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Coxeter polyhedron in Hn

Bn := {x ∈ Rn+1 | |x | < 1}

Hn :=

(
Bn,

(
2

1−|x |2

)2∑n
i=1 dx

2
i

)
hyperbolic n-space

Definition

A Coxeter polyhedron in Hn is an n-dimensional convex polyhedron
in Hn with its dihedral angles are submultiples of π.

A convex polyhedron ∆ in Hn is compact if ∆ ∩ ∂Hn is empty, and
∆ is ideal if all of its vertices are in ∂Hn.
If a convex polyhedron ∆ with finite volume is non-compact, then it
has vertices in ∂Hn finitely. We call these vertices cusps.
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Coxeter polyhedron in Hn

Examples of Coxeter polyhedra in hyperbolic spaces

Jun Nonaka (Waseda University Senior High School Joint work with Ruth Kellerhals (University of Fribourg) )3 / 21



Hyperbolic Coxeter group

Definition

(G , S) is a Coxeter system if G = ⟨s ∈ S | (st)ms,t = 1 for s, t ∈ S⟩ with
satisfying the following conditions
1. ms,t = mt,s

2. ∀s ∈ S , then ms,s = 1
3. if s ̸= t, then ms,t ∈ {2, 3, · · · ,+∞}

G is called Coxeter group.
A group generated by reflections obtained by each face of a Coxeter
polyhedron (in Hn) is a (n-dimensional hyperbolic) Coxeter group.
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Hyperbolic Coxeter group

Coxeter polygons in H2

G1 = ⟨g1, g2, g3 | g2
1 = g2

2 = g2
3 = (g1g2)

2 = (g2g3)
4 = 1⟩

G2 = ⟨g1, g2, g3, g4 | g2
1 = g2

2 = g2
3 = g2

4 = 1⟩
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Hyperbolic Coxeter group

The tessellations of H2

Reference.
J. G. Ratcliffe, Foundations of Hyperbolic Manifolds Second Edditions,
Graduate Texts in Math., 149, Springer (2006)
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Growth rate

G : finitely generated group with generating set S
ℓS(g) := min{n ∈ N | g = s1 · · · sn, si ∈ S} (ℓS(1) = 0)
ak := #{g ∈ G | ℓS(g) = k} ( a0 = 1)

Definition (Growth function of (G, S))

fS(t) =
∞∑
k=0

akt
k

Definition (Growth rate of (G, S))

τ := lim sup
k→∞

k
√
ak

The radius of convergence of fS(t) is 1
τ
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Previous works

Theorem (Cannon-Wagreich 1992, Parry 1993)

The growth rates of Coxeter groups obtained from compact Coxeter
polyhedra in Hn for n = 2, 3 are Salem numbers.

A Salem number α > 1 is a real algebraic integer if all its conjugates
different from α are in the closed unit disk, and α has at least one
conjugate on the unit circle.
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Previous works

Theorem (Floyd 1992)

The growth rates of Coxeter groups obtained from non-compact
Coxeter polyhedra with finite area in H2 are Pisot numbers.

A Pisot number β > 1 is a real algebraic integer if all algebraic
conjugates different from β are of absolute value < 1.
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Previous works

Theorem (Kellerhals-Perren 2011)

The growth rates of Coxeter groups obtained from 4-dimensional
compact hyperbolic Coxeter polyhedra with at most six 3-faces are
Perron numbers.

A real algebraic integer γ > 1 is called Perron number if all its
conjugates different from γ are of absolute value < γ.

Theorem (Komori-Umemoto 2012)

The growth rates of Coxeter groups obtained from 3-dimensional
hyperbolic Coxeter polyhedra with four or five faces are Perron
numbers.

Jun Nonaka (Waseda University Senior High School Joint work with Ruth Kellerhals (University of Fribourg) )13 / 21



Main result 1

Theorem (N-Kellerhals, Komori-Yukita)

The growth rate of an ideal Coxeter polyhedron in H3 is a Perron
number.
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Theorem (Solomon 1966)

fS(t): the growth function of an irreducible spherical Coxeter group
(Γ, S) is given by fS(t) =

∏l
i=1[mi + 1]

where [n] := 1 + t + · · ·+ tn−1 and {m1 = 1,m2, · · · ,ml} is the set of
exponents (as defined in [Humphreys]).
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Symbols Coxeter graphs Exponents growth functions

An
d d · · · d d

1, 2, · · · , n [2, 3, · · · , n + 1]

Bn
d d · · · d d

1, 3, · · · , 2n − 1 [2, 4, · · · , 2n]

Dn

d d · · · d dd
1, 3, · · · , 2n − 3, n − 1 [2, 4, · · · , 2n − 2][n]

E6

d d d d dd
1, 4, 5, 7, 8, 11 [2, 5, 6, 8, 9, 12]

E7

d d d d d dd
1, 5, 7, 9, 11, 13, 17 [2, 6, 8, 10, 12, 14, 18]

E8

d d d d d d dd
1, 7, 11, 13, 17, 19, 23, 29 [2, 8, 12, 14, 18, 20, 24, 30]

F4
d d d d

1, 5, 7, 11 [2, 6, 8, 12]

H3
d d 5 d

1, 5, 9 [2, 6, 10]

H4
d d d 5 d

1, 11, 19, 29 [2, 12, 20, 30]

I2(m)
d dm

1,m − 1 [2,m]

Table: Exponents and growth functions of irreducible finite Coxeter groups [Kellerhals-Perren]

[m, n] = [m][n]
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Theorem (Steinberg 1968)

G = ⟨S | R⟩: Coxeter group
fS(t) : the growth function of G
GT = ⟨T | R⟩ : Coxeter subgroup of G generated by T ⊂ S
fT (t) : growth function of GT

F = {T | GT is finite}
Then

1

fS(t−1)
=

∑
T∈F

(−1)|T |

fT (t)
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P : an ideal Coxeter polyhedron in H3

f⟨P⟩(t) : the growth function of P

1

f⟨P⟩(t−1)
= 1− f

[2]
+

e2
[2, 2]

+
e3

[2, 3]
+

e4
[2, 4]

+
e6

[2, 6]

= 1− f

1 + t
+

6f − 2c − c1 − 12

2(1 + t)2
+

2c − 2f + 2c1 − c2 + 4

2(1 + t)(1 + t + t2)
+

c2
(1 + t)2(1 + t2)

+
2c − 2f − c1 − c2 + 4

2(1 + t)2(1 + t + t2)(1− t + t2)

f⟨P⟩(t) =
[2,2,3](1+t2)(1−t+t2)

(t−1)g⟨P⟩(t)

g⟨P⟩(t) = (c − 1)t7 + (c − f + 1)t6 + (c + f − c1/2− 4)t5

+(2c − 2f + (c1 − c2)/2 + 2)t4 + (2f − (c1 − c2)/2− 6)t3

+(c − f + c1/2)t
2 + (f − 3)t − 1
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Lemma (Komori-Umemoto 2012)

Consider the polynomial

g(t) =
n∑

k=1

bkt
k − 1 (n ≥ 2),

where bk is a non-negative integer.
Assume that the greatest common divisor of {k ∈ N | bk ̸= 0} is 1.
Then there is a real number r0, 0 < r0 < 1 which is the unique zero
of g(t) having the smallest absolute value of all zeros of g(t).

g⟨P⟩(t) = (c − 1)t7 + (c − f + 1)t6 + (c + f − c1/2− 4)t5

+(2c − 2f + (c1 − c2)/2 + 2)t4 + (2f − (c1 − c2)/2− 6)t3

+(c − f + c1/2)t
2 + (f − 3)t − 1
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Main result 2

Ideal Coxeter simplices in H3

τ(S1) ∼ 2.03074 τ(S2) ∼ 2.13040 τ(S3) ∼ 2.30278
vol(S1) ∼ 0.84579 vol(S2) ∼ 0.91597 vol(S3) ∼ 1.01492
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Main result 2

Theorem (N-Kellerhals, Komori-Yukita)

The Coxeter tetrahedron S1 has minimal growth rate among all
ideal Coxeter polyhedra of finite volume in H3, and as such is
unique. Its growth rate τ(S1) ∼ 2.03074 is the Perron number with
minimal polynomial t5 − t4 − t3 − t2 − t − 3.
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P, P ′: ideal Coxeter polyhedra in H3

τ(P), τ(P ′): the growth rates of P and P ′

If g⟨P⟩(t)− g⟨P′⟩(t) > 0 for t ∈ (0, 1), then 1
τ(P) <

1
τ(P′) .
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Main result 3

τ(∆): the growth rate of an ideal Coxeter polyhedron ∆

Theorem (N-Kellerhals)

Let P and P ′ be ideal Coxeter polyhedra in H3. Suppose that P has
a face F which is isometric to a face F ′ of P ′, and denote by P ∗F P ′

the ideal polyhedron arising by gluing P to P ′ along their isometric
faces F and F ′. If P ∗F P ′ is a Coxeter polyhedron, then

τ(P ∗F P ′) > max{τ(P), τ(P ′)}.
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τ(S1) ∼ 2.03074 τ(S2) ∼ 2.13040
τ(S1 ∗F S1) ∼ 2.74738 τ(S2 ∗F ′ S2) ∼ 2.84547
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τ(P1) ∼ 2.84547 τ(P2) ∼ 3.16204
τ(P1 ∗F P1) = 5 τ(P2 ∗F ′ P2) ∼ 4.54138
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The growth rates of Coxeter polyhedra in H3

Theorem (Yukita)

The growth rate of a non-compact Coxeter polyhedron in H3 is a
Perron number.
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Thank you for your attention!
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