A fixed-point property of random groups
 joint work with
 Takefumi Kondo and Shin Nayatani

Hiroyasu Izeki
izeki@math.keio.ac.jp

Keio University

Kazhdan's property (T)

Γ : finitely generated group
\mathcal{H} : Hilbert space
Isom (\mathcal{H}) : isometry group of \mathcal{H}

Kazhdan's property (T)

Γ : finitely generated group
\mathcal{H} : Hilbert space
$\operatorname{Isom}(\mathcal{H})$: isometry group of \mathcal{H}
Def. Γ has Kazhdan's property (T)
$\stackrel{\text { def. }}{\Longleftrightarrow} \Gamma$ has fixed-point property for isometric actions on \mathcal{H}.

Kazhdan's property (T)

Γ : finitely generated group
\mathcal{H} : Hilbert space
Isom (\mathcal{H}) : isometry group of \mathcal{H}
Def. Γ has Kazhdan's property (T)
$\stackrel{\text { def. }}{\Longleftrightarrow} \Gamma$ has fixed-point property for isometric actions on \mathcal{H}.
$\stackrel{\text { def. }}{\Longleftrightarrow} \forall \rho: \Gamma \longrightarrow \operatorname{Isom}(\mathcal{H}):$ homomorphism, $\rho(\Gamma)$ has a fixed point in \mathcal{H}. $(\exists p \in \mathcal{H}$ s.t. $\rho(\gamma) \boldsymbol{p}=\boldsymbol{p}$ for $\forall \gamma \in \Gamma)$.

Kazhdan's property (T)

Γ : finitely generated group
\mathcal{H} : Hilbert space
$\operatorname{Isom}(\mathcal{H})$: isometry group of \mathcal{H}
Def. Γ has Kazhdan's property (T)
$\stackrel{\text { def. }}{\Longleftrightarrow} \Gamma$ has fixed-point property for isometric actions on \mathcal{H}.
$\stackrel{\text { def. }}{\Longleftrightarrow} \forall \rho: \Gamma \longrightarrow \operatorname{Isom}(\mathcal{H}):$ homomorphism, $\rho(\Gamma)$ has a fixed point in \mathcal{H}. ($\exists p \in \mathcal{H}$ s.t. $\rho(\gamma) p=p$ for $\forall \gamma \in \Gamma$).

Note. We don't assume ρ to be injective etc.

Example of (T) groups

Γ has $(T) \Longleftrightarrow \forall \rho: \Gamma \longrightarrow \operatorname{Isom}(\mathcal{H})$: homomorphism, $\rho(\Gamma)$ fixes a point in \mathcal{H}.

Example of (T) groups

Γ has $(T) \Longleftrightarrow \forall \rho: \Gamma \longrightarrow \operatorname{Isom}(\mathcal{H})$: homomorphism, $\rho(\Gamma)$ fixes a point in \mathcal{H}.
(0) Every finite group has (\boldsymbol{T}).

Example of (T) groups

Γ has $(T) \Longleftrightarrow \forall \rho: \Gamma \longrightarrow \operatorname{Isom}(\mathcal{H})$: homomorphism, $\rho(\Gamma)$ fixes a point in \mathcal{H}.
(0) Every finite group has (\boldsymbol{T}).

Assume $|\Gamma|=\infty$ in what follows.

Example of (T) groups

Γ has $(T) \Longleftrightarrow \forall \rho: \Gamma \longrightarrow \operatorname{Isom}(\mathcal{H})$: homomorphism, $\rho(\Gamma)$ fixes a point in \mathcal{H}.
(0) Every finite group has (\boldsymbol{T}).

Assume $|\Gamma|=\infty$ in what follows.
(1) \mathbb{Z} does not have ($\boldsymbol{T})$.

Example of (T) groups

Γ has $(T) \Longleftrightarrow \forall \rho: \Gamma \longrightarrow \operatorname{Isom}(\mathcal{H})$: homomorphism, $\rho(\Gamma)$ fixes a point in \mathcal{H}.
(0) Every finite group has (\boldsymbol{T}).

Assume $|\Gamma|=\infty$ in what follows.
(1) \mathbb{Z} does not have (\boldsymbol{T}).
(2) Abelian, nilpotent, solvable, and amenable groups do not have (\boldsymbol{T}).

Example of (T) groups

Γ has $(T) \Longleftrightarrow \forall \rho: \Gamma \longrightarrow \operatorname{Isom}(\mathcal{H})$: homomorphism, $\rho(\Gamma)$ fixes a point in \mathcal{H}.
(0) Every finite group has (\boldsymbol{T}).

Assume $|\Gamma|=\infty$ in what follows.
(1) \mathbb{Z} does not have (\boldsymbol{T}).
(2) Abelian, nilpotent, solvable, and amenable groups do not have (\boldsymbol{T}).
(3) $\boldsymbol{F}_{\boldsymbol{n}}$ (free group of rank \boldsymbol{n}) does not have ($\left.\boldsymbol{T}\right)$.
$(\because \exists \rho: \Gamma \rightarrow \mathbb{Z}$ surjective homo.)

Example of (T) groups

Γ has $(T) \Longleftrightarrow \forall \rho: \Gamma \longrightarrow \operatorname{Isom}(\mathcal{H})$: homomorphism, $\rho(\Gamma)$ fixes a point in \mathcal{H}.
(0) Every finite group has (\boldsymbol{T}).

Assume $|\Gamma|=\infty$ in what follows.
(1) \mathbb{Z} does not have (\boldsymbol{T}).
(2) Abelian, nilpotent, solvable, and amenable groups do not have (\boldsymbol{T}).
(3) $\boldsymbol{F}_{\boldsymbol{n}}$ (free group of rank \boldsymbol{n}) does not have ($\left.\boldsymbol{T}\right)$.
$(\because \exists \rho: \Gamma \rightarrow \mathbb{Z}$ surjective homo.)
(4) Infinite discrete subgroups in $S O(n, 1)$ and $S U(n, 1)$ do not have (\boldsymbol{T}).

Example of (T) groups

(0) Every finite group has (\boldsymbol{T}).

Assume $|\Gamma|=\infty$ in what follows.
(1) \mathbb{Z} does not have ($\boldsymbol{T})$.
(2) Abelian, nilpotent, solvable, and amenable groups do not have (\boldsymbol{T}).
(3) $\boldsymbol{F}_{\boldsymbol{n}}$ (free group of rank \boldsymbol{n}) does not have ($\left.\boldsymbol{T}\right)$.
($\because \exists \rho: \Gamma \rightarrow \mathbb{Z}$ surjective homo.)
(4) Infinite discrete subgroups in $S O(n, 1)$ and $S U(n, 1)$ do not have (\boldsymbol{T}).
(5) Lattices in $S p(n, 1)$ and $\boldsymbol{F}_{4}^{-\mathbf{2 0}}$ have (T).

Example of (T) groups

(1) \mathbb{Z} does not have ($\boldsymbol{T})$.
(2) Abelian, nilpotent, solvable, and amenable groups do not have (\boldsymbol{T}).
(3) $\boldsymbol{F}_{\boldsymbol{n}}$ (free group of rank \boldsymbol{n}) does not have ($\left.\boldsymbol{T}\right)$.
($\because \exists \rho: \Gamma \rightarrow \mathbb{Z}$ surjective homo.)
(4) Infinite discrete subgroups in $S O(n, 1)$ and $S U(n, 1)$ do not have (T).
(5) Lattices in $S p(n, 1)$ and F_{4}^{-20} have ($\left.T\right)$.
(6) Lattices in noncompact simple Lie groups of rank ≥ 2 have (T). (e.g. $S L(n, \mathbb{Z}), n \geq 3$.)

Example of (T) groups

(4) Infinite discrete subgroups in $S O(n, 1)$ and $S U(n, 1)$ do not have (\boldsymbol{T}).
(5) Lattices in $S p(n, 1)$ and $\boldsymbol{F}_{4}^{-\mathbf{2 0}}$ have (T).
(6) Lattices in noncompact simple Lie groups of rank ≥ 2 have (T). (e.g. $S L(n, \mathbb{Z}), n \geq 3$.)
$\star(\boldsymbol{T})$ groups are often very rigid. (e.g., nontrivial actions of higher rank lattices on Hadamard mfds are essentially unique.)

Example of (T) groups

(4) Infinite discrete subgroups in $S O(n, 1)$ and $S U(n, 1)$ do not have (T).
(5) Lattices in $S p(n, 1)$ and \boldsymbol{F}_{4}^{-20} have ($\left.T\right)$.
(6) Lattices in noncompact simple Lie groups of rank ≥ 2 have (T). (e.g. $S L(n, \mathbb{Z}), n \geq 3$.)
$\star(T)$ groups are often very rigid. (e.g., nontrivial actions of higher rank lattices on Hadamard mfds are essentially unique.)

* Hyperbolic groups were thought to be flexible. (e.g.,
- Lattices in $S O(n, 1)$ and $S U(n, 1)$ are not (T).
- Lattices in $\operatorname{Sp}(n, 1)$ is not so rigid as higher rank lattices.)

Affine action on Hilbert spaces

Def. $\varphi: \mathcal{H} \rightarrow \mathcal{H}$ is affine if $\varphi(x)=A x+v$ for some $\boldsymbol{v} \in \mathcal{H}$ and an invertible $\boldsymbol{A} \in \mathbb{B}(\mathcal{H})$, and $\operatorname{Aff}(\mathcal{H})$ denotes the group of affine transformations on \mathcal{H}. $\rho: \Gamma \rightarrow \operatorname{Aff}(\mathcal{H})$ is uniformly C-Lipschitz (UL $(C))$
$\stackrel{\text { def. }}{\Longleftrightarrow} \forall \gamma \in \Gamma, \rho(\gamma): \mathcal{H} \rightarrow \mathcal{H}$ is C-Lipschitz.

Affine action on Hilbert spaces

Def. $\varphi: \mathcal{H} \rightarrow \mathcal{H}$ is affine if $\varphi(x)=A x+v$ for some $\boldsymbol{v} \in \mathcal{H}$ and an invertible $\boldsymbol{A} \in \mathbb{B}(\mathcal{H})$, and $\operatorname{Aff}(\mathcal{H})$ denotes the group of affine transformations on \mathcal{H}. $\rho: \Gamma \rightarrow \operatorname{Aff}(\mathcal{H})$ is uniformly C-Lipschitz (UL($C)$) $\stackrel{\text { def. }}{\Longleftrightarrow} \forall \gamma \in \Gamma, \rho(\gamma): \mathcal{H} \rightarrow \mathcal{H}$ is C-Lipschitz.

Note. If Γ has (T), then $\exists \varepsilon>0$ s.t. any $\mathrm{UL}(1+\varepsilon)$ action of Γ has a fixed point.

Affine action on Hilbert spaces

Def. $\varphi: \mathcal{H} \rightarrow \mathcal{H}$ is affine if $\varphi(x)=\boldsymbol{A x}+\boldsymbol{v}$ for some $\boldsymbol{v} \in \mathcal{H}$ and an invertible $\boldsymbol{A} \in \mathbb{B}(\mathcal{H})$, and $\operatorname{Aff}(\mathcal{H})$ denotes the group of affine transformations on \mathcal{H}. $\rho: \Gamma \rightarrow \operatorname{Aff}(\mathcal{H})$ is uniformly C-Lipschitz (UL($C)$) $\stackrel{\text { def. }}{\Longleftrightarrow} \forall \gamma \in \Gamma, \rho(\gamma): \mathcal{H} \rightarrow \mathcal{H}$ is C-Lipschitz.

Note. If Γ has (T), then $\exists \varepsilon>0$ s.t. any $\mathrm{UL}(1+\varepsilon)$ action of Γ has a fixed point.
Thm.(Shalom) Any UL(C) action of higher rank lattices on \mathcal{H} has a fixed point.

Affine action on Hilbert spaces

Def. $\varphi: \mathcal{H} \rightarrow \mathcal{H}$ is affine if $\varphi(x)=\boldsymbol{A x}+\boldsymbol{v}$ for some $\boldsymbol{v} \in \mathcal{H}$ and an invertible $\boldsymbol{A} \in \mathbb{B}(\mathcal{H})$, and $\operatorname{Aff}(\mathcal{H})$ denotes the group of affine transformations on \mathcal{H}.
$\rho: \Gamma \rightarrow \operatorname{Aff}(\mathcal{H})$ is uniformly C-Lipschitz (UL(C))
$\stackrel{\text { def. }}{\Longleftrightarrow} \forall \gamma \in \Gamma, \rho(\gamma): \mathcal{H} \rightarrow \mathcal{H}$ is C-Lipschitz.
Note. If Γ has (T), then $\exists \varepsilon>0$ s.t. any $\operatorname{UL}(1+\varepsilon)$ action of Γ has a fixed point.
Thm.(Shalom) Any UL(C) action of higher rank lattices on \mathcal{H} has a fixed point.
Thm.(Shalom) $\boldsymbol{S p}(\boldsymbol{n}, 1)$ has $\mathrm{UL}(\boldsymbol{C})$ action on \mathcal{H} without fixed points for some $C>1$.

Affine action on Hilbert spaces

$\rho: \Gamma \rightarrow \operatorname{Aff}(\mathcal{H})$ is uniformly C-Lipschitz (UL(C)) $\stackrel{\text { def. }}{\Longleftrightarrow} \forall \gamma \in \Gamma, \rho(\gamma): \mathcal{H} \rightarrow \mathcal{H}$ is C-Lipschitz.

Note. If Γ has (T), then $\exists \varepsilon>0$ s.t. any $\mathrm{UL}(1+\varepsilon)$ action of Γ has a fixed point.
Thm.(Shalom) Any UL(C) action of higher rank lattices on \mathcal{H} has a fixed point.
Thm.(Shalom) $\boldsymbol{S p}(\boldsymbol{n}, \mathbf{1})$ has $\mathrm{UL}(\boldsymbol{C})$ action on \mathcal{H} without fixed points for some $C>1$.
Conj.(Shalom) Any hyperbolic group admits $\mathrm{UL}(C)$ action on \mathcal{H} without fixed points for some $C \geq 1$.

Affine action on Hilbert spaces

$\rho: \Gamma \rightarrow \operatorname{Aff}(\mathcal{H})$ is uniformly C-Lipschitz (UL(C)) $\stackrel{\text { def. }}{\Longleftrightarrow} \forall \gamma \in \Gamma, \rho(\gamma): \mathcal{H} \rightarrow \mathcal{H}$ is C-Lipschitz.

Thm.(Shalom) Any UL(C) action of higher rank lattices on \mathcal{H} has a fixed point.
Thm.(Shalom) $\boldsymbol{S p}(\boldsymbol{n}, 1)$ has $\mathrm{UL}(\boldsymbol{C})$ action on \mathcal{H} without fixed points for some $C>1$.

Conj.(Shalom) Any hyperbolic group admits $\mathrm{UL}(C)$ action on \mathcal{H} without fixed points for some $C \geq 1$.
Thm 1. (I-Kondo-Nayatani) Fix $C \geq 1$. Any UL(C) action of certain random groups on \mathcal{H} has a fixed point.

Plain word model of random groups

$$
S=\left\{s_{1}, \ldots, s_{m}, s_{1}^{-1}, \ldots, s_{m}^{-1}\right\}: \text { generator set }
$$

Plain word model of random groups

$S=\left\{s_{1}, \ldots, s_{m}, s_{1}^{-1}, \ldots, s_{m}^{-1}\right\}:$ generator set
W_{ℓ} : the set of length ℓ words:

$$
W_{\ell}=\left\{s_{i_{1}}^{\epsilon_{1}} s_{i_{2}}^{\epsilon_{2}} \ldots s_{i_{\ell}}^{\epsilon_{\ell}} \mid i_{j}=1, \ldots, m, \epsilon_{j}= \pm 1\right\}
$$

Plain word model of random groups

$S=\left\{s_{1}, \ldots, s_{m}, s_{1}^{-1}, \ldots, s_{m}^{-1}\right\}:$ generator set
W_{ℓ} : the set of length ℓ words:

$$
W_{\ell}=\left\{s_{i_{1}}^{\epsilon_{1}} s_{i_{2}}^{\epsilon_{2}} \ldots s_{i_{\ell}}^{\epsilon_{\ell}} \mid i_{j}=1, \ldots, m, \epsilon_{j}= \pm 1\right\}
$$

Fix $c>1$. For $0<d<1$ we set
$P(m, \ell, d)=\left\{\boldsymbol{P}=(S, R) \left\lvert\, \begin{array}{c}R \subset W_{\ell} \text { and } \\ c^{-1}(2 m)^{d \ell} \leq \# R \leq c(2 m)^{d \ell}\end{array}\right.\right\}$.

Plain word model of random groups

$S=\left\{s_{1}, \ldots, s_{m}, s_{1}^{-1}, \ldots, s_{m}^{-1}\right\}:$ generator set
W_{ℓ} : the set of length ℓ words:

$$
W_{\ell}=\left\{s_{i_{1}}^{\epsilon_{1}} s_{i_{2}}^{\epsilon_{2}} \ldots s_{i_{\ell}}^{\epsilon_{\ell}} \mid i_{j}=1, \ldots, m, \epsilon_{j}= \pm 1\right\}
$$

Fix $c>1$. For $0<d<1$ we set
$P(m, \ell, d)=\left\{P=(S, R) \left\lvert\, \begin{array}{c}R \subset W_{\ell} \text { and } \\ c^{-1}(2 m)^{d \ell} \leq \# R \leq c(2 m)^{d \ell}\end{array}\right.\right\}$.

- $\Gamma_{S}=\left\langle s_{1}\right\rangle * \cdots *\left\langle s_{m}\right\rangle$: free group generated by S.
- For $P=(S, R) \Gamma_{P}=\Gamma_{S} / \bar{R}, \bar{R}$ denotes the normal closure of \boldsymbol{R}.

Plain word model of random groups

$S=\left\{s_{1}, \ldots, s_{m}, s_{1}^{-1}, \ldots, s_{m}^{-1}\right\}:$ generator set
W_{ℓ} : the set of length ℓ words:

$$
W_{\ell}=\left\{s_{i_{1}}^{\epsilon_{1}} s_{i_{2}}^{\epsilon_{2}} \ldots s_{i_{\ell}}^{\epsilon_{\ell}} \mid i_{j}=1, \ldots, m, \epsilon_{j}= \pm 1\right\}
$$

Fix $c>1$. For $0<d<1$ we set
$P(m, \ell, d)=\left\{\boldsymbol{P}=(S, R) \left\lvert\, \begin{array}{c}\boldsymbol{R} \subset W_{\ell} \text { and } \\ c^{-1}(2 m)^{d \ell} \leq \# \boldsymbol{R} \leq c(2 m)^{d \ell}\end{array}\right.\right\}$.

- $\Gamma_{P}=\boldsymbol{\Gamma}_{S} / \overline{\boldsymbol{R}} \quad\left(P=(S, R), \Gamma_{S}=\left\langle s_{1}\right\rangle * \cdots *\left\langle s_{m}\right\rangle\right)$

Note. \boldsymbol{W}_{ℓ} contains unreduced words. ($s_{i} s_{i}^{-1}$ or $s_{j}^{-1} s_{j}$ may appear). $\quad \therefore \# W_{\ell}=(2 m)^{\ell}$.

Plain word model of random groups

$S=\left\{s_{1}, \ldots, s_{m}, s_{1}^{-1}, \ldots, s_{m}^{-1}\right\}:$ generator set
W_{ℓ} : the set of length ℓ words:

$$
W_{\ell}=\left\{s_{i_{1}}^{\epsilon_{1}} s_{i_{2}}^{\epsilon_{2}} \ldots s_{i_{\ell}}^{\epsilon_{\ell}} \mid i_{j}=1, \ldots, m, \epsilon_{j}= \pm 1\right\}
$$

Fix $c>1$. For $0<d<1$ we set
$P(m, \ell, d)=\left\{P=(S, R) \left\lvert\, \begin{array}{c}R \subset W_{\ell} \text { and } \\ c^{-1}(2 m)^{d \ell} \leq \# R \leq c(2 m)^{d \ell}\end{array}\right.\right\}$.
$\cdot \Gamma_{P}=\boldsymbol{\Gamma}_{S} / \overline{\boldsymbol{R}} \quad\left(P=(S, R), \Gamma_{S}=\left\langle s_{1}\right\rangle * \cdots *\left\langle s_{m}\right\rangle\right)$
Note. \boldsymbol{W}_{ℓ} contains unreduced words. $\left(\therefore \# \boldsymbol{W}_{\ell}=(2 m)^{\ell}\right)$
Note. For any finitely presented group Γ, we can find m, ℓ, d so that $\exists P \in P(m, \ell, d)$ s.t. $\Gamma=\Gamma_{P}$

Thm 1

$$
P(m, \ell, d)=\left\{P=(S, R) \left\lvert\, \begin{array}{c}
R \subset W_{\ell} \text { and } \\
c^{-1}(2 m)^{d \ell} \leq \# R \leq c(2 m)^{d \ell}
\end{array}\right.\right\}
$$

Fix $C \geq 1$.

Thm 1

$$
P(m, \ell, d)=\left\{P=(S, R) \left\lvert\, \begin{array}{c}
R \subset W_{\ell} \text { and } \\
c^{-1}(2 m)^{d \ell} \leq \# R \leq c(2 m)^{d \ell}
\end{array}\right.\right\}
$$

Fix $C \geq 1$.
Thm 1. Take $\mathbb{N} \ni k>C^{6} / 2$ and $d>\frac{k}{2 k+1}$. Then

$$
\lim _{\ell \rightarrow \infty} \frac{\#\left\{P \in P(m, \ell, d) \left\lvert\, \begin{array}{c}
\forall \mathrm{UL}(C) \text { action of } \\
\Gamma_{P} \text { has a fixed point }
\end{array}\right.\right\}}{\# P(m, \ell, d)}=1
$$

i.e., "any $\mathrm{UL}(C)$ action of random groups with density
$>k /(2 k+1)$ in the plain word model have fixed point."

Thm 1

Thm 1. Take $\mathbb{N} \ni k>C^{6} / 2$ and $d>\frac{k}{2 k+1}$. Then

$$
\lim _{\ell \rightarrow \infty} \frac{\#\left\{P \in P(m, \ell, d) \left\lvert\, \begin{array}{c}
\forall \mathrm{UL}(C) \text { action of } \\
\Gamma_{P} \text { has a fixed point }
\end{array}\right.\right\}}{\# P(m, \ell, d)}=1
$$

(Ollivier '04) $\boldsymbol{d}<1-\frac{1}{2} \log _{2 m}(8 m-4) \quad \nearrow \frac{1}{2}(m \rightarrow \infty)$
$\Longrightarrow \lim _{\ell \rightarrow \infty} \frac{\#\left\{P \in P(m, \ell, d) \mid \Gamma_{P}: \infty \text { hyp. group }\right\}}{\# P(m, \ell, d)}=1$.
\longrightarrow Hyperbolicity is very common property.

Thm 1

Thm 1. Take $\mathbb{N} \ni k>C^{6} / 2$ and $d>\frac{k}{2 k+1}$. Then

$$
\lim _{\ell \rightarrow \infty} \frac{\#\left\{P \in P(m, \ell, d) \left\lvert\, \begin{array}{c}
\forall \mathrm{UL}(C) \text { action of } \\
\Gamma_{P} \text { has a fixed point }
\end{array}\right.\right\}}{\# P(m, \ell, d)}=1
$$

(Ollivier '04) $\boldsymbol{d}<1-\frac{1}{2} \log _{2 m}(8 m-4) \quad \nearrow \frac{1}{2}(m \rightarrow \infty)$
$\Longrightarrow \lim _{\ell \rightarrow \infty} \frac{\#\left\{P \in P(m, \ell, d) \mid \Gamma_{P}: \infty \text { hyp. group }\right\}}{\# P(m, \ell, d)}=1$.
Note. If $C=1$, theorem says random groups in the plain word model with $d>1 / 3$ has (T). (I, '14)

Thm 1

Thm 1. Take $\mathbb{N} \ni k>C^{6} / 2$ and $d>\frac{k}{2 k+1}$. Then

$$
\lim _{\ell \rightarrow \infty} \frac{\#\left\{P \in P(m, \ell, d) \left\lvert\, \begin{array}{c}
\forall \mathrm{UL}(C) \text { action of } \\
\Gamma_{P} \text { has a fixed point }
\end{array}\right.\right\}}{\# P(m, \ell, d)}=1
$$

Note. If $C=1$, theorem says random groups in the plain word model with $d>1 / 3$ has (T). (I, '14)
(Żuk, '03) r. g. in the triangle model with $d>1 / 3$ has (T). (Gromov, Silberman, '03) r. g. in the graph model has (\boldsymbol{T}). (Żuk, Kotowski-Kotowski '13) r. g. in the density model with $d>1 / 3$ has (T).

Thm 1

Thm 1. Take $\mathbb{N} \ni k>C^{6} / 2$ and $d>\frac{k}{2 k+1}$. Then

$$
\lim _{\ell \rightarrow \infty} \frac{\#\left\{P \in P(m, \ell, d) \left\lvert\, \begin{array}{l}
\forall \mathrm{UL}(C) \text { action of } \\
\Gamma_{P} \text { has a fixed point }
\end{array}\right.\right\}}{\# P(m, \ell, d)}=1
$$

(Żuk, '03) r. g. in the triangle model with $d>1 / 3$ has (T). (Gromov, Silberman, '03) r. g. in the graph model has (\boldsymbol{T}). (Żuk, Kotowski-Kotowski '13) r. g. in the density model with $d>1 / 3$ has (T).
(Nowak, 2015) Let $C<\sqrt{2}$. Any UL(C) action of r. g. in the density model on \mathcal{H} with $d>1 / 3$ has a fixed point.

Thm 2.

Thm 2. Fix $C>0,0 \leq \eta<1 / 10$. Any action of random groups in the graph model on \mathcal{H} satisfying

$$
\forall \gamma \in \Gamma, \operatorname{Lip}(\rho(\gamma)) \leq C l([\gamma])^{\eta}
$$

has a fixed point, where

$$
l([\gamma])=\min \left\{l\left(\xi \gamma \xi^{-1}\right) \mid \xi \in \Gamma\right\}
$$

and $l\left(\gamma^{\prime}\right)$ denotes the word length of γ^{\prime}.

Thm 2.

Thm 2. Fix $C>0,0 \leq \eta<1 / 10$. Any action of random groups in the graph model on \mathcal{H} satisfying

$$
\forall \gamma \in \Gamma, \operatorname{Lip}(\rho(\gamma)) \leq C l([\gamma])^{\eta}
$$

has a fixed point, where

$$
l([\gamma])=\min \left\{l\left(\xi \gamma \xi^{-1}\right) \mid \xi \in \Gamma\right\}
$$

and $l\left(\gamma^{\prime}\right)$ denotes the word length of γ^{\prime}.
Cor. (Gromov '03) Fix $C \geq 1$. Any $\mathrm{UL}(C)$ action of random groups in the graph model on \mathcal{H} has a fixed point.

Graph model of random groups

$S=\left\{s_{1}, \ldots, s_{m}, s_{1}^{-1}, \ldots, s_{m}^{-1}\right\}$: generator set, $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E}):$ finite connected graph.

Graph model of random groups

$S=\left\{s_{1}, \ldots, s_{m}, s_{1}^{-1}, \ldots, s_{m}^{-1}\right\}$: generator set, $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E}):$ finite connected graph.
$\alpha: \vec{E} \rightarrow S: S$-labeling of G if $\alpha((v, u))=\alpha((u, v))^{-1}$.

Graph model of random groups

$S=\left\{s_{1}, \ldots, s_{m}, s_{1}^{-1}, \ldots, s_{m}^{-1}\right\}$: generator set,
$G=(V, E)$: finite connected graph.
$\alpha: \vec{E} \rightarrow S: S$-labeling of G if $\alpha((v, u))=\alpha((u, v))^{-1}$.
For an S-labeling α,
$\boldsymbol{R}_{\alpha}=\left\{\alpha\left(e_{1}\right) \ldots \alpha\left(e_{r}\right) \in \Gamma_{S} \mid\left(e_{1}, \ldots, e_{r}\right)\right.$ cycle in $\left.G\right\}$,
$\Gamma_{\alpha}=\Gamma_{S} / \overline{\boldsymbol{R}_{\alpha}}$.

Graph model of random groups

$\alpha: \vec{E} \rightarrow S: S$-labeling of G if $\alpha((v, u))=\alpha((u, v))^{-1}$.
$R_{\alpha}=\left\{\alpha\left(e_{1}\right) \ldots \alpha\left(e_{r}\right) \in \Gamma_{S} \mid\left(e_{1}, \ldots, e_{r}\right)\right.$ cycle in $\left.G\right\}$, $\Gamma_{\alpha}=\Gamma_{S} / \overline{R_{\alpha}}$.
Consider a sequence of graphs $\left\{G_{\ell}\right\}_{\ell \in \mathbb{N}}$ satisfying (1) $\left|V_{\ell}\right| \rightarrow \infty(\ell \rightarrow \infty)$,
(2) $\exists d, \forall \ell, \forall u \in V_{\ell}, 2 \leq \operatorname{deg}(u) \leq d$,
(3) $\exists \lambda>0, \forall \ell, \lambda_{1}\left(G_{\ell}, \mathbb{R}\right) \geq \lambda \quad$ (highly-connected),
(4) $\operatorname{girth}\left(G_{\ell}\right) \rightarrow \infty(\ell \rightarrow \infty)$,
(5) $\exists D>0, \operatorname{diam}\left(G_{\ell}\right) \leq D \operatorname{girth}\left(G_{\ell}\right)$,
(6) a few more conditions for infinite hyperbolicity.

Graph model of random groups

$\alpha: \vec{E} \rightarrow S: S$-labeling of G if $\alpha((v, u))=\alpha((u, v))^{-1}$.
$R_{\alpha}=\left\{\alpha\left(e_{1}\right) \ldots \alpha\left(e_{r}\right) \in \Gamma_{S} \mid\left(e_{1}, \ldots, e_{r}\right)\right.$ cycle in $\left.G\right\}$, $\Gamma_{\alpha}=\Gamma_{S} / \overline{\boldsymbol{R}_{\alpha}}$.
Consider a sequence of graphs $\left\{G_{\ell}\right\}_{\ell \in \mathbb{N}}$ satisfying (1) $\left|V_{\ell}\right| \rightarrow \infty(\ell \rightarrow \infty)$,
(2) $\exists d, \forall \ell, \forall u \in V_{\ell}, 2 \leq \operatorname{deg}(u) \leq d$,
(3) $\exists \lambda>0, \forall \ell, \lambda_{1}\left(G_{\ell}, \mathbb{R}\right) \geq \lambda \quad$ (highly-connected),
(4) $\operatorname{girth}\left(G_{\ell}\right) \rightarrow \infty(\ell \rightarrow \infty)$,
(5) $\exists D>0, \operatorname{diam}\left(G_{\ell}\right) \leq D \operatorname{girth}\left(G_{\ell}\right)$,
(6) a few more conditions for infinite hyperbolicity.
$\mathcal{A}_{\ell}=\left\{\alpha: G_{\ell} \rightarrow S \mid \alpha: S\right.$-labeling $\}$

Graph model of random groups

$\mathcal{A}_{\ell}=\left\{\alpha: G_{\ell} \rightarrow S \mid \alpha: S\right.$-labeling $\}$
The 2. Fix $C>0,0 \leq \eta<1 / 10$. Then

where

$$
\begin{equation*}
\forall \gamma \in \Gamma, \operatorname{Lip}(\rho(\gamma)) \leq C l([\gamma])^{\eta} \tag{*}
\end{equation*}
$$

About the proof

1st step: If $\boldsymbol{\rho}(\boldsymbol{\Gamma})$ has no fixed point, we can find an orbit stretched tightly. Precisely: taking a ultralimit of conjugates of ρ, one can find a ρ_{∞} admitting an equivariant harmonic $\operatorname{map} f: \Gamma \rightarrow \mathcal{H}$ i.e.,

$$
\begin{aligned}
& f(\gamma x)=\rho_{\infty}(\gamma) f(x) \quad \forall \gamma, x \in \Gamma \\
& \sum_{s \in S} \frac{1}{\# S} f(x s)=f(x) \quad \forall x \in \Gamma
\end{aligned}
$$

About the proof

1st step: If $\boldsymbol{\rho}(\boldsymbol{\Gamma})$ has no fixed point, we can find an orbit stretched tightly. Precisely: taking a ultralimit of conjugates of ρ, one can find a ρ_{∞} admitting an equivariant harmonic $\operatorname{map} f: \Gamma \rightarrow \mathcal{H}$ i.e.,

$$
\begin{aligned}
& f(\gamma x)=\rho_{\infty}(\gamma) f(x) \quad \forall \gamma, x \in \Gamma \\
& \sum_{s \in S} \frac{1}{\# S} f(x s)=f(x) \quad \forall x \in \Gamma
\end{aligned}
$$

2nd step: One can expect that if there is a graph G with $\overline{\lambda_{1}(G, \mathbb{R})}$ away from 0 in the Cayley graph of Γ, then its orbit cannot be stretched tightly. (such a Γ does not admit a nontrivial equivariant harmonic map.)

About the proof

1st step: If $\boldsymbol{\rho} \boldsymbol{(\Gamma)}$ has no fixed point, we can find an orbit stretched tightly.
2nd step: One can expect that if there is a graph G with $\overline{\lambda_{1}(G, \mathbb{R})}$ away from 0 in the Cayley graph of Γ, then its orbit cannot be stretched tightly.
3rd step: Prove that under the assumption of Thm's, such a graph G can be found in Γ with overwhelming probability.

