Singularities of the L^2 Exponential Map on Diffeomorphism Groups

Leandro Lichtenfelz

University of Notre Dame

Boston University/Keio University Workshop
June 26-30, 2017
Let M be a compact, oriented Riemannian manifold of dimension $n = 2, 3$. The Cauchy problem for the Euler equations of hydrodynamics is

$$\partial_t u + \nabla_u u = -\nabla p$$
$$\text{div}(u) = 0$$
$$u(0) = u_0$$

where $u : M \times \mathbb{R} \to TM$ is the velocity field and $p : M \times \mathbb{R} \to \mathbb{R}$ is the pressure.

Remark: In Sobolev spaces, global well-posedness of (1) is known when $n = 2$ (Gunther, Lichtenstein 1920s, Wolibner, 1933).
Let M be a compact, oriented Riemannian manifold of dimension $n = 2, 3$. The Cauchy problem for the Euler equations of hydrodynamics is

$$
\partial_t u + \nabla_u u = -\nabla p
$$
$$\text{div}(u) = 0
$$
$$u(0) = u_0
$$

where $u : M \times \mathbb{R} \rightarrow TM$ is the velocity field and $p : M \times \mathbb{R} \rightarrow \mathbb{R}$ is the pressure.

Remark

In Sobolev spaces, global well-posedness of (1) is known when $n = 2$ (Gunther, Lichtenstein 1920s, Wolibner, 1933).
Lagrangian description of the fluid flow on M:

$$\eta(t, x) = \text{position at time } t \text{ of the fluid particle which at time } 0 \text{ was at } x \in M.$$
Lagrangian description of the fluid flow on M:

$\eta(t, x) =$ position at time t of the fluid particle which at time 0 was at $x \in M$.

The map η can be viewed as a curve of volume-preserving diffeomorphisms

$$
\eta_t : M \rightarrow M \\
x \mapsto \eta(t, x)
$$
Lagrangian description of the fluid flow on M:

$\eta(t, x) = $ position at time t of the fluid particle which at time 0 was at $x \in M$.

The map η can be viewed as a curve of volume-preserving diffeomorphisms

$$
\eta_t : M \rightarrow M \\
\quad x \mapsto \eta(t, x)
$$

We denote by $\mathcal{D}_{\mu}^s(M)$ the set of all H^s volume-preserving diffeomorphisms. μ denotes the Riemannian volume.
On $D^s_\mu(M)$, we have a natural Riemannian metric, the L^2 metric, given at the identity e by

$$\langle u, v \rangle_{L^2} = \int_M \langle u(p), v(p) \rangle d\mu(p), \quad u, v \in T_eD^s_\mu(M).$$
On $\mathcal{D}^s_\mu(M)$, we have a natural Riemannian metric, the L^2 metric, given at the identity e by

$$\langle u, v \rangle_{L^2} = \int_M \langle u(p), v(p) \rangle d\mu(p), \quad u, v \in T_e \mathcal{D}^s_\mu(M).$$

This metric extends smoothly by right-translations to a metric on $\mathcal{D}^s_\mu(M)$. Despite being a weak Riemannian metric, it has a Levi-Civita connection and a smooth geodesic spray (Ebin, Marsden - 1970).
On $\mathcal{D}_\mu^s(M)$, we have a natural Riemannian metric, the L^2 metric, given at the identity e by

$$\langle u, v \rangle_{L^2} = \int_M \langle u(p), v(p) \rangle d\mu(p), \quad u, v \in T_e\mathcal{D}_\mu^s(M).$$

This metric extends smoothly by right-translations to a metric on $\mathcal{D}_\mu^s(M)$. Despite being a weak Riemannian metric, it has a Levi-Civita connection and a smooth geodesic spray (Ebin, Marsden - 1970).

Arnold (1966) observed that a curve η_t in $\mathcal{D}_\mu^s(M)$ is a geodesic of this metric if and only if the corresponding vector field $u(t, x)$ solves the Euler equations.
In light of Arnold’s result, $D^s_\mu(M)$ is geodesically complete when $n = 2$.

The L^2 exponential map at the identity is given by

$$\exp_e : T_{D^s_\mu(M)} \to D^s_\mu(M),$$

where $t \mapsto \eta_t$ is the unique L^2 geodesic with $\partial_t \eta(0, x) = u(x)$. This is a diffeomorphism near 0.

Theorem (Ebin, Misiolek, Preston - 2006)
The L^2 exponential map \exp_e is a nonlinear smooth Fredholm map of index zero.
In light of Arnold’s result, $\mathcal{D}_\mu^s(M)$ is geodesically complete when $n = 2$.

The L^2 exponential map at the identity is given by

$$\exp_e : T_e\mathcal{D}_\mu^s(M) \to \mathcal{D}_\mu^s(M)$$

$$u \mapsto \eta_1,$$

where $t \mapsto \eta_t$ is the unique L^2 geodesic with $\partial_t \eta(0, x) = u(x)$. This is a diffeomorphism near 0.
In light of Arnold’s result, $D^s_\mu(M)$ is geodesically complete when $n = 2$.

The L^2 exponential map at the identity is given by

$$\exp_e : T_e D^s_\mu(M) \to D^s_\mu(M)$$

$$u \mapsto \eta_1,$$

where $t \mapsto \eta_t$ is the unique L^2 geodesic with $\partial_t \eta(0, x) = u(x)$. This is a diffeomorphism near 0.

Theorem (Ebin, Misiołek, Preston - 2006)

The L^2 exponential map \exp_e is a nonlinear smooth Fredholm map of index zero.
Singularities of \exp_e are called *conjugate points*. Their existence in $\mathcal{D}_\mu^s(M)$ was conjectured by Arnold and first proved by Misiołek (1993). Many other examples are known: Shnirelman 1994, when $\dim(M) \geq 3$; Misiołek 1996, when $M = T^2$ with flat metric; Ebin, Misiołek, Preston 2006, $u = \partial_\theta$ on $D_2 \times S^1$; Preston, Washabaugh 2014, axisymmetric 3D flows with swirl; Benn 2015, $\dim(M) = 2$, along isometry group.
Singularities of \exp_e are called *conjugate points*. Their existence in $D^s_\mu(M)$ was conjectured by Arnold and first proved by Misiołek (1993). Many other examples are known:

- Shnirelman 1994, when $\dim(M) \geq 3$;
Singularities of \(\exp_e\) are called *conjugate points*. Their existence in \(\mathcal{D}_\mu^s(M)\) was conjectured by Arnold and first proved by Misiołek (1993). Many other examples are known:

- Shnirelman 1994, when \(\dim(M) \geq 3\);
- Misiołek 1996, when \(M = \mathbb{T}^2\) with flat metric;
Singularities of \(\exp_e \) are called \textit{conjugate points}. Their existence in \(D^s_\mu(M) \) was conjectured by Arnold and first proved by Misiołek (1993). Many other examples are known:

- Shnirelman 1994, when \(\dim(M) \geq 3 \);
- Misiołek 1996, when \(M = \mathbb{T}^2 \) with flat metric;
- Ebin, Misiołek, Preston 2006, \(u = \partial_\theta \) on \(D^2 \times S^1 \);
Singularities of \exp_e are called *conjugate points*. Their existence in $\mathcal{D}_\mu^s(M)$ was conjectured by Arnold and first proved by Misiołek (1993). Many other examples are known:

- Shnirelman 1994, when $\dim(M) \geq 3$;
- Misiołek 1996, when $M = \mathbb{T}^2$ with flat metric;
- Ebin, Misiołek, Preston 2006, $u = \partial_\theta$ on $D^2 \times S^1$;
- Preston, Washabaugh 2014, axisymmetric 3D flows with swirl;
Singularities of \exp_e are called *conjugate points*. Their existence in $D_{\mu}^s(M)$ was conjectured by Arnold and first proved by Misiołek (1993). Many other examples are known:

- Shnirelman 1994, when $\dim(M) \geq 3$;
- Misiołek 1996, when $M = \mathbb{T}^2$ with flat metric;
- Ebin, Misiołek, Preston 2006, $u = \partial_\theta$ on $D^2 \times S^1$;
- Preston, Washabaugh 2014, axisymmetric 3D flows with swirl;
- Benn 2015, $\dim(M) = 2$, along isometry group.
In this talk, we will focus on regular conjugate points. They form an open, dense subset of the set of all conjugate points.
In this talk, we will focus on regular conjugate points. They form an open, dense subset of the set of all conjugate points.

Definition

A conjugate point $u_0 \in T_e \mathcal{D}^s_\mu(M)$ is said to be regular if there exists an open set $U \subseteq T_e \mathcal{D}^s_\mu(M)$ containing u_0 with the following property: for any ray \vec{r} intersecting U, the line segment $\vec{r} \cap U$ contains at most one conjugate point.
Regular Conjugate Points

$T_e D^s_\mu(M)$

u_0
Regular Conjugate Points

\[T_eD_s^\mu(M) \]
Regular Conjugate Points

Let $eD^s_{\mu}(M)$ be the exponential map on the diffeomorphism group $\mathcal{D}(M)$, where e is the identity element and $\mathcal{D}(M)$ is the group of diffeomorphisms of a manifold M. The diagram illustrates the relationship between $TeD^s_{\mu}(M)$ and the set U of regular conjugate points.
Regular Conjugate Points

$T_eD^s_\mu(M)$
Regular Conjugate Points

$T_e D^s_\mu(M)$
Regular Conjugate Points
Regular Conjugate Points

\[T_{eD^s_\mu}(M) \]
The set $C_e \subseteq T_eD^s_{\mu}(M)$ of regular conjugate points is a smooth submanifold of $T_eD^s_{\mu}(M)$ of codimension 1. Moreover, for any $u_0 \in C_e$, its tangent space satisfies

$$T_{u_0}C_e \oplus \mathbb{R}u_0 \simeq T_eD^s_{\mu}(M).$$
Regular Conjugate Points

Theorem (Smoothness of the singular set)

The set $C_e \subseteq T_eD_s^\mu(M)$ of regular conjugate points is a smooth submanifold of $T_eD_s^\mu(M)$ of codimension 1. Moreover, for any $u_0 \in C_e$, its tangent space satisfies

$$T_{u_0}C_e \oplus \mathbb{R}u_0 \cong T_eD_s^\mu(M).$$

Main ingredients in the proof:

L2 Morse index theorem (Misiołek, Preston, 2009).

Perturbation theory of self-adjoint operators.
Regular Conjugate Points

Theorem (Smoothness of the singular set)

The set $C_e \subseteq T_e \mathcal{D}^s_{\mu}(M)$ of regular conjugate points is a smooth submanifold of $T_e \mathcal{D}^s_{\mu}(M)$ of codimension 1. Moreover, for any $u_0 \in C_e$, its tangent space satisfies

$$T_{u_0} C_e \oplus \mathbb{R} u_0 \simeq T_e \mathcal{D}^s_{\mu}(M).$$

Main ingredients in the proof:

- L^2 Morse index theorem (Misiołek, Preston, 2009).
The set $C_e \subseteq T_e \mathcal{D}^s_\mu(M)$ of regular conjugate points is a smooth submanifold of $T_e \mathcal{D}^s_\mu(M)$ of codimension 1. Moreover, for any $u_0 \in C_e$, its tangent space satisfies

$$T_{u_0} C_e \oplus \mathbb{R}u_0 \cong T_e \mathcal{D}^s_\mu(M).$$

Main ingredients in the proof:

- L^2 Morse index theorem (Misiołek, Preston, 2009).
- Perturbation theory of self-adjoint operators.
Normal Forms

First, we focus on regular conjugate points of multiplicity $k \geq 2$.

Theorem (Normal forms – First case)

Let $u_0 \in \mathbb{C} \mathbb{C}$ be a regular conjugate point of multiplicity $k \geq 2$.

Then, locally near u_0, \exp has the form:

$$
\exp : \mathbb{R}^{k+1} \times H \to \mathbb{R}^{k+1} \times H
$$

where H is a Hilbert space.
Normal Forms

First, we focus on regular conjugate points of multiplicity \(k \geq 2 \).

Theorem (Normal forms – First case)

Let \(u_0 \in C_e \) be a regular conjugate point of multiplicity \(k \geq 2 \). Then, locally near \(u_0 \), \(\exp_e \) has the form

\[
\exp_e : \mathbb{R}^{k+1} \times \mathbb{H} \to \mathbb{R}^{k+1} \times \mathbb{H} \\
(t, x_1, \ldots, x_k, v) \mapsto (t, tx_1, tx_2, \ldots, tx_k, v)
\]

where \(\mathbb{H} \) is a Hilbert space.
Let $u_0 \in C_e$ be a regular conjugate point of multiplicity 1 such that $\ker d\exp_e(u_0) \nsubseteq T_{u_0} C_e$. Then, locally near u_0, \exp_e has the form

$$\exp_e : \mathbb{R} \times \mathbb{H} \to \mathbb{R} \times \mathbb{H}$$

$$(t, \nu) \mapsto (t^2, \nu)$$

where \mathbb{H} is a Hilbert space.
Theorem (Normal forms – Third case – cusps)

Let \(u_0 \in C_e \) be a regular conjugate point of multiplicity 1 such that \(\ker d \exp_e(u_0) \subseteq T_{u_0} C_e \). Suppose \(u_0 \) is normal to \(C_e \). Let \(\Pi \) be the \(L^2 \) shape tensor of \(C_e \subseteq T_e D^s_\mu(M) \). If

\[
\Pi(w, w) \neq -\|w\|_{L^2}^2, \quad \forall w \in \ker d \exp_e(u_0),
\]

then, locally near \(u_0 \), \(\exp_e \) has the form

\[
\exp_e : \mathbb{R}^2 \times \mathbb{H} \to \mathbb{R}^2 \times \mathbb{H}
\]

\[
(t, s, v) \mapsto (t^3 - st, s, v)
\]

where \(\mathbb{H} \) is a Hilbert space.
Corollary (L^2 Morse-Littauer)

The L^2 exponential map $\exp_e : T_e D^s_\mu(M) \rightarrow D^s_\mu(M)$ is not injective on any neighborhood of a conjugate point.
Corollary (L^2 Morse-Littauer)

The L^2 exponential map $\exp_e : T_e D^s_\mu(M) \to D^s_\mu(M)$ is not injective on any neighborhood of a conjugate point.

Proof. First, note that all of the above local forms are not injective.
Corollary (L^2 Morse-Littauer)

The L^2 exponential map $\exp_e : T_e \mathcal{D}_\mu^s(M) \to \mathcal{D}_\mu^s(M)$ is not injective on any neighborhood of a conjugate point.

Proof. First, note that all of the above local forms are not injective. Let $u_0 \in T_e \mathcal{D}_\mu^s(M)$ be any regular conjugate point. One of the following holds:

- For all conjugate points u in a neighborhood of u_0, we have $\ker d\exp_e(u) \subseteq T_u C_e$.

Leandro Lichtenfelz
University of Notre Dame
Singularity of the L^2 Exponential Map on Diffeomorphism Groups
Corollary (L^2 Morse-Littauer)

The L^2 exponential map $\exp_e : T_e D^s_\mu(M) \to D^s_\mu(M)$ is not injective on any neighborhood of a conjugate point.

Proof. First, note that all of the above local forms are not injective. Let $u_0 \in T_e D^s_\mu(M)$ be any regular conjugate point. One of the following holds:

- For all conjugate points u in a neighborhood of u_0, we have $\ker d \exp_e(u) \subseteq T_u C_e$.
- There exists a sequence $\{u_n\}_{n \geq 1}$ converging to u_0 with $\ker d \exp_e(u_n) \nsubseteq T_{u_n} C_e$.
Normal Forms

Corollary (L^2 Morse-Littauer)

The L^2 exponential map $\exp_e : T_e \mathcal{D}_\mu^s(M) \to \mathcal{D}_\mu^s(M)$ is not injective on any neighborhood of a conjugate point.

Proof. First, note that all of the above local forms are not injective. Let $u_0 \in T_e \mathcal{D}_\mu^s(M)$ be any regular conjugate point. One of the following holds:

- For all conjugate points u in a neighborhood of u_0, we have $\ker d \exp_e(u) \subseteq T_u C_e$.
- There exists a sequence $\{u_n\}_{n \geq 1}$ converging to u_0 with $\ker d \exp_e(u_n) \nsubseteq T_{u_n} C_e$.
For all conjugate points u in a neighborhood of u_0, we have $\ker d \exp_e(u) \subseteq T_u C_e$.

There exists a sequence $\{u_n\}_{n \geq 1}$ converging to u_0 with $\ker d \exp_e(u_n) \not\subseteq T_{u_n} C_e$.

In the first case, \exp_e has a normal form at u_0, which is not injective.
For all conjugate points u in a neighborhood of u_0, we have
$$\ker d \exp_e(u) \subseteq T_u C_e.$$
There exists a sequence $\{u_n\}_{n \geq 1}$ converging to u_0 with
$$\ker d \exp_e(u_n) \not\subseteq T_{u_n} C_e.$$

In the first case, \exp_e has a normal form at u_0, which is not injective.
In the second case, \exp_e is a fold near each u_n, so it cannot be injective near u_0.

The result follows from the fact that regular conjugate points are dense in the set of all conjugate points. ■
For all conjugate points u in a neighborhood of u_0, we have $\ker d \exp_e(u) \subseteq T_u C_e$.

There exists a sequence $\{u_n\}_{n \geq 1}$ converging to u_0 with $\ker d \exp_e(u_n) \not\subseteq T_{u_n} C_e$.

In the first case, \exp_e has a normal form at u_0, which is not injective.
In the second case, \exp_e is a fold near each u_n, so it cannot be injective near u_0.

The result follows from the fact that regular conjugate points are dense in the set of all conjugate points. ■