Noncommutative topology and quantum groups

Takeshi Katsura

Faculty of Science and Technology, Keio University

27th / June / 2017
Boston University / Keio University
Workshop 2017
Geometry and Mathematical Physics
Boston University 26th-30th / June / 2017

Plan

- PART I. Noncommutative topology
 - §1: C*-algebras and Gelfand transform
 - §2: Deformation quantization
 - §3: Group C*-algebras
 - §4: Crossed products
 - §5: Warped crossed products
- PART II. Quantum groups

PART I. Noncommutative topology

- A suitable algebra A of functions on a space X remembers the space X.
- Transfer a theory of spaces X
 to a theory of the algebras A of functions on X.
- Extend such theories from commutative algebras to noncommutative algebras.
- Regard a noncommutative algebra as an algebra of "functions" on a "noncommutative space".

§1: Definition of C*-algebras

Definition

-algebra := algebra A over complex numbers \mathbb{C} w/ involution $A \ni x \mapsto x^ \in A$

$$(\alpha x)^* = \overline{\alpha} x^* \quad (x + y)^* = x^* + y^* (xy)^* = y^* x^* \quad (x^*)^* = x$$

Definition

C*-algebra := *-algebra A w/ complete norm $\|\cdot\|$ satisfying $\|xy\| \le \|x\| \|y\|$, $\|x^*x\| = \|x\|^2$

In this talk, every C*-algebra is unital i.e. has a multiplicative identity 1

§1: Examples of C*-algebras

Example (C*-algebra)

- complex numbers ℂ
- the matrix algebras $M_n(\mathbb{C})$ (n = 1, 2, ...)
- ullet the algebra ${\cal B}({\cal H})$ of bounded operators on a Hilbert space ${\cal H}$

Theorem (Gelfand-Naimark)

Every C*-algebra is isomorphic to a C*-subalgebra of $B(\mathcal{H})$.

§1: Gelfand transform

Example (commutative C*-algebra)

X: compact space

 $C(X) := \{f \colon X \to \mathbb{C} \mid \text{continuous}\}$

 $\mathbb{T} := \{z \in \mathbb{C} \mid |z| = 1\}$ *n*-torus \mathbb{T}^n *n*-sphere \mathbb{S}^n real projective *n*-space $\mathbb{R}P^n$

Theorem (Gelfand)

Every unital commutative C^* -algebra is isomorphic to C(X) for a unique compact space X.

§2: Deformation quantization

"continuous" map $[0, \infty) \ni q \mapsto A_q$: C*-algebra s.t. $A_0 \cong C(X)$: commutative C*-algebra

Recipe for deformation quantization of a compact space *X*:

(i)
$$C(X) \cong C^*(f_1, \dots, f_n \mid \mathcal{R}_c \cup \mathcal{R}_o)$$

 \mathcal{R}_c : commutation relations $f_k f_l = f_l f_k$,
 $f_k^* f_l = f_l f_k^*$
 \mathcal{R}_o : other relations among $\{f_k\}$

(ii)
$$A_q := C^*(a_1, \ldots, a_n \mid \mathcal{R}_c^q \cup \mathcal{R}_o)$$

 \mathcal{R}_c^q : relations $a_k a_l = e^{iq} a_l a_k$ etc.

§2: Generators and relations

$$X$$
: compact space $f_1, \ldots, f_n \in C(X)$
 f_1, \ldots, f_n genarates $C(X)$
 $\iff \mathbf{f} := (f_1, \ldots, f_n) \colon X \to \mathbb{C}^n$ is injective other relations \mathcal{R}_o among $\{f_k\}$
 \iff relations determining $\mathbf{f}(X) \subset \mathbb{C}^n$

Example

- $C(\mathbb{T}) \cong C^*(u \mid u^*u = uu^* = 1)$ u: unitary
- $C(\mathbb{T}^n) \cong C^*(u_1, \dots, u_n \mid u_k u_l = u_l u_k u_k$: unitary)
- $C(S^{n-1}) \cong C^*(h_1, ..., h_n \mid h_k h_l = h_l h_k$ $h_k = h_k^*, \ \sum_{k=1}^n h_k^2 = 1)$

§2: Examples of deformation quantization

Noncommutative 2-torus

• Noncommutative 3-sphere

$$\mathbb{R} \ni \theta \mapsto B_{\theta} \qquad (B_0 = C(S^3))$$
 $C(S^3) \cong \qquad B_{\theta} := C^*(u, v \mid uv = e^{2\pi i \theta} vu, \ u^*u = uu^*$
 $v^*v = vv^*, \ u^*u + v^*v = 1)$

♠ U(1)-bundle over S², Heegaard splitting, noncommutative lens space

§3: Group C*-algebras

Γ: (discrete) group $C^*(\Gamma) := C^*(\{u_t\}_{t \in \Gamma} \mid u_t: \text{ unitary, } u_t u_s = u_{ts})$ $C^*(\Gamma)$ remembers all unitary representations of Γ $C^*(\Gamma)$ is commutative $\iff \Gamma$ is abelian in this case $C^*(\Gamma) \cong C(\widehat{\Gamma})$ where $\widehat{\Gamma}$: the Pontryagin dual of Γ

Example

$$C^*(\mathbb{Z})\cong C(\mathbb{T}), \qquad C^*(\mathbb{Z}^n)\cong C(\mathbb{T}^n)$$

 F : finite abelian $\Rightarrow C^*(F)\cong C(\widehat{F})\cong C(F)\cong \mathbb{C}^{|F|}$
 $C^*(\mathfrak{S}_3)\cong \mathbb{C}\oplus \mathbb{C}\oplus M_2(\mathbb{C})$

§3: Twisted Group C*-algebra

$$ω$$
: $Γ × Γ → \mathbb{T} : 2-cocycle of Γ
$$(ω(t_0, t_1)ω(t_0, t_1t_2)^{-1}ω(t_0t_1, t_2)ω(t_1, t_2)^{-1} = 1)$$
 $C_ω^*(Γ) := C^*(\{u_t\}_{t \in Γ} \mid u_t: \text{ unitary}, \ u_tu_s = ω(t, s)u_{ts})$$

Example

$$heta \in \mathbb{R}, \quad \omega_{ heta} \colon \mathbb{Z}^2 \times \mathbb{Z}^2 o \mathbb{T} \text{ by} \ \omega_{ heta}((n,m),(k,l)) = \mathrm{e}^{2\pi i m k heta} \ C^*_{\omega_{ heta}}(\mathbb{Z}^2) = A_{ heta} \colon \mathsf{noncommutative} \text{ 2-torus}$$

In part II, we discuss examples for the Klein 4-group $K \cong (\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z})$.

§4: Crossed products

```
Γ: (discrete) group,
X: compact space,
\alpha \cdot \Gamma \curvearrowright X action
               (i.e. \Gamma \ni t \mapsto \alpha_t \in \text{Homeo}(X): group hom)
       \rightsquigarrow C(X) \rtimes_{\alpha} \Gamma: crossed product
                C*-algebra generated
                   by C(X) and unitaries \{u_t\}_{t\in\Gamma}
           satisfying u_t u_s = u_{ts} and f u_t = u_t (f \circ \alpha_t)
If \alpha: trivial (\alpha_t = id) and \Gamma is abelian,
C(X) \rtimes_{\alpha} \Gamma \cong C(X) \otimes C^{*}(\Gamma) \cong C(X \times \Gamma)
```

§4: noncommutative 2-torus revisited

$$C(X) \rtimes_{\alpha} \Gamma$$
 " \cong " $C(X/\Gamma) \otimes M_{|\Gamma|}(\mathbb{C})$ $\theta \in \mathbb{R} \rightsquigarrow \alpha_{\theta} \colon \mathbb{Z} \curvearrowright \mathbb{T}$: action by $\mathbb{Z} \ni n \mapsto (z \mapsto e^{2\pi i n \theta} z) \in \mathsf{Homeo}(\mathbb{T})$ Then, $C(\mathbb{T}) \rtimes_{\alpha_{\theta}} \mathbb{Z} \cong A_{\theta}$: noncommutative 2-torus

In this way, one can get many deformation quantization of spaces like $X \times \mathbb{T}$.

Noncommutative crossed product, twisted crossed product, . . .

§5: Warped crossed products

```
X: compact space,

\alpha: \mathbb{Z} \curvearrowright X: action \iff \alpha_1 \in \operatorname{Homeo}(X)

\mathcal{L}: Hermitian line bundle over X

\iff C(X) \rtimes_{\alpha,\mathcal{L}} \mathbb{Z}: warped crossed product

(Søren Eilers-TK)
```

$$lpha$$
: trivial ($lpha_1 = \mathrm{id}$), $\Rightarrow C(X) \rtimes_{lpha, \mathcal{L}} \mathbb{Z} \cong C(\mathcal{L}^1)$ where $\mathcal{L}^1 := \{ v \in \mathcal{L} \mid ||v|| = 1 \}$ principal $U(1)$ -bundle associated with \mathcal{L}

 $X = S^2$ and \mathcal{L} varies (e.g. Hopf fibration), \rightsquigarrow deformation quantization of S^3 or the Lens spaces (Matsumoto-Tomiyama)

PART II. Quantum groups

PART I:

X: compact space \iff C(X): C*-algebra

PART II

G: compact group

i.e. G: compact space \iff C(G): C*-algebra with product $G \times G \to G$ with coproduct

$$\Delta\colon C(G) o C(G imes G)$$
 by $\Delta(f)(t,s)=f(ts)$ $\bullet C(G imes G)\cong C(G)\otimes C(G)$ (c.f. Hopf algebra)

§1. Definition and Examples

Definition

compact quantum group := C*-algebra A with coproduct $\Delta: A \to A \otimes A$ s.t. $(\Delta \otimes id_A) \circ \Delta = (id_A \otimes \Delta) \circ \Delta$ and " \exists inverse"

Example (compact quantum group)

- C(G) for a compact group G
- $C^*(\Gamma)$ for a discrete group Γ with $\Delta(u_t) = u_t \otimes u_t$
- $SU_q(n), \ldots$

§1: Duality Theorem

♠ Dual quantum group a compact quantum group (A, Δ) \rightsquigarrow a discrete quantum group $(\widehat{A}, \widehat{\Delta})$, a discrete quantum group (A, Δ) \rightsquigarrow a compact quantum group $(\widehat{A}, \widehat{\Delta})$,

Example

F: finite group $(C(F), \Delta)$ and $(C^*(F), \Delta)$ are the duals of each others.

§2: Definition of free symmetric groups

$$\mathfrak{S}_{n} \hookrightarrow U(n) \hookrightarrow M_{n}(\mathbb{C}) \cong \mathbb{C}^{n^{2}}$$

$$C(\mathfrak{S}_{n}) \cong C^{*}(\{p_{k,l}\}_{k,l=1}^{n} \mid \mathcal{R}_{c} \cup \mathcal{R}_{o})$$

$$\mathcal{R}_{c}: \text{ commutation relations } p_{k,l}p_{k',l'} = p_{k',l'}p_{k,l}$$

$$\mathcal{R}_{o}: p_{k,l} \text{ projection (i.e. } p_{k,l}^{*} = p_{k,l}^{2} = p_{k,l})$$

$$\sum_{l=1}^{n} p_{k,l} = 1 \ (\forall k), \qquad \sum_{k=1}^{n} p_{k,l} = 1 \ (\forall l)$$

$$\Delta(p_{k,l}) = \sum_{m=1}^{n} p_{k,m} \otimes p_{m,l}$$

Definition (Wang '98)

$$(A_s(n), \Delta)$$
: free symmetric group $A_s(n) := C^*(\{p_{k,l}\}_{k,l=1}^n \mid \mathcal{R}_o)$ magic square C*-algebra

§2: Results on free symmetric groups

Proposition

$$n = 1, 2, 3 \Rightarrow (A_s(n), \Delta) \cong (C(\mathfrak{S}_n), \Delta)$$

 $n \geq 4 \Rightarrow A_s(n)$: noncommutative, ∞ -dim.
 $n \geq 5 \Rightarrow (A_s(n), \Delta)$: not coamenable,
 $A_s(n)$: not exact

Proposition (Banica-Collins, Ogawa)

$$A_s(4) \hookrightarrow C(\mathbb{R}P^3) \otimes M_4(\mathbb{C}) \cong C(\mathbb{R}P^3, M_4(\mathbb{C}))$$

§3: Magic square C*-algebra of size 4

$$A_{s}(4) = C^{*}(\{p_{k,l}\}_{k,l=1}^{4} \mid \mathcal{R}_{o})$$

 \mathcal{R}_{o} : $p_{k,l}$ projection (i.e. $p_{k,l}^{*} = p_{k,l}^{2} = p_{k,l}$)
 $\sum_{l=1}^{4} p_{k,l} = 1 \; (\forall k), \quad \sum_{k=1}^{4} p_{k,l} = 1 \; (\forall l)$

Definition

$$K := \{t_1, t_2, t_3, t_4\} \subset \mathfrak{S}_4$$
: Klein 4-group $t_2 = (12)(34), t_3 = (13)(24), t_4 = (14)(23)$

$$\alpha \colon \mathfrak{S}_4 \times \mathfrak{S}_4 \curvearrowright A_s(4)$$
: action $\alpha_{\sigma,\tau}(p_{k,l}) = p_{\sigma(k),\tau(l)}$

Restrict α to $K \times K \subset \mathfrak{S}_4 \times \mathfrak{S}_4$.

§3: 2-cocycle of *K*

$$\varepsilon_{k,l} := \begin{bmatrix} k \setminus l & 1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 1 & 1 \\ 2 & 1 & -1 & 1 & -1 \\ 3 & 1 & -1 & -1 & 1 \\ 4 & 1 & 1 & -1 & -1 \end{bmatrix}$$

$$\omega \colon K \times K \to \mathbb{T}$$
: 2-cocycle by $\omega(t_k, t_l) := \varepsilon_{k,l}$
 $C^*_{\omega}(K) \cong M_2(\mathbb{C})$ (c.f. $C^*(K) \cong \mathbb{C}^4$)
 $c_1, c_2, c_3, c_4 \in M_2(\mathbb{C})$: unitary
 $t_k t_l = t_m \rightsquigarrow c_k c_l = \varepsilon_{k,l} c_m$

§3: Pauli matrices

Pauli matrix $c_1, c_2, c_3, c_4 \in M_2(\mathbb{C})$

$$egin{aligned} c_1 &= egin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix}, & c_2 &= egin{pmatrix} i & 0 \ 0 & -i \end{pmatrix}, \ c_3 &= egin{pmatrix} 0 & 1 \ -1 & 0 \end{pmatrix}, & c_4 &= egin{pmatrix} 0 & i \ i & 0 \end{pmatrix} \end{aligned}$$

 $\{c_1, c_2, c_3, c_4\}$: orthonormal basis of the Hilbert space $(M_2(\mathbb{C}), \text{trace}) \cong (\mathbb{C}^4, \langle \cdot | \cdot \rangle)$

$$S^3 \ni (a_1, a_2, a_3, a_4) \mapsto \sum_{k=1}^4 a_k c_k \in SU(2)$$

 $SU(2)/\{\pm 1\} \cong \mathbb{R}P^3$

§3: Real projective space

$$S^{n-1} \hookrightarrow \mathbb{R}^n \rightsquigarrow h_1, \dots, h_n \in C(S^{n-1})$$

 $h_k h_l$ factors through $\mathbb{R}P^{n-1} \rightsquigarrow f_{k,l} \in C(\mathbb{R}P^{n-1})$

Proposition

$$C(\mathbb{R}P^{n-1}) \cong C^*(\{f_{k,l}\}_{k,l=1}^n \mid \mathcal{R})$$

$$\mathcal{R}: f_{k,l} = f_{k,l}^* = f_{l,k}, \quad f_{k,l}f_{k',l'} = f_{k,k'}f_{l,l'},$$

$$\sum_{k=1}^n f_{k,k} = 1$$

Compare it with

Proposition

$$M_n(\mathbb{C}) = C^*(\{e_{k,l}\}_{k,l=1}^n \mid \mathcal{R}')$$

 $\mathcal{R}' : e_{k,l}^* = e_{l,k} \quad e_{k,l}e_{k',l'} = \delta_{l,k'}e_{k,l'}$
 $\sum_{k=1}^n e_{k,k} = 1$

§3: Main Theorem

Theorem (Ogawa)

$$A_s(4) \rtimes_{\alpha,\omega \times \omega} (K \times K) \cong C(\mathbb{R}P^3) \otimes M_4(\mathbb{C})$$

generators: $\{p_{k,l}\} \cup \{u_{k,l}\}$ v.s. $\{f_{k,l}\} \cup \{e_{k,l}\}$

Dual action of $\widehat{K \times K} \cong K \times K$ yields

Corollary

$$A_s(4) \cong C(\mathbb{R}P^3, M_4(\mathbb{C}))^{K \times K}$$