbol{S}^{2}, \mathcal{E}_{\boldsymbol{X}_{2,2}}=\left\{\boldsymbol{E}_{1}, \boldsymbol{E}_{2}\right\}$ and $\boldsymbol{F} \cdot \boldsymbol{E}_{1}=\boldsymbol{F} \cdot \boldsymbol{E}_{2}=\mathbf{2}$. * For $f_{4}: X_{4} \rightarrow S^{2}, \mathcal{E}_{X_{4}}=\{E\}$ and $\boldsymbol{F} \cdot \boldsymbol{E}=4$.

\diamond An exotic pair of surfaces in a 4-manifold

Theorem (Baykur-H.) $\boldsymbol{F}_{i, j} \subset \boldsymbol{X}^{\prime}:$ a regular fiber of $\boldsymbol{f}_{i, j}$.

- $\left(\boldsymbol{X}^{\prime}, \boldsymbol{F}_{2,2}\right)$ and $\left(\boldsymbol{X}^{\prime}, \boldsymbol{F}_{3,1}\right)$ are pairwise homeo, but not diffeo.
- ${ }^{\exists} \omega_{i, j}$: symp. form s.t. $\omega_{i, j}$ makes $F_{i, j}$ symplectic,
$\omega_{2,2}, \omega_{3,1}$: deformation equivalent.
* Many exotic pairs are known.
(Finashin, Fintushel-Stern, Kim-Ruberman, Mark, etc.).
However,
- some of them are known to be non-symplectic,
- none of them are proved to be symplectic.
* The second statement immediately follows from Mcduff-Symington's result on Gompf's symplectic sums.
* Existence of homeo.

1. Prove that $\boldsymbol{\pi}_{1}\left(\boldsymbol{X}^{\prime} \backslash \boldsymbol{F}_{i, j}\right)=\mathbf{1},\left[\boldsymbol{F}_{i, j}\right]$: NOT characteristic.
2. ${ }^{\exists} \phi$: automorphism of $\boldsymbol{H}_{2}\left(\boldsymbol{X}^{\prime}\right)$ s.t. $\phi\left(\boldsymbol{F}_{2,2}\right)=\boldsymbol{F}_{3,1}$ (Wall).
3. ϕ can be realized by a self-homeo. φ of \boldsymbol{X}^{\prime} (Freedman).
4. $\boldsymbol{X}^{\prime} \backslash \boldsymbol{F}_{3,1}, \boldsymbol{X}^{\prime} \backslash \varphi\left(\boldsymbol{F}_{2,2}\right)$: simply connected, $\left[\boldsymbol{F}_{3,1}\right]=\left[\varphi\left(\boldsymbol{F}_{2,2}\right)\right]$ $\Longrightarrow \varphi\left(F_{2,2}\right)$ and $F_{3,1}$ are topologically isotopic (Sunukujian).

* Non-existence of diffeo.

1. X^{\prime} : NOT rational or ruled. Thus ${ }^{\forall} \Phi: X^{\prime} \xrightarrow[C^{\infty}]{\cong} X^{\prime}$ preserves the homology classes $\boldsymbol{E}_{1}, \boldsymbol{E}_{2}$ of two exceptional spheres (Li).
2. $\left\{F_{3,1} \cdot E_{1}, F_{3,1} \cdot E_{2}\right\}=\{3,1\}$, while $\left\{F_{2,2} \cdot \boldsymbol{E}_{1}, F_{2,2} \cdot E_{2}\right\}=\{2,2\}$.

Thank you for your attention!!

Summary

- Motivations to study multisections.
- The definition of Lefschetz fibrations.
- The definition of multisections.
- Relation between multisections and MCG.
- The braiding Lantern relation.
- Construction of Lefschetz fibrations with multisections.
- Counterexamples to the Stipsicz's conjecture.
- An exotic pair of surfaces in a 4-manifold.

