A small normal generating set for the handlebody subgroup of the Torelli group

Genki Omori

Tokyo Institute of Technology PD (JSPS Research Fellowship for Young Scientists PD)

June 27, 2017 Boston University/Keio University Workshop 2017 Geometry and Mathematical Physics @Boston University

cf. arXiv:1607.06553

 $H_g \subset S^3$: the oriented 3-dimensional handlebody of genus g.

$$\begin{split} \Sigma_g &:= \partial H_g, \ D_0: \text{ the disk on } \Sigma_g, \\ \Sigma_{g,1} &:= \Sigma_g - \mathrm{int} D_0. \end{split}$$

 $H_g \subset S^3$: the oriented 3-dimensional handlebody of genus g.

$$\begin{split} &\Sigma_g := \partial H_g, \ D_0: \text{ the disk on } \Sigma_g, \\ &\Sigma_{g,1} := \Sigma_g - \text{int} D_0. \\ &\text{Diff}_+(\Sigma_{g,1}) := \{\varphi : \Sigma_g \to \Sigma_g \text{ ori.-pre. diffeo. } | \ \varphi|_{D_0} = \text{id}_{D_0} \}. \end{split}$$

 $\begin{aligned} \mathcal{M}_{g,1} &:= \mathrm{Diff}_+(\Sigma_{g,1}) / \mathrm{isotopy \ rel.} \ D_0 &: \text{ the mapping class group of } \Sigma_{g,1}, \\ \mathcal{H}_{g,1} &:= \{ [\varphi] \in \mathcal{M}_{g,1} \mid \varphi \text{ extends to } H_g \} \colon \text{ the handlebody group.} \end{aligned}$

 $\mathcal{M}_{g,1} \curvearrowright \mathrm{H}_1(\Sigma_g; \mathbb{Z}) \\ \rightsquigarrow \Psi : \mathcal{M}_{g,1} \to \mathrm{Aut}\mathrm{H}_1(\Sigma_g; \mathbb{Z}).$

$$\mathcal{I}_{g,1} := \ker \Psi$$
 : the *Torelli group* of $\Sigma_{g,1}$,

 $\mathcal{IH}_{g,1} := \ker \Psi|_{\mathcal{H}_{g,1}} = \mathcal{I}_{g,1} \cap \mathcal{H}_{g,1}$: the handlebody subgroup of $\mathcal{I}_{g,1}$.

 $\mathcal{M}_{g,1} \curvearrowright \mathrm{H}_1(\Sigma_g; \mathbb{Z}) \\ \rightsquigarrow \Psi : \mathcal{M}_{g,1} \to \mathrm{Aut}\mathrm{H}_1(\Sigma_g; \mathbb{Z}).$

 $\mathcal{I}_{g,1} := \ker \Psi$: the *Torelli group* of $\Sigma_{g,1}$,

 $\mathcal{IH}_{g,1} := \ker \Psi|_{\mathcal{H}_{g,1}} = \mathcal{I}_{g,1} \cap \mathcal{H}_{g,1}$: the handlebody subgroup of $\mathcal{I}_{g,1}$.

 $\mathcal{K}_{g,1}$: the Johnson kernel of $\Sigma_{g,1}$.

Problem (Birman J. ('06), (corrected version))

 \cdots . For these reasons it might be very useful to find generators for $\mathcal{IH}_{g,1}$ and/or $\mathcal{K}_{g,1} \cap \mathcal{H}_{g,1}$.

"these reasons" = a relationship with integral homology 3-spheres $(\mathbb{Z}HS^3s)$:

$$\lim_{g \to \infty} \mathcal{H}_{g,1} \setminus \mathcal{M}_{g,1} / - \mathcal{H}_{g,1} \stackrel{\cong}{\longrightarrow} \{ \text{oriented closed 3-mfd.s} \}$$

 $\mathcal{M}_{g,1} \curvearrowright \mathrm{H}_1(\Sigma_g; \mathbb{Z}) \\ \rightsquigarrow \Psi : \mathcal{M}_{g,1} \to \mathrm{Aut}\mathrm{H}_1(\Sigma_g; \mathbb{Z}).$

 $\mathcal{I}_{g,1} := \ker \Psi$: the *Torelli group* of $\Sigma_{g,1}$,

 $\mathcal{IH}_{g,1} := \ker \Psi|_{\mathcal{H}_{g,1}} = \mathcal{I}_{g,1} \cap \mathcal{H}_{g,1}$: the handlebody subgroup of $\mathcal{I}_{g,1}$.

 $\mathcal{K}_{g,1}$: the Johnson kernel of $\Sigma_{g,1}$.

Problem (Birman J. ('06), (corrected version))

 \cdots . For these reasons it might be very useful to find generators for $\mathcal{IH}_{g,1}$ and/or $\mathcal{K}_{g,1} \cap \mathcal{H}_{g,1}$.

"these reasons" = a relationship with integral homology 3-spheres $(\mathbb{Z}HS^3s)$:

$$\lim_{g\to\infty}\mathcal{H}_{g,1}\setminus\mathcal{I}_{g,1}/-\mathcal{H}_{g,1}\stackrel{\cong}{\longrightarrow}\{\mathbb{Z}\mathsf{H}S^3\mathsf{s}\}$$

Today's main result :

We obtain a generating set for $\mathcal{IH}_{g,1}$ when $g \geq 3!!$

 \rightsquigarrow We answer Birman's problem for $\mathcal{IH}_{g,1}$ when $g \geq 3$.

Definition (Bounding pair (BP))

 c_1 , c_2 : s.c.c.s on $\Sigma_{g,1}$,

• { c_1, c_2 }: a (genus-h) bounding pair ((genus-h) BP) on $\Sigma_{g,1}$ $\stackrel{\text{def}}{\longleftrightarrow}$ { c_1, c_2 : non-isotopic, non-separating in $\Sigma_{g,1}$, $\exists \Sigma \approx \Sigma_{h,2}$: subsurface of $\Sigma_{g,1}$ s.t. $\partial \Sigma = c_1 \sqcup c_2$.

 $\rightsquigarrow \{D_2, D'_2\}, \{C_1, C_2\}$: genus-1 BPs.

For a s.c.c. c on Σ_{g,1}, t_c ∈ M_{g,1}: the right-handed Dehn twist along c.
For a (genus-h) BP {c₁, c₂},

 $t_{c_1}t_{c_2}^{-1} \in \mathcal{I}_{g,1}$: a (genus-h) BP-map along $\{c_1, c_2\}$. $\rightsquigarrow t_{D_2}t_{D'_2}^{-1}, t_{C_1}t_{C_2}^{-1} \in \mathcal{I}_{g,1}$: genus-1 BP-maps.

- For a s.c.c. c on $\Sigma_{g,1}$, $t_c \in \mathcal{M}_{g,1}$: the right-handed Dehn twist along c.
- For a (genus-h) BP $\{c_1, c_2\}$,

 $t_{c_1}t_{c_2}^{-1} \in \mathcal{I}_{g,1}$: a (genus-h) BP-map along $\{c_1, c_2\}$.

$$\rightsquigarrow t_{D_2} t_{D'_2}^{-1}, t_{C_1} t_{C_2}^{-1} \in \mathcal{I}_{g,1}$$
: genus-1 BP-maps.

Theorem (Johnson ('79))

For $g \geq 3$, $\mathcal{I}_{g,1}$ is generated by genus-1 BP maps.

Theorem (Johnson ('83))

For $g \geq 3$, $\mathcal{I}_{g,1}$ is generated by finitely many BP maps.

Definition

 $\{c_1,c_2\}$: a genus-h BP on $\Sigma_{g,1}$,

 $\{c_1, c_2\}: \text{ a genus-}h \text{ homotopical BP (genus-}h \text{ HBP}) \\ \xleftarrow{\text{def}} \begin{cases} \text{ each } c_i \ (i = 1, 2) \text{ does NOT bound a disk in } H_g, \\ \exists A: \text{ annulus in } H_g \text{ s.t. } \partial A = c_1 \sqcup c_2. \end{cases}$

 $\rightsquigarrow \ \{C_1,C_2\}: \text{ a genus-1 HBP.}$

 $\{c_1, c_2\}$: a genus-h HBP on $\Sigma_{g,1}$,

$$t_{c_1}t_{c_2}^{-1} \in \mathcal{I}_{g,1}$$
: a genus-h HBP-map.

 $\rightsquigarrow t_{C_1} t_{C_2}^{-1}$: a genus-1 HBP-map.

Remark

$$\{c_1, c_2\}$$
: genus- h HBP $\implies t_{c_1} t_{c_2}^{-1} \in \mathcal{IH}_{g,1}$.

Definition

G: a group, H: a normal subgroup of G, $x_1, x_2, \ldots, x_n \in H$, H is normally generated by x_1, x_2, \ldots, x_n in G

$$\stackrel{\text{def}}{\longleftrightarrow} H = \left\langle \{gx_ig^{-1} \mid g \in G, \ 1 \le i \le n\} \right\rangle.$$

Definition

G: a group, H: a normal subgroup of G, $x_1, x_2, \ldots, x_n \in H$, H is normally generated by x_1, x_2, \ldots, x_n in G

$$\stackrel{\text{def}}{\Longleftrightarrow} H = \left\langle \{gx_ig^{-1} \mid g \in G, \ 1 \le i \le n\} \right\rangle.$$

Example

- (Mumford ('67)) $\mathcal{M}_{g,1}$ is normally generated by t_c (c: non-sep.) in $\mathcal{M}_{g,1}$.
- (Johnson ('79)) For $g \ge 3$, $\mathcal{I}_{g,1}$ is normally generated by a genus-1 BP-map in $\mathcal{M}_{g,1}$.

Theorem (O.)

For $g \geq 3$, $\mathcal{IH}_{g,1}$ is normally generated by $t_{C_1}t_{C_2}^{-1}$ in $\mathcal{H}_{g,1}$. In particular, $\mathcal{IH}_{g,1}$ is generated by genus-1 HBP-maps.

Theorem (O.)

For $g \geq 3$, $\mathcal{IH}_{g,1}$ is normally generated by $t_{C_1}t_{C_2}^{-1}$ in $\mathcal{H}_{g,1}$. In particular, $\mathcal{IH}_{g,1}$ is generated by genus-1 HBP-maps.

Remark

• A genus-1 HBP-map is not always conjugate to $t_{C_1}t_{C_2}^{-1}$ in $\mathcal{H}_{g,1}$.

Theorem (O.)

For $g \geq 3$, $\mathcal{IH}_{g,1}$ is normally generated by $t_{C_1}t_{C_2}^{-1}$ in $\mathcal{H}_{g,1}$. In particular, $\mathcal{IH}_{g,1}$ is generated by genus-1 HBP-maps.

Remark

• A genus-1 HBP-map is not always conjugate to $t_{C_1}t_{C_2}^{-1}$ in $\mathcal{H}_{g,1}$.

$\sim \rightarrow$

- We give a necessary and sufficient condition that a genus-1 HBP-map is conjugate to $t_{C_1}t_{C_2}^{-1}$ in $\mathcal{H}_{g,1}$.
- We give examples of genus-1 HBP-maps which are NOT conjugate to $t_{C_1}t_{C_2}^{-1}$ in $\mathcal{H}_{g,1}$.

Outline of the proof of the main theorem

 $* \in \partial D_0 \subset \Sigma_g = \partial H_g, \ \mathcal{H}_{g,1} \curvearrowright \pi_1(H_g, *) \cong F_g.$ \rightsquigarrow We have the homomorphism $\eta : \mathcal{H}_{g,1} \to \operatorname{Aut} F_g.$

Outline of the proof of the main theorem

 $* \in \partial D_0 \subset \Sigma_g = \partial H_g, \ \mathcal{H}_{g,1} \curvearrowright \pi_1(H_g, *) \cong F_g.$ \rightsquigarrow We have the homomorphism $\eta : \mathcal{H}_{g,1} \to \operatorname{Aut} F_g.$

We can check $\eta(\mathcal{IH}_{g,1}) = IA_g$, where $IA_g := \ker(\operatorname{Aut} F_g \to GL(g, \mathbb{Z}))$. \rightsquigarrow we have the exact sequence

$$1 \longrightarrow \ker \eta|_{\mathcal{IH}_{g,1}} \longrightarrow \mathcal{IH}_{g,1} \stackrel{\eta|_{\mathcal{IH}_{g,1}}}{\longrightarrow} \mathrm{IA}_g \longrightarrow 1.$$

Outline of the proof of the main theorem

 $* \in \partial D_0 \subset \Sigma_g = \partial H_g, \ \mathcal{H}_{g,1} \curvearrowright \pi_1(H_g, *) \cong F_g.$ \rightsquigarrow We have the homomorphism $\eta : \mathcal{H}_{g,1} \to \operatorname{Aut} F_g.$

We can check $\eta(\mathcal{IH}_{g,1}) = IA_g$, where $IA_g := \ker(\operatorname{Aut} F_g \to GL(g,\mathbb{Z}))$. \rightsquigarrow we have the exact sequence

$$1 \longrightarrow \ker \eta|_{\mathcal{IH}_{g,1}} \longrightarrow \mathcal{IH}_{g,1} \stackrel{\eta|_{\mathcal{IH}_{g,1}}}{\longrightarrow} \mathrm{IA}_g \longrightarrow 1.$$

- Magnus ('35) gave an explicit finite generating set $\{C_i\}$ for IA_g when $g \ge 1$.
- Pitsch ('09) gave an infinite generating set $\{D_j\}$ for ker $\eta|_{\mathcal{IH}_{g,1}}$ when $g \geq 3$.

Lifts of C_i 's \cdots conjugations of $t_{C_1}t_{C_2}^{-1}$ in $\mathcal{H}_{g,1}$. \rightsquigarrow We show that Pitsch's generators $\{D_j\}$ are products of conjugations of $t_{C_1}t_{C_2}^{-1}$ in $\mathcal{H}_{g,1}$!! Theorem (Johnson ('79) (again))

For $g \geq 3$, $\mathcal{I}_{g,1}$ is a normally generated by a genus-1 BP map in $\mathcal{M}_{g,1}$.

Theorem (Johnson ('83) (again))

For $g \geq 3$, $\mathcal{I}_{g,1}$ is generated by finitely many BP maps.

Theorem (O. (again))

For $g \geq 3$, $\mathcal{IH}_{g,1}$ is normally generated by $t_{C_1}t_{C_2}^{-1}$ in $\mathcal{H}_{g,1}$.

Problem

Is $\mathcal{IH}_{g,1}$ finitely generated for $g \geq 3$?

Thank you for your attention!!