Singularities of the L^2 Exponential Map on Diffeomorphism Groups

Leandro Lichtenfelz

University of Notre Dame

Boston University/Keio University Workshop June 26-30, 2017

Leandro Lichtenfelz

Singularities of the L^2 Exponential Map on Diffeomorphism Groups

University of Notre Dame

Let *M* be a compact, oriented Riemannian manifold of dimension n = 2, 3. The Cauchy problem for the Euler equations of hydrodynamics is

$$\partial_t u + \nabla_u u = -\nabla p$$

div(u) = 0 (1)
 $u(0) = u_0$

where $u: M \times \mathbb{R} \to TM$ is the velocity field and $p: M \times \mathbb{R} \to \mathbb{R}$ is the pressure.

Let *M* be a compact, oriented Riemannian manifold of dimension n = 2, 3. The Cauchy problem for the Euler equations of hydrodynamics is

$$\partial_t u + \nabla_u u = -\nabla p$$

div(u) = 0 (1)
 $u(0) = u_0$

where $u: M \times \mathbb{R} \to TM$ is the velocity field and $p: M \times \mathbb{R} \to \mathbb{R}$ is the pressure.

Remark

In Sobolev spaces, global well-posedness of (1) is known when n = 2 (Gunther, Lichtenstein 1920s, Wolibner, 1933).

Leandro Lichtenfelz

University of Notre Dame

Lagrangian description of the fluid flow on M:

 $\eta(t,x) = \text{position at time } t \text{ of the fluid particle which at time 0}$ was at $x \in M$.

Leandro Lichtenfelz Singularities of the L^2 Exponential Map on Diffeomorphism Groups University of Notre Dame

Image: A mathematical states and a mathem

Lagrangian description of the fluid flow on M:

 $\eta(t,x) = \text{position at time } t \text{ of the fluid particle which at time 0}$ was at $x \in M$.

The map η can be viewed as a curve of volume-preserving diffeomorphisms

 $\eta_t: M \to M$ $x \mapsto \eta(t, x)$

Leandro Lichtenfelz

Singularities of the L^2 Exponential Map on Diffeomorphism Groups

University of Notre Dame

Image: Image:

Lagrangian description of the fluid flow on M:

 $\eta(t,x) = \text{position at time } t \text{ of the fluid particle which at time 0}$ was at $x \in M$.

The map η can be viewed as a curve of volume-preserving diffeomorphisms

$$egin{aligned} \eta_t &\colon \mathcal{M} o \mathcal{M} \ & x \mapsto \eta(t,x) \end{aligned}$$

University of Notre Dame

We denote by $\mathcal{D}^{s}_{\mu}(M)$ the set of all H^{s} volume-preserving diffeomorphisms. μ denotes the Riemannian volume.

Leandro Lichtenfelz

On $\mathcal{D}^{s}_{\mu}(M)$, we have a natural Riemannian metric, the L^{2} metric, given at the identity e by

$$\langle u,v\rangle_{L^2}=\int_M\langle u(p),v(p)\rangle d\mu(p),\ u,v\in T_e\mathcal{D}^s_\mu(M).$$

Leandro Lichtenfelz Singularities of the L^2 Exponential Map on Diffeomorphism Groups University of Notre Dame

On $\mathcal{D}^{s}_{\mu}(M)$, we have a natural Riemannian metric, the L^{2} metric, given at the identity *e* by

$$\langle u,v\rangle_{L^2}=\int_{\mathcal{M}}\langle u(p),v(p)\rangle d\mu(p), \ u,v\in T_e\mathcal{D}^s_{\mu}(\mathcal{M}).$$

This metric extends smoothly by right-translations to a metric on $\mathcal{D}^{s}_{\mu}(M)$. Despite being a weak Riemannian metric, it has a Levi-Civita connection and a smooth geodesic spray (Ebin, Marsden - 1970).

On $\mathcal{D}^{s}_{\mu}(M)$, we have a natural Riemannian metric, the L^{2} metric, given at the identity *e* by

$$\langle u,v\rangle_{L^2}=\int_M\langle u(p),v(p)\rangle d\mu(p), \ u,v\in T_e\mathcal{D}^s_\mu(M).$$

This metric extends smoothly by right-translations to a metric on $\mathcal{D}^s_{\mu}(M)$. Despite being a weak Riemannian metric, it has a Levi-Civita connection and a smooth geodesic spray (Ebin, Marsden - 1970).

Arnold (1966) observed that a curve η_t in $\mathcal{D}^s_{\mu}(M)$ is a geodesic of this metric if and only if the corresponding vector field u(t,x) solves the Euler equations.

In light of Arnold's result, $\mathcal{D}^{s}_{\mu}(M)$ is geodesically complete when n = 2.

Leandro Lichtenfelz Singularities of the L^2 Exponential Map on Diffeomorphism Groups University of Notre Dame

In light of Arnold's result, $\mathcal{D}^{s}_{\mu}(M)$ is geodesically complete when n = 2.

The L^2 exponential map at the identity is given by

$$\exp_e: T_e \mathcal{D}^s_{\mu}(M) \to \mathcal{D}^s_{\mu}(M)$$
$$u \mapsto \eta_1,$$

where $t \mapsto \eta_t$ is the unique L^2 geodesic with $\partial_t \eta(0, x) = u(x)$. This is a diffeomorphism near 0. In light of Arnold's result, $\mathcal{D}^{s}_{\mu}(M)$ is geodesically complete when n = 2.

The L^2 exponential map at the identity is given by

$$\exp_e: T_e \mathcal{D}^s_{\mu}(M) \to \mathcal{D}^s_{\mu}(M)$$
$$u \mapsto \eta_1,$$

where $t \mapsto \eta_t$ is the unique L^2 geodesic with $\partial_t \eta(0, x) = u(x)$. This is a diffeomorphism near 0.

Theorem (Ebin, Misiołek, Preston - 2006)

The L^2 exponential map \exp_e is a nonlinear smooth Fredholm map of index zero.

Image: A math a math

University of Notre Dame

Leandro Lichtenfelz

University of Notre Dame

Shnirelman 1994, when dim $(M) \ge 3$;

University of Notre Dame

- Shnirelman 1994, when dim $(M) \ge 3$;
- Misiołek 1996, when $M = \mathbb{T}^2$ with flat metric;

- Shnirelman 1994, when dim $(M) \ge 3$;
- Misiołek 1996, when $M = \mathbb{T}^2$ with flat metric;
- Ebin, Misiołek, Preston 2006, $u = \partial_{\theta}$ on $D^2 \times S^1$;

Leandro Lichtenfelz

- Shnirelman 1994, when dim $(M) \ge 3$;
- Misiołek 1996, when $M = \mathbb{T}^2$ with flat metric;
- Ebin, Misiołek, Preston 2006, $u = \partial_{\theta}$ on $D^2 \times S^1$;
- Preston, Washabaugh 2014, axisymmetric 3D flows with swirl;

- Shnirelman 1994, when dim $(M) \ge 3$;
- Misiołek 1996, when $M = \mathbb{T}^2$ with flat metric;
- Ebin, Misiołek, Preston 2006, $u = \partial_{\theta}$ on $D^2 \times S^1$;
- Preston, Washabaugh 2014, axisymmetric 3D flows with swirl;
- Benn 2015, $\dim(M) = 2$, along isometry group.

In this talk, we will focus on **regular conjugate points**. They form an **open**, **dense** subset of the set of all conjugate points.

In this talk, we will focus on **regular conjugate points**. They form an **open**, **dense** subset of the set of all conjugate points.

Definition

A conjugate point $u_0 \in T_e \mathcal{D}^s_{\mu}(M)$ is said to be **regular** if there exists an open set $U \subseteq T_e \mathcal{D}^s_{\mu}(M)$ containing u_0 with the following property: for any ray \vec{r} intersecting U, the line segment $\vec{r} \cap U$ contains at most one conjugate point.

Leandro Lichtenfelz

Leandro Lichtenfelz

Leandro Lichtenfelz

Leandro Lichtenfelz

Singularities of the L^2 Exponential Map on Diffeomorphism Groups

University of Notre Dame

Leandro Lichtenfelz

Leandro Lichtenfelz

Singularities of the L^2 Exponential Map on Diffeomorphism Groups

University of Notre Dame

Leandro Lichtenfelz

Theorem (Smoothness of the singular set)

The set $C_e \subseteq T_e \mathcal{D}^s_{\mu}(M)$ of regular conjugate points is a smooth submanifold of $T_e \mathcal{D}^s_{\mu}(M)$ of codimension 1. Moreover, for any $u_0 \in C_e$, its tangent space satisfies

$$T_{u_0}C_e\oplus \mathbb{R}u_0\simeq T_e\mathcal{D}^s_\mu(M).$$

Leandro Lichtenfelz

University of Notre Dame

Theorem (Smoothness of the singular set)

The set $C_e \subseteq T_e \mathcal{D}^s_{\mu}(M)$ of regular conjugate points is a smooth submanifold of $T_e \mathcal{D}^s_{\mu}(M)$ of codimension 1. Moreover, for any $u_0 \in C_e$, its tangent space satisfies

$$T_{u_0}C_e\oplus \mathbb{R}u_0\simeq T_e\mathcal{D}^s_\mu(M).$$

University of Notre Dame

Main ingredients in the proof:

Leandro Lichtenfelz

Theorem (Smoothness of the singular set)

The set $C_e \subseteq T_e \mathcal{D}^s_{\mu}(M)$ of regular conjugate points is a smooth submanifold of $T_e \mathcal{D}^s_{\mu}(M)$ of codimension 1. Moreover, for any $u_0 \in C_e$, its tangent space satisfies

$$T_{u_0}C_e\oplus \mathbb{R}u_0\simeq T_e\mathcal{D}^s_{\mu}(M).$$

University of Notre Dame

Main ingredients in the proof:

• L^2 Morse index theorem (Misiołek, Preston, 2009).

Theorem (Smoothness of the singular set)

The set $C_e \subseteq T_e \mathcal{D}^s_{\mu}(M)$ of regular conjugate points is a smooth submanifold of $T_e \mathcal{D}^s_{\mu}(M)$ of codimension 1. Moreover, for any $u_0 \in C_e$, its tangent space satisfies

$$T_{u_0}C_e\oplus\mathbb{R}u_0\simeq T_e\mathcal{D}^s_{\mu}(M).$$

Main ingredients in the proof:

- L^2 Morse index theorem (Misiołek, Preston, 2009).
- Perturbation theory of self-adjoint operators.

Image: A math a math

First, we focus on regular conjugate points of multiplicity $k \ge 2$.

Leandro Lichtenfelz Singularities of the L^2 Exponential Map on Diffeomorphism Groups

First, we focus on regular conjugate points of multiplicity $k \ge 2$.

Theorem (Normal forms – First case)

Let $u_0 \in C_e$ be a regular conjugate point of multiplicity $k \ge 2$. Then, locally near u_0 , exp_e has the form

 $\begin{aligned} \exp_{e} : \mathbb{R}^{k+1} \times \mathbb{H} \to \mathbb{R}^{k+1} \times \mathbb{H} \\ (t, x_{1}, \dots, x_{k}, v) \mapsto (t, tx_{1}, tx_{2}, \dots, tx_{k}, v) \end{aligned}$

University of Notre Dame

where \mathbb{H} is a Hilbert space.

Leandro Lichtenfelz

Normal Forms

Theorem (Normal forms – Second case – folds)

Let $u_0 \in C_e$ be a regular conjugate point of multiplicity 1 such that ker $d \exp_e(u_0) \not\subseteq T_{u_0}C_e$. Then, locally near u_0 , \exp_e has the form

$$\exp_e : \mathbb{R} imes \mathbb{H} o \mathbb{R} imes \mathbb{H}$$

 $(t, v) \mapsto (t^2, v)$

University of Notre Dame

where \mathbb{H} is a Hilbert space.

Leandro Lichtenfelz

Normal Forms

Theorem (Normal forms – Third case – cusps)

Let $u_0 \in C_e$ be a regular conjugate point of multiplicity 1 such that ker $d \exp_e(u_0) \subseteq T_{u_0}C_e$. Suppose u_0 is normal to C_e . Let Π be the L^2 shape tensor of $C_e \subseteq T_e \mathcal{D}^s_{\mu}(M)$. If

$$\Pi(w,w) \neq - \|w\|_{L^2}^2, \ \forall w \in \ker d \exp_e(u_0),$$

then, locally near u_0 , exp_e has the form

$$\begin{aligned} \exp_e : \mathbb{R}^2 \times \mathbb{H} \to \mathbb{R}^2 \times \mathbb{H} \\ (t, s, v) \mapsto (t^3 - st, s, v) \end{aligned}$$

where \mathbb{H} is a Hilbert space.

Leandro Lichtenfelz

Singularities of the L^2 Exponential Map on Diffeomorphism Groups

University of Notre Dame

Image: Image:

The L^2 exponential map $\exp_e : T_e \mathcal{D}^s_\mu(M) \to \mathcal{D}^s_\mu(M)$ is not injective on any neighborhood of a conjugate point.

Leandro Lichtenfelz Singularities of the L^2 Exponential Map on Diffeomorphism Groups University of Notre Dame

The L^2 exponential map $\exp_e : T_e \mathcal{D}^s_\mu(M) \to \mathcal{D}^s_\mu(M)$ is not injective on any neighborhood of a conjugate point.

Proof. First, note that all of the above local forms are not injective.

Leandro Lichtenfelz Singularities of the L^2 Exponential Map on Diffeomorphism Groups University of Notre Dame

The L^2 exponential map $\exp_e : T_e \mathcal{D}^s_\mu(M) \to \mathcal{D}^s_\mu(M)$ is not injective on any neighborhood of a conjugate point.

Proof. First, note that all of the above local forms are not injective. Let $u_0 \in T_e \mathcal{D}^s_{\mu}(M)$ be any regular conjugate point. One of the following holds:

For all conjugate points u in a neighborhood of u_0 , we have $\ker d \exp_e(u) \subseteq T_u C_e$.

The L^2 exponential map $\exp_e : T_e \mathcal{D}^s_\mu(M) \to \mathcal{D}^s_\mu(M)$ is not injective on any neighborhood of a conjugate point.

Proof. First, note that all of the above local forms are not injective. Let $u_0 \in T_e \mathcal{D}^s_{\mu}(M)$ be any regular conjugate point. One of the following holds:

- For all conjugate points u in a neighborhood of u₀, we have ker d exp_e(u) ⊆ T_uC_e.
- There exists a sequence {u_n}_{n≥1} converging to u₀ with ker d exp_e(u_n) ⊈ T_{u_n}C_e.

Image: A math a math

The L^2 exponential map $\exp_e : T_e \mathcal{D}^s_\mu(M) \to \mathcal{D}^s_\mu(M)$ is not injective on any neighborhood of a conjugate point.

Proof. First, note that all of the above local forms are not injective. Let $u_0 \in T_e \mathcal{D}^s_{\mu}(M)$ be any regular conjugate point. One of the following holds:

- For all conjugate points u in a neighborhood of u₀, we have ker d exp_e(u) ⊆ T_uC_e.
- There exists a sequence {u_n}_{n≥1} converging to u₀ with ker d exp_e(u_n) ⊈ T_{u_n}C_e.

Image: A math a math

For all conjugate points u in a neighborhood of u_0 , we have $\ker d \exp_e(u) \subseteq T_u C_e$.

< □ > < 同 >

University of Notre Dame

There exists a sequence {u_n}_{n≥1} converging to u₀ with ker d exp_e(u_n) ⊈ T_{u_n}C_e.

In the first case, \exp_e has a normal form at u_0 , which is not injective.

- For all conjugate points u in a neighborhood of u_0 , we have $\ker d \exp_e(u) \subseteq T_u C_e$.
- There exists a sequence $\{u_n\}_{n\geq 1}$ converging to u_0 with ker $d \exp_e(u_n) \not\subseteq T_{u_n} C_e$.

In the first case, \exp_e has a normal form at u_0 , which is not injective.

In the second case, \exp_e is a fold near each u_n , so it cannot be injective near u_0 .

- For all conjugate points u in a neighborhood of u_0 , we have $\ker d \exp_e(u) \subseteq T_u C_e$.
- There exists a sequence $\{u_n\}_{n\geq 1}$ converging to u_0 with ker $d \exp_e(u_n) \not\subseteq T_{u_n} C_e$.

In the first case, \exp_e has a normal form at u_0 , which is not injective.

In the second case, \exp_e is a fold near each u_n , so it cannot be injective near u_0 .

The result follows from the fact that regular conjugate points are dense in the set of all conjugate points. \blacksquare

Image: A math a math