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§.0 Outline of this talk

∗What is a Lefschetz fibraion?

→ f w/ good critical pt’s

(called a Lefschetz singularity)

∗ What is a multisection?

→ S : embedded surface s.t.

f |S : simple branched cvr.

(+ some conditions...)

∗ Roughly speaking, we obtained the following correspondence:

an LF

w/ a multisection
←→

an equality

in a mapping class group

of a surface w/ ∂
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♦ Why should we care LFs?
=⇒Roughly, LFs are related to symplectic topology:

• f : X → S2 : LF (w/ crit. pt)−→ symplectic str. on X (Gompf)

• symp. str. on X −→ LF on a blow-up of X (Donaldson)

∗ LFs are originally studied in complex/algebraic geometry:

• L→ X : very ample line bundles on a complex surface

=⇒ generic pencil in |L| is a Lefschetz pencil.

• Elliptic fibrations w/o multiple fibers are typical ex’s of LFs.
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♦ Why should we care multisections?

1. Multisections are related to smooth invariants of 4-mfd’s.

(Taubes, Donaldson-Smith, Usher)

2. In some sense, multisections reflect the topology of an LF.

Indeed, using multisections we can:

• construct counterex’s to “the Stipsicz conjecture” on LFs.

• construct an exotic pair of surfaces in a 4-manifold.

• construct pairs of non-isomorphic LFs.

• construct exotic pairs of LPs.
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♦ Plan of this talk

§.1 Multisections and mapping class groups

§.2 Examples of LF with multisections

§.3 Applications

∗ We will assume

– Manifolds : closed, smooth, oriented, connected.

– Maps between manifolds : smooth.

unless otherwise noted.



§.1 Multisections and mapping class groups

f : X4→ S2, Crit(f) := {x ∈ X | dfx : NOT surj.}

Definition f : X4→ S2 is a Lefschetz fibration (LF) if:

(a) ∀q ∈ Crit(f), f(z, w) = z2 + w2 under some complex

coordinates around q & f(q) compatible with orientations.

(b) f |Crit(f) : injective.

(c) No fibers contain spheres with self-intersection −1.

The genus of a regular fiber is the genus of f .



Definition f : X → S2 : genus-g LF

S ⊂ X : embedded surface is a multisection or p-section if:

(a) f |S : a p-fold simple branched cover.

(b) ∀q /∈ Crit(f) : branched point of f |S is positive

i.e. dfq : NSq → Tf(q)S
2 preserves the orientations.

(NS : normal bundle of S)

(⇐⇒ the monodromy around f(q) is a positive half twist.)

(c) S is compatible with Lefschetz singularities

i.e. ∀q ∈ S ∩Crit(f),
∃(U,ϕ)
∃(V, ψ)

: complex coordinates of
X

S2 at
q

f(q)
s.t.

(U,U ∩ S)
ϕ−→ (C2,∆C2)

f

y y(z,w) 7→zw

V
ψ−→ C

, where ∆C2 = {(z, z) ∈ C2}
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♦ Mapping class groups

Σ
p
g =

U = {u1, . . . , up}

δi ⊂ Σ
p
g :

simple closed curve

along ∂Σ
p
g

Diff+(Σ
p
g;U) =

{
T : Σ

p
g
∼=−→ Σ

p
g :

orientation
preserving

∣∣∣∣ T (U) = U

}
Mod(Σ

p
g;U) = π0(Diff+(Σ

p
g;U))

Remarks for experts of MCGs...

• ϕ ∈ Diff+(Σ
p
g;U) may interchange ∂-comp’s, in contrast with usual MCGs

of surfaces w/ ∂.

• tδi ∈Mod(Σ
p
g;U) is not trivial since an isotopy has to preserve ui.
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♦ Important elements in Mod(Σ
p
g;U)

1. tc ∈Mod(Σ
p
g;U)

for c ⊂ Int(Σ
p
g) :

simple closed
curve

2. τγ ∈Mod(Σ
p
g;U)

for γ ⊂ Σ
p
g :

path between
∂-comp’s

3. t̃c ∈Mod(Σ
p
g;U)

for c ⊂ Σ
p
g :

pair of paths
between ∂-comp’s
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Theorem (Baykur-H.)

From an equality

τγ1 · · · τγk · t̃c1 · · · t̃cr · tcr+1 · · · tcl = t
a1
δ1
· · · tapδp (1)

in Mod(Σ
p
g;U), we can construct

• f : X → S2 : genus-g LF,

• S : p-sec. w/
1.
k

r
branched points

away from Crit(f)

in Crit(f),

2. self-intersection −(Σ
p
i=1ai) + 2k + r.

∗ Conversely, a monodromy of f & S yields the equality (1).

∗ Generalization of Kas (’80) & Matsumoto (’96)’s result.

(for Lefschetz fibrations without multisections)



§.2 Examples of LF with multisections

Example (Baykur-H.) The following holds in Mod(Σ4
3;U):

(t1t3t5t7t2t6ta1ta2tb1
tb2
t1t3t5t7tb1tb2

t2t6)2 = tδ1
tδ2
tδ3
tδ4
.

∗ ∃f1,1,1,1 : X → S2 : genus-3 LF with four (disjoint) sections.

(these are NOT multisections so far...)

∗ X is homeomorphic to K3]4CP2.



∗ To modify f1,1,1,1 to LFs w/ multisections, we need:

Lemma (Baykur-H.) The following holds in Mod(Σ6
0;U):

t−1
δ2
t̃ztxt̃y = tatbtctd.

∗ Generalization of Lantern relation in Mod(Σ4
0).



♦ Construction of multisections

Apply the Lantern substitution at a, b and c, along the spheres

(a), (b) and (c), respectively.

tδ4
tδ3
tδ2
tδ1

=(t1t3t5t7t2t6ta1ta2tb1
tb2
t1t3t5t7tb1tb2

t2t6)2

∼ t1t3t5t7︸ ︷︷ ︸
a

t2t6ta1ta2tb1
tb2
t1t3t5t7︸ ︷︷ ︸

b

tb1
tb2
t2t6

· t1t5t7tt3(c2)t6 t3ta1ta2t3︸ ︷︷ ︸
c

tb1
t
t−1
3 (b2)

t1t5t7tb1
tb2
t2t6.



∗ We can obtain LFs with multisections using the Lemma.

Red : multisections, Blue : spheres (a), (b) and (c).

∗ The total space X′ of f2,2 is diffeomorphic to that of f3,1.

(cf. Gompf ’95 and Endo ’10)

∗ All the multisections are spheres w/ self-intersection −1.



§.3 Applications

♦ Counterexamples to the Stipsicz’s conjecture
Definition

fi : Xi→ S2 : genus-g LF (i = 1, 2), Fi ⊂ Xi : reg. fiber

=⇒ X = (X1 \ νF1) ∪ϕ (X2 \ νF2) admits a genus-g LF

(νFi : tubular nbh. of Fi, ϕ : ∂νF1→ ∂νF2 : diffeo.)

f = f1]ff2 : new LF is called a fiber-sum of f1 and f2



Definition

f : LF is fiber-sum indecomposable

⇐⇒
def

@fi : LF w/ critical pts. (i = 1, 2) s.t. f = f1]ff2

Theorem (Stipsicz ’00, Smith ’01)

f : LF has a section w/ self-intersection −1

=⇒ f is fiber-sum indecomposable.

Conjecture (Stipsicz’s Conjecture)

The converse is also true.



Theorem (Sato ’08)

Stipsicz’s conj. is false.

Precisely, ∃genus-2 LF s.t. • fiber-sum indecomposable.

• @section w/ self-int. −1

Theorem (Baykur-H.)

f2,2 & f4 are genus-3 counterex’s to Stipsicz’s conj.

∗ Our examples are the first genus-3 counterexamples.

(genus-2 LF in Sato’s thm. was the only counterexample.)

∗ We can further construct counterex’s to Stipsicz’s conj.

w/ arbitarary genus-g ≥ 3 in another way.

(by examining spin structures on LPs. Baykur-Monden-H. in preparation)



Theorem (Sato ’08)

f : X → S2 : genus-g LF, F ⊂ X : regular fiber

Suppose X is NOT rational or ruled (e.g. b+(X) ≥ 3).

EX =

{
[S] ∈ H2(X;Z)

∣∣∣∣ S ⊂ X : sphere w/ self-int. − 1

ω|S ≥ 0

}
Then, |EX| <∞, F · e ≥ 1 for ∀e ∈ EX and∑

e∈EX

F · e ≤ 2g − 2.

∗ For f2,2 : X2,2→ S2, EX2,2
= {E1, E2} and F ·E1 = F ·E2 = 2.

∗ For f4 : X4→ S2, EX4
= {E} and F · E = 4.



♦ An exotic pair of surfaces in a 4-manifold

Theorem (Baykur-H.) Fi,j ⊂ X′ : a regular fiber of fi,j.

• (X′, F2,2) and (X′, F3,1) are pairwise homeo, but not diffeo.

• ∃ωi,j : symp. form s.t.
ωi,j makes Fi,j symplectic,

ω2,2, ω3,1 : deformation equivalent.

∗ Many exotic pairs are known.

(Finashin, Fintushel-Stern, Kim-Ruberman, Mark, etc.).

However,
– some of them are known to be non-symplectic,

– none of them are proved to be symplectic.

∗ The second statement immediately follows from

Mcduff-Symington’s result on Gompf’s symplectic sums.



∗ Existence of homeo.

1. Prove that π1(X′ \ Fi,j) = 1, [Fi,j] : NOT characteristic.

2. ∃φ : automorphism of H2(X′) s.t. φ(F2,2) = F3,1 (Wall).

3. φ can be realized by a self-homeo. ϕ of X′ (Freedman).

4. X′ \ F3,1, X
′ \ ϕ(F2,2) : simply connected, [F3,1] = [ϕ(F2,2)]

=⇒ ϕ(F2,2) and F3,1 are topologically isotopic (Sunukujian).

∗ Non-existence of diffeo.

1. X′ : NOT rational or ruled. Thus ∀Φ : X′
∼=−−→
C∞

X′ preserves

the homology classes E1, E2 of two exceptional spheres (Li).

2. {F3,1·E1, F3,1·E2} = {3, 1}, while {F2,2·E1, F2,2·E2} = {2, 2}.



Thank you for your attention!!

Summary

• Motivations to study multisections.

• The definition of Lefschetz fibrations.

• The definition of multisections.

• Relation between multisections and MCG.

• The braiding Lantern relation.

• Construction of Lefschetz fibrations with multisections.

• Counterexamples to the Stipsicz’s conjecture.

• An exotic pair of surfaces in a 4-manifold.


