On the relation between amenability of discrete groups and nuclearity of group C*-algebras

Fuyuta Komura (Graduate School of Science and Technology, Keio University) e-mail: fuyuta.k[at]keio.jp

Definition (C*-algebra) De As A Banach space A is a C*-algebra. : $\Leftrightarrow A$ is a \mathbb{C} -algebra with an involution :⇔ $A \ni x \mapsto x^* \in A$ such that seq • $||xy|| \le ||x||||y||$, • $||x^*x|| = ||x||^2$ (C*-condition), Ex • $(\alpha x + \beta y)^* = \bar{\alpha} x^* + \bar{\beta} y^*$, ٩ • $(xy)^* = y^*x^*, (x^*)^* = x$ ٩ for all $\alpha, \beta \in \mathbb{C}, x, y \in A$. ٩ We always assume that a C*-algebra A has a unit (i.e. multiplicative identity) $\mathbf{1}_A \in A$. De Example (C*-algebra) Γ: (• X: compact Hausdorff space. $\lambda_s \in$ $C(X) := \{f : X \to \mathbb{C} \mid f \text{ is continuous}\}$ whe • H: Hilbert space over \mathbb{C} . λ: $L(H) := \{x : H \rightarrow H \mid x \text{ is a bounded linear}\}$ rep • (Matrix algebra) A: C*-algebra. De $M_n(A) := \left\{ [a_{i,j}]_{i,j=1}^n \mid a_{i,j} \in A \right\}$ Γ: α **Definition (Positivity)** $C^*_\lambda(\Gamma)$ A: C*-algebra, $x \in A$. $x \ge 0 : \Leftrightarrow x = y^*y$ for some $y \in A$. Definition (Completely positive map) A linear map $\varphi \colon A \to B$ is unital. $\Rightarrow \varphi(1_A) = 1_B.$ A linear map $\varphi \colon A \to B$ is positive. $\Rightarrow x \ge 0$ implies $\varphi(x) \ge 0$ for all $x \in A$. **2** ∀ f φ is completely positive (c.p.). \bullet $\forall s$ $:\Leftrightarrow M_n(A) \ni [a_{i,j}] \to [\varphi(a_{i,j})] \in M_n(B)$ is positive for every $n \in \mathbb{N}$.

finition (Nuclearity)
eparable C^* -algebra A is nuclear.
$\exists \varphi_i \colon A \to M_{n_i}(\mathbb{C}), \psi_i \colon M_{n_i}(\mathbb{C}) \to A$
uences of unital c.p. maps such that
$\lim_{i\to\infty} x - \psi_i(\varphi_i(x)) = 0 \qquad (\forall x \in A).$
ample (Nuclear C*-algebra)
Finite dimensional C*-algebra $M_n(\mathbb{C})$.
Commutative C*-algebra $C(X)$.
Direct sums and inductive limits of nuclear
C*-algebras.
finition (Left regular representation)
discrete group. $s \in \Gamma$.
$ = B(\ell^2 \Gamma) $ is defined by $\lambda_s(f)(t) := f(s^{-1}t), $
ere $f \in \ell^2 \Gamma, t \in \Gamma$.
$\Gamma \ni s \mapsto \lambda_s \in B(\ell^2 \Gamma)$ is called left regular
resentation.
finition (Reduced group C*-algebra)
discrete group.

$$:= \left\{ \sum_{s \in \Gamma, \text{finite sum}} a_s \lambda_s \in B(\ell^2 \Gamma) \mid a_s \in B(\ell^2 \Gamma) \right\}$$

 $C^*(\Gamma)$ is a C*-algebra generated by $\{\lambda_s\}_{s\in\Gamma}$.

Definition (Amenabiliy)

 Γ is amenable.

 $: \Leftrightarrow \exists \mu : \ell^{\infty} \Gamma \to \mathbb{C}$ linear map s.t. • $\mu(1) = 1.$

$$f \in \ell^{\infty}\Gamma, f \ge 0 \Rightarrow \mu(f) \ge 0.$$

$$f \in \Gamma, \forall f \in \ell^{\infty}\Gamma, \mu(sf) = \mu(f)$$

where $sf(t) := f(s^{-1}t)$

 μ is called an invariant mean of Γ .

The following
The following
F is amena

$$C^*_{\lambda}(\Gamma)$$
 is number
Example (E
Every discrete)

Proof. If Γ is an Abelian group, then $C^*_{\lambda}(\Gamma)$ is commutative. Since every commutative C*-algebra is nuclear, Γ is amenable by the previous theorem.

Example (Free group)

Proof. Let
$$A^+, A^-, B^+, B^- \subset F_2$$
 be a set of reduced words
with a, a^{-1}, b, b^{-1} respectively. For $C := \{1, b, b^2, \dots\}$,
 $F_2 = A^+ \sqcup A^- \sqcup (B^+ \setminus C) \sqcup (B^- \cup C)$
 $= A^+ \sqcup aA^- = b^{-1} (B^+ \setminus C) \sqcup (B^- \cup C)$.
If $\mu : \ell^{\infty}F_2 \to \mathbb{C}$ is an invariant mean,
 $1 = \mu(1) = \mu(\chi_{A^+}) + \mu(\chi_{A^-}) + \mu(\chi_{B^+ \setminus C}) + \mu(\chi_{B^- \cup C})$
 $= \mu(\chi_{A^+}) + \mu(a\chi_{A^-}) + \mu(b^{-1}\chi_{(B^+ \setminus C)}) + \mu(\chi_{B^- \cup C})$

$$\begin{split} &= \mu(\chi_{A^{+}}) + \mu(\chi_{A^{-}}) + \mu(\chi_{B^{+}\setminus C}) + \mu(\chi_{B^{-}\cup C}) \\ &= \mu(\chi_{A^{+}}) + \mu(a\chi_{A^{-}}) + \mu(b^{-1}\chi_{(B^{+}\setminus C)}) + \mu(\chi_{B^{-}\cup C}) \\ &= \mu(\chi_{A^{+}} + \chi_{aA^{-}}) + \mu(\chi_{b^{-1}(B^{+}\setminus C)} + \chi_{B^{-}\cup C}) \\ &= \mu(1) + \mu(1) = 2. \end{split}$$

$$\begin{split} &= \mu(\chi_{A^{+}}) + \mu(\chi_{A^{-}}) + \mu(\chi_{B^{+}\setminus C}) + \mu(\chi_{B^{-}\cup C}) \\ &= \mu(\chi_{A^{+}}) + \mu(a\chi_{A^{-}}) + \mu(b^{-1}\chi_{(B^{+}\setminus C)}) + \mu(\chi_{B^{-}\cup C}) \\ &= \mu(\chi_{A^{+}} + \chi_{aA^{-}}) + \mu(\chi_{b^{-1}(B^{+}\setminus C)} + \chi_{B^{-}\cup C}) \\ &= \mu(1) + \mu(1) = 2. \end{split}$$

Therefore, F_2 is not amenable. Nonnuclearity of $C_2^*(F_2)$ follows from the previous theorem.

Approximations.

, Theorem 2.6.8.])

s are equivalent;

able.

uclear.

Discrete Abelian Group) e Abelian group Γ is amenable.

Let F_2 be a free group generated by two elements $\{a, b\}$. Then, F_2 is nonamenable. Therefore, $C^*_{\lambda}(F_2)$ is nonnuclear.

s which start

Reference

[1] N.P. Brown and N. Ozawa. C*-algebras and Finite-dimensional

Graduate studies in mathematics. American Mathematical Soc., 2008.