K-amenability and the Baum-Connes Conjecture for a-T-menable groups Shintaro Nishikawa (sxn28@psu.edu), Pennsylvania State University

I. Objective

This poster aims to describe the Higson-Kasparov Theorem which proves K-amenability and the Baum-Connes Conjecture for so called a-T-menable groups: groups which act properly and isometrically on Hilbert space.

II. Notation and Terminology

- In this poster, *G* always denotes a countable discrete group.
- By a representation of a group G, we mean a complex (separable) Hilbert space \mathcal{H} equipped with a group homomorphism from *G* to the group $U(\mathcal{H})$ of unitary operators on \mathcal{H} .
- A left regular representation λ_G of G is a Hilbert space $l^2(G)$ of square summable functions on G equipped with a left translation action of G.
- Given representations of *G* on Hilbert spaces \mathcal{H}_1 and \mathcal{H}_2 , \mathcal{H}_1 is said to be weakly contained in \mathcal{H}_2 , if for each $\xi \in \mathcal{H}_1$, for any finite subset *F* of *G* and for any $\epsilon > 0$, there are vectors ξ_j $(j = 1, \dots, m)$ in \mathcal{H}_2 such that $\sum \langle \xi_j, g(\xi_j) \rangle_{\mathcal{H}_2} - \langle \xi, g(\xi) \rangle_{\mathcal{H}_1} | < \epsilon \text{ for all } g \in F.$

III. Amenability of groups

The notion of amenability of groups offers us a rich field of study where Geometry, Analysis and Representation Theory of Groups intersect each other.

Definition. A group G is **amenable** if a trivial representation of Gon a one-dimensional Hilbert space $\mathbb C$ is weakly contained in the left regular representation λ_G of G on $l^2(G)$.

• Any finite group is amenable; Example.

- Any abelian group is amenable, e.g. $G = \mathbb{Z}$;
- Any non-abelian free group F_n is not amenable.

Finite groups are the only trivial examples where the trivial representation of G on \mathbb{C} is actually contained in the left regular representation λ_G of G on $l^2(G)$.

IV. Kasparov's group ring $R(G) = KK^G(\mathbb{C}, \mathbb{C})$

Kasparov's equivariant *KK*-theory allows us to study the representations of a group G in the framework of Index theory.

Definition. Kasparov's group ring R(G) of a group G is a ring consisting of equivalence classes of cycles of the form $[\mathcal{H}_0 \xrightarrow{U} \mathcal{H}_1]$ where $\mathcal{H}_0, \mathcal{H}_1$ are (complex separable) Hilbert spaces equipped with representations of G and U is a bounded linear operator where $\operatorname{Id}_{\mathcal{H}_0} - U^*U$, $\operatorname{Id}_{\mathcal{H}_1} - UU^*$ and g(U) - U are all compact operators.

- Equivalence relations are defined by introducing the notion of homotopy of such cycles;
- Cycles of the form $[\mathcal{H} \xrightarrow{\mathrm{Id}_{\mathcal{H}}} \mathcal{H}]$ defines zero element in the ring;
- Addition is defined by means of direct sums of cycles;
- Multiplication is defined by means of Kasparov product;
- The cycle $[\mathbb{C} \xrightarrow{0} 0]$ where a representation of G on \mathbb{C} is trivial defines the identity element of the ring and denoted as 1_G .

V. *K*-amenability of groups

The notion of *K*-amenability was first introduce by J. Cuntz in 1983 to study the *K*-theoretical amenability of groups.

Definition. A group G is K-amenable if the identity 1_G in R(G) can be expressed as a cycle of the form $[\mathcal{H}_0 \xrightarrow{U} \mathcal{H}_1]$ where $\mathcal{H}_0, \mathcal{H}_1$ are weakly contained in the left regular representation of G.

• Any amenable group *G* is *K*-amenable; Example.

- Any group which acts properly on a tree is *K*-amenable;
- Any non-compact group having Kazhdan's property-(T) is not *K*-amenable.

VI. a-T-menable groups

Definition. A group G is **a-T-menable** if it acts properly and affine isometrically on a (real) Hilbert space.

Example.

- Any amenable group *G* is a-T-menable;
- Any group which acts properly on a tree is a-T-menable;
- Any non-compact group having Kazhdan's property-(T) is not a-T-menable.

Theorem. (Higson Kasparov, 2001) All a-T-menable groups are *K*-amenable.

VII. The Baum-Connes Conjecture

Interestingly, the *K*-amenability of a-T-menable groups was proved as a byproduct of proving the Baum-Connes Conjecture for such groups.

The Baum-Connes Conjecture (Baum Connes, 1982)

- (abstract) *G*-equivariant Dirac operators.

VIII. The Higson-Kasparov Theorem

Theorem. (Higson Kasparov 2001) All a-T-menable groups are *K*-amenable and satisfy the Baum-Connes Conjecture.

- left regular representation of G.

Summary

(i). The *K*-amenability of groups was introduced to study *K*-theoritic amenability of groups. (ii). The *K*-amenability is somehow tightly related to the Baum-Connes Conjecture. (iii). The Higson-Kasparov Theorem shows the *K*-amenability and the Baum-Connes Conjecture for all a-T-menable groups.

• (Conjecture): The assembly map $\mu_G : K^G_*(EG) \to K_*(C^*_r(G))$ is an isomorphism of abelian groups for any group G.

• LH: Equivariant *K*-homology group of classifying space *EG*.

• RH: *K*-theory group of the reduced group C^* -algebra of *G*.

• The assembly map μ_G is defined by taking "G-Index" of

• It has been verified for example, for any a-T-menable groups, for any hyperbolic groups and for any Lie groups.

• The general case (e.g. $G = SL(n, \mathbb{Z})$ $(n \ge 3)$) is still open.

• The proof of this theorem follows the standard method to prove the Baum-Connes Conjecture, so-called Dual-Dirac method.

• The method applied to an a-T-menable group *G* shows the identity 1_G in R(G) can be expressed as geometrically nice as possible form which implies the Baum-Connes Conjecture.

• For example, it follows 1_G can be expressed as a cycle of the form $[\mathcal{H}_0 \xrightarrow{U} \mathcal{H}_1]$ where $\mathcal{H}_0, \mathcal{H}_1$ is **contained** in the (amplified)

• This is a-priori stronger than saying the *K*-amenability of *G* and highly-nontrivial even for amenable groups.