The Rasmussen invariant of Torus knots

Boston University/Keio University Workshop 2017 (June 26-30, 2017)

Takayuki Kobayashi (Keio University)

ntroduction

- Rasmussen invariant gives proof of Milnor conjecture
- The idea of this invariant comes from Khovanov cohomology.
- I'll introduce definition of Rasmussen invariant and proof of Milnor conjecture.
Definition (Knot, Link, Equivalence)
- Knot K is an oriented simple closed curve in S^{3}
- Link L is a collection of knots.
- $L_{1}, L_{2} \subset S^{3}$:Link, if there is a continuous transform from L_{1} to L_{2}, we say they are equivalent ($L_{1} \cong L_{2}$).
Link diagram is a projection of link like pictures below.
- Equivalence of links corresponds to some elementary moves of diagrams (called Reidemeister moves)
- So, we only think about link diagram.

Milnor Conjecture, [1]
The genus of torus knot $g\left(T_{p, q}\right)(p, q \in \mathbb{Z}, q>0)$ is $(|p|-1)(q-1) / 2$
Torus knot

- (p, q)-Torus link $T_{p, q}$ has a diagram below $(p, q \in \mathbb{Z}, q>0)$.

$p>0$

$p<0$
- Torus link $T_{p, q}$ becomes knot if and only if $\operatorname{gcd}(p, q)=1$.
- $\overbrace{\text { is }}(-2,3)$-torus knot. So, I'll explain using example

Definition (genus of knot)
The genus g of knot K is defined as

$$
g(K)=\min \left\{g(F) \mid \text { connected oriented surface } F \subset S^{3}, \partial F=K\right\}
$$

Seifert algorithm, [2]
Seifert algorithm gives connected oriented surface F which ∂F is K.

1. Do oriented splice $\searrow \rightarrow \sum$ (on all crossings of diagram.
2. Consider discs bounded by the circles appeared in step 1.
3. Connect these discs by twist band corresponding to crossings of K This is the surface F which we want.

Calculating genus of F is easy from the algorithm.

$$
\begin{aligned}
2 g(F) & =1-\chi(F)=1-(\#\{\bigcirc\}+\#\{\nabla\}-\chi(\bigcirc \cap \nabla)) \\
& =1+n(K)-k
\end{aligned}
$$

($k=$ the number of circle appeared in step $1, n(K)=$ the number of crossin of K). By definition,

$$
g(K) \leq g(F)
$$

So, to prove Milnor conjecture, we need

$$
2 g\left(T_{-2,3}\right) \leq 2=(2-1)(3-1)
$$

$$
2 g\left(T_{p, q}\right) \geq(|p|-1)(q-1)
$$

To prove it, we use Rasmussen invariant. Rasmussen invariant is defined as grade of Lee cohomology.
Lee cohomology, [3]
Let $n_{+}(K):=\#\{\Sigma \in K\}, n_{-}(K):=\#\{\nearrow \in K\}, n(K)=$
$n_{+}(K)+n_{-}(K)=$ the number of crossings of K

1. Do 0-splice $\gg \rightarrow$ or 1-splice $\rightarrow>)$ (on each crossing

We get $2^{n(K)}$ diagrams which not have crossings.
2. Associate a module $A^{\otimes c}\left\{-I+2 n_{-}(K)-n_{+}(K)\right\}$ to the c circle diagram which is made by $/$ times 1 -splice

$$
\bigodot_{1}^{0} \rightarrow \bigodot_{\Omega} \rightarrow A^{\otimes 2}\{-1+6\}
$$

- $A:=\langle\mathbf{1}, X\rangle$: graded \mathbb{Q}-module. $(\operatorname{deg}(\mathbf{1})=1, \operatorname{deg}(X)=-1)$
- $\{k\}$ means degree $-k$, like $\operatorname{deg}(\mathbf{1} \in A\{k\})=1-k$.

3. Consider two diagrams which are able to achieve by change resolution of a crossing from 0 -splice to 1 -splice. Connect between corresponding modules by the map $m: A^{\otimes 2} \rightarrow A$ or $\Delta: A \rightarrow A^{\otimes 2}$.

Define them as differential d. Some change of sign is necessary to make $d \circ d=0$
(O

$$
\begin{aligned}
& m(\mathbf{1} \otimes \mathbf{1})=m(X \otimes X)=\mathbf{1} \\
& m(\mathbf{1} \otimes X)=m(X \otimes \mathbf{1})=X \quad \Delta(X)=X \otimes X+\mathbf{1} \otimes 1
\end{aligned}
$$

4. Take direct sum of each column of \mathbb{Q}-modules appeared in this table. We get sequence of \mathbb{Q}-modules, let it $C(K)$.
$C\left(T_{-2,3}\right)=\left(0 \rightarrow A^{\otimes 3}\{6\} \xrightarrow{d^{0}} \bigoplus_{3} A^{\otimes 2}\{5\} \xrightarrow{d^{1}} \bigoplus_{3} A\{4\} \xrightarrow{d^{2}} A^{\otimes 2}\{3\} \xrightarrow{d^{3}} 0\right)$
5. Its cohomology group $H^{*}(C(K))$ is Lee cohomology.

Rasmussen invariant, [4]
Let grade s,

$$
\begin{aligned}
s([x]) & :=\min \{j \in \mathbb{Z} \mid \exists[y]=[x] \text { s.t. } y \in\langle b \in C(K) \mid \operatorname{deg}(b) \geq j\rangle\} \\
s_{\max }(K) & :=\max \left\{s([x]) \in \mathbb{Z} \mid[x] \in H^{*}(C(K))\right\} \\
s_{\min }(K) & :=\min \left\{s([x]) \in \mathbb{Z} \mid[x] \in H^{*}(C(K))\right\}
\end{aligned}
$$

These are link invariants. If K is a knot,

$$
s_{\max }(K)=s_{\min }(K)+2
$$

So, we can define Rasmussen invariant $s(K)$
Definition (Rasmussen, [4])
K:Knot,

$$
s(K):=s_{\min }(K)+1=s_{\max }(K)-1
$$

Consider the table of $C\left(T_{-2,3}\right)$. Its j-row is degree of each bases.

$C\left(T_{-2,3}\right)$	0	1	2	3
-1				$\mathbf{1} \otimes \mathbf{1}$
-3	$\mathbf{1} \otimes \mathbf{1} \otimes \mathbf{1}$	$\mathbf{1} \otimes \mathbf{1}$	$\mathbf{1}$	$\mathbf{1} \otimes X$
-5	$:$	$:$	X	$X \otimes X$

From this table, we can see $\mathbf{1} \otimes \mathbf{1} \in A^{\otimes 2}\{3\}$ gives maximal degree of $C\left(T_{-2,3}\right) . d^{3}$ is a 0 -map and $[\mathbf{1} \otimes \mathbf{1}] \in H^{*}\left(C\left(T_{-2,3}\right)\right)$. So, we can see

$$
s_{\max }\left(T_{-2,3}\right)=\operatorname{deg}(\mathbf{1} \otimes \mathbf{1})=2-3=-1
$$

Then,

$$
s_{\min }\left(T_{-2,3}\right)=-3, s\left(T_{-2,3}\right)=-2=-(2-1)(3-1)
$$

Theorem (Rasmussen, [4])
Let slice genus
$g_{*}(K):=\min \left\{g(F) \mid\right.$ connected oriented surface $\left.F \subset B^{4}, \partial F=K\right\}$, then,

$$
|s(K)| \leq 2 g_{*}(K)
$$

By definition of slice genus,

$$
g_{*}(K) \leq g(K)
$$

So,

$$
(2-1)(3-1)=\left|s\left(T_{-2,3}\right)\right| \leq g\left(T_{-2,3}\right)
$$

In general, we can see $s\left(T_{-p^{\prime}, q}\right)=-\left(p^{\prime}-1\right)(q-1)\left(p^{\prime}>0\right)$ because
$\mathbf{1} \otimes \cdots \otimes \mathbf{1} \in A^{\otimes q}\left\{-p^{\prime}(q-1)\right\}$ gives maximal degree of $H^{*}\left(C\left(T_{-p^{\prime}, q}\right)\right)$. So when $p<0$ Milnor Conjecture is proved.
1] J. Milinor, Singular points of complex hypersurfaces, Princeton University Press, (196
[2] H. Seifert, Über das Geschlet von Knoten, Math. Ann., 110, 571-592, (1934)
3] E. S. Lee, An endomorphism of the Khovanov invariant, Advances in mathem ics. Vol. 197, Issue 2, 554-586, (2005)
[4] J. Rasmussen, Khovanov homology and the slice genus, Invent. math., 182, 419-447, (2010)

