The growth rates of ideal Coxeter polyhedra in hyperbolic 3-space

Jun Nonaka

Waseda University Senior High School

Joint work with Ruth Kellerhals (University of Fribourg)

June 26 2017 Boston University / Keio University Workshop 2017

$$B^{n} := \{x \in \mathbb{R}^{n+1} \mid |x| < 1\}$$

$$\mathbb{H}^{n} := \left(B^{n}, \left(\frac{2}{1-|x|^{2}}\right)^{2} \sum_{i=1}^{n} dx_{i}^{2}\right) \text{ hyperbolic } n\text{-space}$$

Definition

A Coxeter polyhedron in \mathbb{H}^n is an *n*-dimensional convex polyhedron in \mathbb{H}^n with its dihedral angles are submultiples of π .

A convex polyhedron Δ in \mathbb{H}^n is compact if $\overline{\Delta} \cap \partial \mathbb{H}^n$ is empty, and Δ is ideal if all of its vertices are in $\partial \mathbb{H}^n$.

If a convex polyhedron Δ with finite volume is non-compact, then it has vertices in $\partial \mathbb{H}^n$ finitely. We call these vertices cusps.

Coxeter polyhedron in \mathbb{H}^n

Examples of Coxeter polyhedra in hyperbolic spaces

3 K K 3 K

Definition

(G,S) is a Coxeter system if $G = \langle s \in S \mid (st)^{m_{s,t}} = 1$ for $s,t \in S \rangle$ with satisfying the following conditions

1.
$$m_{s,t} = m_{t,s}$$

2. $\forall s \in S$, then $m_{s,s} = 1$
3. if $s \neq t$, then $m_{s,t} \in \{2, 3, \cdots, +\infty\}$

G is called Coxeter group.

A group generated by reflections obtained by each face of a Coxeter polyhedron (in \mathbb{H}^n) is a (*n*-dimensional hyperbolic) Coxeter group.

Coxeter polygons in \mathbb{H}^2

$$\begin{array}{l} {{G_1} = \langle {{g_1},{g_2},{g_3}} \mid g_1^2 = g_2^2 = g_3^2 = ({{g_1}{g_2}})^2 = ({{g_2}{g_3}})^4 = 1 \rangle \\ {{G_2} = \langle {{g_1},{g_2},{g_3},{g_4}} \mid g_1^2 = g_2^2 = g_3^2 = g_4^2 = 1 \rangle \end{array}$$

.∋...>

Coxeter polygons in \mathbb{H}^2

$$\begin{array}{l} {{G_1} = \langle {{g_1},{g_2},{g_3}} \mid g_1^2 = g_2^2 = g_3^2 = ({{g_1}{g_2}})^2 = ({{g_2}{g_3}})^4 = 1 \rangle \\ {{G_2} = \langle {{g_1},{g_2},{g_3},{g_4}} \mid g_1^2 = g_2^2 = g_3^2 = g_4^2 = 1 \rangle \end{array}$$

∢ ∃ ▶

Coxeter polygons in \mathbb{H}^2

$$\begin{array}{l} {{G_1} = \langle {g_1},{g_2},{g_3} \mid g_1^2 = g_2^2 = g_3^2 = ({g_1}{g_2})^2 = ({g_2}{g_3})^4 = 1 \rangle } \\ {{G_2} = \langle {g_1},{g_2},{g_3},{g_4} \mid g_1^2 = g_2^2 = g_3^2 = g_4^2 = 1 \rangle } \end{array}$$

∢ ∃ ▶

Coxeter polygons in \mathbb{H}^2

$$\begin{array}{l} {{G_1} = \langle {g_1},{g_2},{g_3} \mid g_1^2 = g_2^2 = g_3^2 = ({g_1}{g_2})^2 = ({g_2}{g_3})^4 = 1 \rangle } \\ {{G_2} = \langle {g_1},{g_2},{g_3},{g_4} \mid g_1^2 = g_2^2 = g_3^2 = g_4^2 = 1 \rangle } \end{array}$$

-≣->

The tessellations of \mathbb{H}^2

Reference.

J. G. Ratcliffe, Foundations of Hyperbolic Manifolds Second Edditions, Graduate Texts in Math., **149**, Springer (2006)

G: finitely generated group with generating set S $\ell_S(g) := \min\{n \in \mathbb{N} \mid g = s_1 \cdots s_n, s_i \in S\} \ (\ell_S(1) = 0)$ $a_k := \#\{g \in G \mid \ell_S(g) = k\} \ (a_0 = 1)$

Definition (Growth function of (G, S))

$$f_{S}(t) = \sum_{k=0}^{\infty} a_{k} t^{k}$$

Definition (Growth rate of (G, S))

$$au := \limsup_{k o \infty} \sqrt[k]{a_k}$$

The radius of convergence of $f_S(t)$ is $\frac{1}{\tau}$

イロト イ理ト イヨト イヨト

Theorem (Cannon-Wagreich 1992, Parry 1993)

The growth rates of Coxeter groups obtained from compact Coxeter polyhedra in \mathbb{H}^n for n = 2, 3 are Salem numbers.

A Salem number $\alpha > 1$ is a real algebraic integer if all its conjugates different from α are in the closed unit disk, and α has at least one conjugate on the unit circle.

Theorem (Floyd 1992)

The growth rates of Coxeter groups obtained from non-compact Coxeter polyhedra with finite area in \mathbb{H}^2 are Pisot numbers.

A Pisot number $\beta > 1$ is a real algebraic integer if all algebraic conjugates different from β are of absolute value < 1.

Previous works

Theorem (Kellerhals-Perren 2011)

The growth rates of Coxeter groups obtained from 4-dimensional compact hyperbolic Coxeter polyhedra with at most six 3-faces are Perron numbers.

A real algebraic integer $\gamma > 1$ is called Perron number if all its conjugates different from γ are of absolute value $< \gamma$.

Theorem (Komori-Umemoto 2012)

The growth rates of Coxeter groups obtained from 3-dimensional hyperbolic Coxeter polyhedra with four or five faces are Perron numbers.

Theorem (N-Kellerhals, Komori-Yukita)

The growth rate of an ideal Coxeter polyhedron in \mathbb{H}^3 is a Perron number.

Theorem (Solomon 1966)

 $f_S(t)$: the growth function of an irreducible spherical Coxeter group (Γ, S) is given by $f_S(t) = \prod_{i=1}^{l} [m_i + 1]$ where $[n] := 1 + t + \dots + t^{n-1}$ and $\{m_1 = 1, m_2, \dots, m_l\}$ is the set of exponents (as defined in [Humphreys]).

イロト イ理ト イヨト イヨト

Symbols	Coxeter graphs	Exponents	growth functions
An	000	$1, 2, \cdots, n$	$[2, 3, \cdots, n+1]$
Bn	0-00	$1, 3, \cdots, 2n-1$	$[2, 4, \cdots, 2n]$
	0-00-0		
Dn	0	$1, 3, \cdots, 2n-3, n-1$	$[2,4,\cdots,2n-2][n]$
	0-0-0-0		
E ₆	0	1, 4, 5, 7, 8, 11	[2, 5, 6, 8, 9, 12]
	0-0-0-0-0		
E7	0	1, 5, 7, 9, 11, 13, 17	[2, 6, 8, 10, 12, 14, 18]
	0-0-0-0-0-0-0		
E ₈	0	1, 7, 11, 13, 17, 19, 23, 29	[2, 8, 12, 14, 18, 20, 24, 30]
F ₄	000	1, 5, 7, 11	[2, 6, 8, 12]
H ₃	00	1, 5, 9	[2, 6, 10]
H ₄	0-0-5-0	1, 11, 19, 29	[2, 12, 20, 30]
<i>I</i> ₂ (<i>m</i>)	0 <u> </u>	1, m - 1	[2, <i>m</i>]

Table: Exponents and growth functions of irreducible finite Coxeter groups [Kellerhals-Perren] [m, n] = [m][n]

3

イロン イ理 とくほと くほとう

Theorem (Steinberg 1968)

 $G = \langle S \mid R \rangle: \text{ Coxeter group}$ $f_S(t): \text{ the growth function of } G$ $G_T = \langle T \mid R \rangle: \text{ Coxeter subgroup of } G \text{ generated by } T \subset S$ $f_T(t): \text{ growth function of } G_T$ $F = \{T \mid G_T \text{ is finite}\}$ Then $1 \qquad \sum (-1)^{|T|}$

$$rac{1}{f_{\mathcal{S}}(t^{-1})} = \sum_{\mathcal{T}\in\mathcal{F}} rac{(-1)^{|\mathcal{T}|}}{f_{\mathcal{T}}(t)}$$

イロト イポト イヨト イヨト

P : an ideal Coxeter polyhedron in \mathbb{H}^3 $f_{\langle P \rangle}(t)$: the growth function of P

$$\begin{aligned} \frac{1}{f_{\langle P \rangle}(t^{-1})} &= 1 - \frac{f}{[2]} + \frac{e_2}{[2,2]} + \frac{e_3}{[2,3]} + \frac{e_4}{[2,4]} + \frac{e_6}{[2,6]} \\ &= 1 - \frac{f}{1+t} + \frac{6f - 2c - c_1 - 12}{2(1+t)^2} + \frac{2c - 2f + 2c_1 - c_2 + 4}{2(1+t)(1+t+t^2)} + \\ &+ \frac{2c - 2f - c_1 - c_2 + 4}{2(1+t)^2(1+t+t^2)(1-t+t^2)} \end{aligned}$$

$$\begin{split} f_{\langle P \rangle}(t) &= \frac{[2,2,3](1+t^2)(1-t+t^2)}{(t-1)g_{\langle P \rangle}(t)} \\ g_{\langle P \rangle}(t) &= (c-1)t^7 + (c-f+1)t^6 + (c+f-c_1/2-4)t^5 \\ &\quad + (2c-2f+(c_1-c_2)/2+2)t^4 + (2f-(c_1-c_2)/2-6)t^3 \\ &\quad + (c-f+c_1/2)t^2 + (f-3)t-1 \end{split}$$

Lemma (Komori-Umemoto 2012)

Consider the polynomial

$$g(t) = \sum_{k=1}^{n} b_k t^k - 1 \quad (n \ge 2),$$

where b_k is a non-negative integer.

Assume that the greatest common divisor of $\{k \in \mathbb{N} \mid b_k \neq 0\}$ is 1. Then there is a real number r_0 , $0 < r_0 < 1$ which is the unique zero of g(t) having the smallest absolute value of all zeros of g(t).

$$g_{\langle P \rangle}(t) = (c-1)t^7 + (c-f+1)t^6 + (c+f-c_1/2-4)t^5 \\ + (2c-2f+(c_1-c_2)/2+2)t^4 + (2f-(c_1-c_2)/2-6)t^3 \\ + (c-f+c_1/2)t^2 + (f-3)t - 1$$

Jun Nonaka (Waseda University Senior High

Ideal Coxeter simplices in \mathbb{H}^3

 $au(S_1) \sim 2.03074$ vol $(S_1) \sim 0.84579$ $au(S_2) \sim 2.13040$ $au(S_3) \sim vol(S_2) \sim 0.91597$ $ext{vol}(S_3) \sim vol(S_3) \sim vol(S_3)$

イロト イポト イヨト イヨト

Theorem (N-Kellerhals, Komori-Yukita)

The Coxeter tetrahedron S_1 has minimal growth rate among all ideal Coxeter polyhedra of finite volume in \mathbb{H}^3 , and as such is unique. Its growth rate $\tau(S_1) \sim 2.03074$ is the Perron number with minimal polynomial $t^5 - t^4 - t^3 - t^2 - t - 3$.

P, *P*': ideal Coxeter polyhedra in \mathbb{H}^3 $\tau(P)$, $\tau(P')$: the growth rates of *P* and *P'* If $g_{\langle P \rangle}(t) - g_{\langle P' \rangle}(t) > 0$ for $t \in (0, 1)$, then $\frac{1}{\tau(P)} < \frac{1}{\tau(P')}$.

$\tau(\Delta)$: the growth rate of an ideal Coxeter polyhedron Δ

Theorem (N-Kellerhals)

Let *P* and *P'* be ideal Coxeter polyhedra in \mathbb{H}^3 . Suppose that *P* has a face *F* which is isometric to a face *F'* of *P'*, and denote by $P *_F P'$ the ideal polyhedron arising by gluing *P* to *P'* along their isometric faces *F* and *F'*. If $P *_F P'$ is a Coxeter polyhedron, then

 $\tau(P *_F P') > \max\{\tau(P), \tau(P')\}.$

 $au(S_1) \sim 2.03074 \ au(S_1 *_F S_1) \sim 2.74738$

 $au(S_2) \sim 2.13040 \ au(S_2 *_{F'} S_2) \sim 2.84547$

・ロト ・聞ト ・ モト ・ モト

э

 $au(P_1) \sim 2.84547$ $au(P_1 *_F P_1) = 5$ $au(P_2) \sim 3.16204 \ au(P_2 *_{F'} P_2) \sim 4.54138$

イロト イヨト イヨト イヨト

3

Theorem (Yukita)

The growth rate of a non-compact Coxeter polyhedron in \mathbb{H}^3 is a Perron number.

[1] J.W. Cannon and Ph. Wagreich, *Growth functions of surface groups*, Math. USSR. Sb., **12** (1971), 255-259.

[2] J.E. Humphreys, Reflection Groups And Coxeter Groups, Cambridge Studies in Advanced Mathematics, Cambridge Univ. Press, Cambridge, **29** (1990).

[3] R. Kellerhals and G. Perren, *On the growth of cocompact hyperbolic Coxeter groups*, European J. Combin., **32** (2011), 1299-1316.

[4] Y. Komori and Y. Umemoto, On the growth of hyperbolic

3-dimensional generalized simplex reflection groups, Proc. Japan Acad., **88** Ser. A (2012), 62-65.

[5] Y. Komori and T. Yukita, *On the growth rate of ideal Coxeter groups in hyperbolic 3-space*, Preprint, arXiv:1507.02481.

[6] Y. Komori and T. Yukita, *On the growth rate of ideal Coxeter groups in hyperbolic 3-space*, Proc. Japan Acad. Ser. A Math. Sci., **91** (2015), 155-159.

æ

イロン イ理 とく ヨン ト ヨン・

[7] J. Nonaka, *The growth rates of ideal Coxeter polyhedra in hyperbolic 3-space*, Preprint, arXiv:1504.06718.

[8] J. Nonaka and R. Kellerhals, *The growth rates of ideal Coxeter polyhedra in hyperbolic 3-space*, to appear in Tokyo Journal of Mathematics.

[9] W. Parry, *Growth series of Coxeter groups and Salem numbers*, J. Algebra **154** no.2 (1993), 376-393.

[10] L. Solomon, *The orders of finite Chevalley groups*, J. Algebra, **3** (1966), 376-393.

[11] R. Steinberg, *Endomorphisms of linear algebraic groups*, Mem. Amer. Math. Soc., **80** (1968).

イロン イ団と イヨン ト

[12] Y. Umemoto, The growth rates of non-compact 3-dimensional hyperbolic Coxeter tetrahedra and pyramids, proceedings of 19th ICFIDCAA Hiroshima 2011, Tohoku University Press (2013), 261-268. [13] T. Yukita, On the growth rates of cofinite 3-dimensional Coxeter groups some of whose dihedral angles are of the form $\frac{\pi}{m}$ for m = 2, 3, 4, 5, 6, Preprint, arXiv:1603.04592. [14] T. Yukita, On the growth rates of cofinite 3-dimensional Coxeter groups some of whose dihedral angles are $\frac{\pi}{m}$ for $m \ge 7$, Preprint, arXiv:1603.04987v2.

Thank you for your attention!

通 ト イヨ ト イヨト