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Abstract

As preparation for my presentation, we review the
theory of framed curves 1n the Euclidean space. A
framed curve 1s a space curve with a moving frame
which may have singular points. The curvature of
a framed curve 1s quite useful to analyse the framed
curve and 1ts singularities. In fact, we obtained the ex-
i1stence and the uniqueness for framed curves. As ap-
plications, we consider basic properties and some de-
velopable surfaces which come from framed curves.

1 Introduction

We define the orthogonal (n — 1)-frame in R”
Vin-1={v € STk xSy v;=0},

where v = (vy,...,v,_1)and e #£ j, 1,7 =1,...,n—1.

Definition 1.1. We say that (v,v) : I — R"xV,,,,_4
is a framed curve if ¥ (¢)-v;(t) = Ofor allt € [ and
1=1,....,n— 1.

Definition 1.2. We say that v : /| — R" is a framed
base curve if there exists v : [ — V), ,,_; such that
(7, v) is a framed curve.

e Moving frame along ~(%):

w(t), u(t)},

where p(t) = vy(t) X - -+ X v, _1(1).

¢ Frenet-Serret type formula:

(i) =40 (3 )

where A(t) = (a(t)) € o(n) forij = 1,...,n.
Moreover, there exists a smooth function a : [ —
R such that

Y(t) = alt)p(t).
We call the functions (o;;(t), a(t)) the curvature
of the framed curve (with respect to the parameter

t).

Definition 1.3.Let (v,v) and (v,v) : [ — R" X
Vin—1 be framed curves. We say that (v,v) and
(7, V) are (positive) congruent as framed curves if
there exists a matrix X € SO(n) and a constant
vector x € R" such that

V(t) = X(v(t) +z, v(t) = A(v(?))

forallt € I.

Then we have the following the existence and the
uniqueness theorems similar to the cases of regular
space curves.

Theorem 1.4 (The Existence Theorem, [1]).

Let (a;,a) : I — o(n) x R be a smooth map-
ping. There exists a framed curve (vy,v) : [ —
R"™ x V,, ,—1 whose associated curvature is (o;;, ).

Theorem 1.5 (The Uniqueness Theorem, [1]).

Let (v,v)and (v,v) : I — R" x V,,,,_; be framed
curves whose curvatures («o;;, «) and (q;;, @) co-
incide. Then (v,v) and (v,v) are congruent as
framed curves.

By using the theory of framed curve, we can con-
sider differential geometry of curves with singular
points.

2 Framed curves in R’ x V35

Let (,v1,1) : I — R’ x V35 be a framed curve and
p(t) = vi(t) X vo(t). The Frenet-Serret type formula
1s given by

(1) 0 (b)) m)\ [wlt)
i) | = —etr) 0 n@) || w) ],
p(?) —m(t) —n(t) 0 p(t)

where £(t) = vy(t) - vo(t), m(t) = v(t) - u(t) and
n(t) = o(t) - pu(t). Moreover, there exists a smooth
function « : I — R such that

V() = alt)p(t).

Example 2.1.Let v : [ — R’ be a regular curve with
linear independent condition, namely, ~(¢) and ~(?)
are linear independent for all ¢t € I. Then~ : I — R’
1s a framed base curve. This means that framed base
curves are generalization of regular curves.

Proposition 2.2 ([1]).Let v : (I,%;) — R’ be an
analytic germ. Then ~ is a framed base curve.
Namely, there exists a germ (v, v») : (I, %)) — V35
such that (v, vy, 1) : (I,t)) — R°x V3, is a framed
curve.

In addition, we 1investigated the following properties
of general framed curves in [1, 2]:

e Frame change (rotated frame and reflected frame).
¢ Projection to plane and Legendre curve.
e Contact between framed curves. etc...

In general, the moving frame of a framed curve does
not have geometric meaning. However, we can con-
sider a moving frame with geometric meaning under
a certain condition.

Definition 2.3. We say that v : I — R’ is a
Frenet-type framed base curve if there exist a reg-
ular spherical curve t : I — S” and a function
« : I — R such that v(t) = a(t)t(t) for all t € 1.
Then we call £(¢) a unit tangent vector and «(t) a
speed function of ~(%).

¢ Frenet-type frame:

(1), n(t), b(t)},
where n(t) = t(t)/||t(t)|| and b(t) = t(t) x n(?).

¢ Frenet-Serret type formula:

[ i(t) ) 0wt 0\ [t

nt) | = —kt) 0 (1) n(t) |,

\b(t)/ 0 —7(t) 0 b(t)
where

w(0) = i), 7(t) = SR

We call x(t) the curvature and 7(t) the torsion of
~ with .

Frenet-type frame 1s natural generalization of Frenet-
frame for a regular space curve with linear indepen-
dent condition. We can easily check that (v, n,b) :
[ — R’ x V3, is a framed curve, so that we can apply
the theory of framed curves.

We cannot define the rectifying developable sur-
face in 33 without the notion of Frenet-type
frame.

3 Applications

In this section, we roughly consider applications by
using figures of specific examples.
e Evolute and Focal developable surface of Frenet-
type framed base curve (ct. [2]):

(b)

Figure 1: (a) is the the astroid (blue curve) and its
evolute (red curve). (b) is the focal developable sur-
face of the astroid.

e Osculating developable surface of frontal curve
on surface (ctf. [4]):

(d)

Figure 2: (¢) 1s a regular surface and a frontal curve
on the surface. (d) 1s osculating developable surface
along the curve. In this case, the curve i1s a contour
generator with respect to an orthogonal projection.

e Rectifying developable surface of Frenet-type
framed base curve and framed helix (ctf. [3]):

Qx(

(e) (1)
Figure 3: (e) is the astroid. We can easily check that
the astroid 1s a framed helix. (f) 1s the rectifying de-
velopable surface of the curve. In this case, the sur-
face 1s a cylinder.

In my presentation, I’ll talk about the geomet-
ric meaning of Frenet-type frame, the detail of the

rectifying developable surface and framed helix.
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