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Overview

QFT/QM computes the time evolution of a system by Schrödinger operators

e it∆ : H → H

for some operator ∆ on a Hilbert space H.

Formally, for f ∈ H, we have〈
e it∆f , g

〉
=

∫
Pt

e itL(γ)dµ(γ),

where Pt is the space of paths starting at f and ending at g at time t, and dµ(γ)
is some measure.

Problem: dµ probably doesn’t exist. Even if dµ exists as some Wiener measure,
the integral doesn’t exist in general.

Partial solution: TQFT extracts meaningful information from formal path
integrals. We treat the mysterious path integral as a functor Z .

In this talk, we’ll try to put back some of the analysis into the TQFT picture. We
choose a particular Z , and find algebraic structures in the theory.
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1d TQFT

Let C be the category whose objects are 0-dimensional oriented manifolds and
whose morphisms are oriented bordisms I between points.

p− p+I

Let V be the category of vector spaces and homomorphisms.

Define the functor Z : C → V by: Z (p+) = H,Z (p−) = H∗. Set Z (I ) = e itH ,
whatever that is, so Z (I ) ∈ Hom(H,H) = H∗ ⊗H.

p− p+

e itH
H H

Z (I ) ∈ Z (p−)⊗ Z (p+) := Z ({p−} ∪ {p+}) = Z (∂I )
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2d TQFT

A 2d TQFT is a functor Z which assigns to an oriented 1d closed manifold
kS1 = tki=1S

1 a vector space Z (kS1) = Vk and to each oriented 2d manifold with
boundary (Σ, kS1) a vector Z (Σ) ∈ Vk = Z (∂Σ). The axioms

Z (S1
−) = Z (S1

+)∗, Z
(
S1 t S1

)
= Z (S1)⊗ Z (S1)

imply that pairs of pants give rise to products and coproducts:

M1 M2

gives

Z (M1) ∈ V ∗ ⊗ V ∗ ⊗ V = Hom(V ⊗ V ,V )

Z (M2) ∈ V ∗ ⊗ V ⊗ V = Hom(V ,V ⊗ V )
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String theory and pairs of pants

String theory: The main object is Maps(Σ2,M). A map f : Σ2 → M is thought of
as a circle/string moving inside M:

f : −→ M

−→
t

A map decomposes into maps of pairs of pants into M:
γ1

γ2
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Pairs of pants in loop space

γ1

γ2

A pair of pants in the loop space LM = Maps(S1,M) looks like:

γ1

γ2

γ1 · γ2
LM
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Choosing Z : Holonomy as a (failed) 2d TQFT

Start with a complex Hermitian bundle (E ,∇) with connection over LM.

Example: Given a complex Hermitian bundle (E ′,∇′) with connection over M, we
get a “loopified” infinite rank bundle E = LE ′ → LM, with fiber LE ′γ = {the

sections of E ′ above γ}. There is an associated L2 connection on LE .

Example: If E ′ = TCM, then LE ′ = TCLM.

For Z (kS1), choose k fixed loops in M, i.e. k points x1, . . . , xk in LM. Set
Z (xi ) = Exi . This is already not a TQFT.

For k = 2, define
Z (bordism between k = 2 points)

by choosing a curve ` in LM between the points, i.e. a cylinder between loops
x1, x2 in M. Set Z (`) ∈ Hom(Ex1 ,Ex2 ) to be the holonomy along the cylinder.

`x1

v

x2

‖v
LM
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Holonomy as a 2d TQFT II

Assume E is an LM-groupoid.

For k = 3, Z (pair of pants) should be a product Ex1 ⊗ Ex2 → Ex3 .

x1

v1

γ1

‖v1

x2

v2

γ2 ‖v2

γ1 · γ2

w

‖w

x3
LM

Here w = γ1 · ‖v2 + ‖v1 · γ2. So Z (pair of pants)(v1, v2) = ‖w = v3.

Reading left to right, the product takes Ex1 ⊗ Ex2 to Ex3 . Reading right to left, we
see a coproduct.

Problem: In string theory, we want to integrate over/average over all pairs of
pants. What is the measure?
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Holonomy on a Lie group

x1

v1

γ1

‖v1

x2

v2

γ2 ‖v2

γ1 · γ2

w

‖w

x3
G

This picture is fine if G is a Lie group and (E ,∇) is a G -bundle.

The “broken tuning fork” is no longer a bordism. We’re moving away from TQFT
formalism.

We want to average over {γ1, γ2} and over all paths. How to do this?



Average holonomy on a Riemannian manifold M

Let Wt,x be Wiener (probability) measure on the path space

Pt,x = {γ : [0, t]→ M : γ(0) = x , γ continuous}.

For A ⊂ Pt,x , Wt,x(A) =
∫
Pt,x

χA dWt,x =
∫
A
dWt,x is the probability P[γ ∈ A]

that a random path lies in A.

Similarly, there is a pinned Wiener measure Wt,x1,x2 on the path space

Pt,x1,x2 = {γ : [0, t]→ M : γ(0) = x1, γ(t) = x2, γ continuous}.

Example: For U ⊂ M, and for A = {γ : γ(t) ∈ U},

P[γ ∈ A] = P[γ(t) ∈ U] = Wt,x(A) =

∫
U

Kt(x , y)dvol(y),

where Kt(x , y) is the heat kernel on M.

Here the time t heat flow of an initial temperature distribution f ∈ C∞(M) is
given by

(e−t∆f )(x) =

∫
M

Kt(x , y)f (y)dvol(y).
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Intuition for the Wiener measure

The heat kernel looks like

Kt(x , y) = e−d
2(x,y)/4t(c0t

−dim(M)/2 + c1t
−(dim(M)/2)+1 + . . .).

So for small t, Kt(x , y) is very large if x = y , and very small if x 6= y .

P[γ(t) ∈ U] =

∫
U

Kt(x , y)dvol(y)

For a path starting at x , Kt(x , y) is small if x 6∈ U and t is small: there is a low
probability of traveling from x to U in a short time, and this probability is even
lower if d(x ,U) is big.
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Average holonomy on a Riemannian manifold II

As a warm-up, consider the k = 2 case. We want the average holonomy over
paths from x1 to x2

γx1

v

x2

‖v
LM or M

The average holonomy is
∫
Pt,x1,x2

‖γv dWt,x1,x2 (γ), for the case of M.

Note: 1) It is unknown if LM has a Wiener measure in general. LG might be ok.
2) Parallel transport exists along continuous paths by solving a stochastic ODE.
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Average holonomy for pairs of pants: disintegration

Recall the Fubini theorem for a rectangle:∫
[a,b]×[c,d ]

f (x , y)
dx

b − a

dy

d − c
=

∫
[a,b]

(∫
[c,d ]

f (x , y)
dy

d − c

)(
dx

(b − a)

)

=

∫
[a,b]

(∫
[c,d ]

f (x , y)
dy

d − c

)
π∗

(
dx dy

(b − a)(d − c)

)
,

where π : (x , y) 7→ x and π∗(...) = dx/(b− a). The support of each dy/(d − c) is
in π−1(x).

This is the basic example of a disintegration formula: For π : (Y , µ)→ (X , π∗µ)
and f : Y → R a measurable map on a probability space, in many cases there are
probability measures µx supported in π−1(x) such that∫

Y

f (y)dµ(y) =

∫
X

(∫
π−1(x)

f (y)dµx(y)

)
π∗µ(x).
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Disintegration and Wiener measures

π : (Y , µ)→ (X , π∗µ),

∫
Y

f (y)dµ(y) =

∫
X

(∫
π−1(x)

f (y)dµx(y)

)
π∗µ(x).

Example: (Y , µ) = (Pt,x ,Wt,x), X = M, π = evt : Y → M, where evt(γ) = γ(t).

Then (evt,∗Wt,x)(y) = Kt(x , y)dvol(y), ev−1
t (y) = {γ : γ(t) = y} = Pt,x,y . For

f : Pt,x → R, the average value of f is

E[f ] =

∫
Pt,x

f dWt,x =

∫
M

(∫
Pt,x,y

f dWt,x,y

)
Kt(x , y) dy .

Example: Y = Pt,x,y ,X = M, π = evs for s ∈ (0, t) some intermediate time.
Then ev−1

s (z) = {γ : γ(s) = z} = Ps,x,z × Pt−s,z,y and∫
Pt,x,y

f dWt,x,y =

∫
M

(∫
Ps,x,z×Pt−s,z,y

f d(Ws,x,z ×Wt−s,z,y )

)
evs,∗Wt,x,y .

All these measures can be expressed in terms of the heat kernel.
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Average holonomy and disintegration

From the average holonomy formula
∫
Pt,x,y

‖γv dWt,x,y (γ) and the disintegration

formula∫
Pt,x,y

f dWt,x,y =

∫
M

(∫
Ps,x,z×Pt−s,z,y

f d(Ws,x,z ×Wt−s,z,y )

)
evs,∗Wt,x,y ,

we get a holonomy disintegration formula

∫
Pt,x,y

‖γt,x→yv dWt,x,y (γ)

=

∫
M

(evs,∗Wt,x,y )(z)

(∫
Pt−s,z,y

dWt−s,z,y‖γ2
t−s,z,y

(∫
Ps,x,z

dWs,x,z‖γ1
s,x→zv

))
.

x yz = γ1(s)γ1 γ2

γ
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f d(Ws,x,z ×Wt−s,z,y )

)
evs,∗Wt,x,y ,

we get a holonomy disintegration formula∫
Pt,x,y

‖γt,x→yv dWt,x,y (γ)

=

∫
M

(evs,∗Wt,x,y )(z)

(∫
Pt−s,z,y

dWt−s,z,y‖γ2
t−s,z,y

(∫
Ps,x,z

dWs,x,z‖γ1
s,x→zv

))
.

x yz = γ1(s)γ1 γ2

γ



Average holonomy and coproducts

For a pair of pants “going right” in G :

xx

v

g1g2

‖v
g1

‖v · g−1
2

g2

g−1
1 · ‖v

y1

L1v = ‖(‖v · g−1
2 )

y2

L2v = ‖(g−1
1 · ‖v)

the average holonomy of v ∈ Ex is ∆v ∈ Ey1 ⊗ Ey2 given by
∆v = L1(v)⊗ 1 + 1⊗ L2(v), with

L1(v) =∫
(g1,g2)
∈G×G

evs,∗Wt,x,y1g2 (g1) evs,∗Wt,x,g1y2 (g2)(∫
Pt−s,g1,y1

dWt−s,g1,y1

∥∥∥∥
([∫

Ps,x,g1g2

∥∥v(x)dWs,x,g1g2

]
· g−1

2

))
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Average holonomy and coproducts II

xx

v

g1g2

g1

g2

y1

L1v

y2

L2v

L2(v) =∫
(g1,g2)
∈G×G

evs,∗Wt,x,y1g2 (g1) evs,∗Wt,x,g1y2 (g2)(∫
Pt−s,g2,y2

dWt−s,g2,y2

∥∥∥∥
(
g−1

1 ·

[∫
Ps,x,g1g2

∥∥v(x)dWs,x,g1g2

]))

Note that ∆v = L1(v)⊗ 1 + 1⊗ L2(v) means that ∆v ∈ T Ey1 ⊗ T Ey2 . Extending
by ∆(v1 ⊗ v2) = ∆(v1)⊗∆(v2) gives ∆ : T Ex → T Ey1 ⊗ T Ey2 .



Average holonomy and products

The product ∗ : T Ex1 ⊗ T Ex2 → T Ey is given similarly:

y

v1 ∗ v2

g1g2

g1

g2

x1

v1

x2

v2

v1 ∗ v2 = v1 ∗s,t v2

=

∫
(g1,g2)
∈G×G

evs,∗Wt,x1,yg
−1
2

(g1)evs,∗Wt,x2,g
−1
1 y (g2)

∫
Pt−s,g1g2,y

‖

[(∫
Ps,x1,g1

∥∥v1 dWs,x1,g1

)
· g2

]
dWt−s,g1g2,y

⊗ (similar with g1 · )



Time for examples

Example: G = Cn, (E ,∇) = (TCn, d).

‖γv = v for all γ. Thus L1 = L2 = Id, and the product on T Cn is the usual

(v1 ⊗ . . .⊗ vk) ∗ (w1 ⊗ . . .⊗ w`) = v1 ⊗ . . .⊗ vk ⊗ w1 ⊗ . . .⊗ w`.

∆v = v ⊗ 1 + 1⊗ v induces the standard shuffle product on T Cn:

∆(v1 ⊗ . . .⊗ vn) =
n∑

p=0

∑
Shp,n−p

(vσ(1) ⊗ . . .⊗ vσ(p))⊗ (vσ(p+1) ⊗ . . .⊗ vσ(n))

The product/coproduct form a Hopf algebra: there is a compatibility condition
between the associative product and coassociative coproduct, there are units and
counts, there is an antipode v1 ⊗ . . . vk 7→ (−1)kv1 ⊗ . . . vk .

A classic example of a Hopf algebra: H∗(G ) with product given by ∪, and the
multiplication m : G × G → G induces the coproduct

m∗ : H∗(G )→ H∗(G × G ) ' H∗(G )⊗ H∗(G ).
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More examples

Example: G = S1, (E ,∇) = (S1 × C, d).
Again, we get the tensor Hopf algebra. v1 ∗ v2 = v1 ⊗ v2.

Example: G = S1, (E ,∇) = (S1 × C, dψ), where dψ is the flat U(1)-connection
with holonomy e iψ.

Set x1 = x2 = y = 1 ∈ S1. Let

µk
s,e iθ1 = Ws,1,e iθ1 ({paths that wrap k times around S1}).

Then

v1 ∗ v2 =
1

Z

∫
(e iθ1 ,e iθ2 )∈T 2

dθ1dθ2 Ks(1, e iθ1 )Kt−s(e iθ2 , e iθ1 )K−1
t (1, e iθ1 )

Ks(1, e iθ2 )Kt−s(e iθ1 , e iθ2 )K−1
t (1, e iθ2 )∑

`

e iψ(`+(θ1+θ2)/2π)µ`t−s,e iθ1 e iθ2

(∑
k

e iψ(k+θ1/2π)µk
s,e iθ1 v1

⊗
∑
k

e iψ(k+θ2/2π)µk
s,e iθ2 v2

)
.
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Deformations of the Hopf algebra

The product

v1 ∗ v2 =
1

Z
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e iψ(k+θ1/2π)µk
s,e iθ1 v1

⊗
∑
k

e iψ(k+θ2/2π)µk
s,e iθ2 v2

)
,

with
Z = the red stuff,

is determined by the deformation of the flat connection on E = S1 × C→ S1 to
the flat connection with holonomy e iψ. So we’ve deformed the Hopf tensor
algebra to some product/coproduct structures, which are parametrized by the
space of S1-connections, i.e. in general by g× GL(Cn).

Question: What is the algebraic structure on the deformed product/coproduct?
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Dealing with nonassociativity

From now on, set x = y1 = y2, so the product/coproduct takes T Ex to T Ex .

Is the deformed product associative? No.

(a ∗ b) ∗ c = L2
1a⊗ L1L2b ⊗ L2c , a ∗ (b ∗ c) = L1a⊗ L2L1b ⊗ L2

2c .

Is the deformed coproduct coassociative? No.

Are the product and coproduct compatible? No.
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Measuring nonassociativity

“Definition”: An A∞-algebra is a differential graded algebra A in which
associativity fails only “up to homotopy.”

Example: Take a fiber Ex of E with the ∗-product on T Ex as the algebra. Then

g3(a⊗ b ⊗ c) = (a ∗ b) ∗ c − a ∗ (b ∗ c)

measures nonassociativity.

g3 ∈ Hom(T E⊗3, T E ).

If T E is graded and has a differential d (?!), then d induces a differential ∂ on
Hom∗(T E⊗3, T E ). If g3 = ∂m3 for some m3 ∈ Hom−1(T E⊗3, T E ), then the
∗-product induces an associative product on (H∗(Hom(....), ∂).

Similarly, we want to keep track of all products a ∗ (b ∗ (c ∗ r)), (a ∗ b) ∗ (c ∗ r), . . .
in an explicit expression g4(a⊗ b ⊗ c ⊗ r) and solve ∂m4 = g4. etc.
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A∞-algebras

An A∞-algebra is a differential graded algebra with gk ∈ Hom1−k(A⊗k ,A),
k ∈ Z+, measuring failure of associativity of k-fold products, and operations
mk ∈ Hom2−k(A⊗k ,A) with ∂mk = gk .

Examples: The singular chain complex for the based loop space ΩM. The Fukaya
A∞-category on the symplectic side of mirror symmetry.

We need a differential on T E . As a trick, we replace T E with

A = Λ∗E∗ ⊗ T E ,

the Fock space of E .

(α⊗ v) ∗ (β ⊗ w) = (α ∧ β)⊗ (v ∗ w)

This has a differential on the exterior algebra part: take a nonzero vector v ∈ E∗

and set

dv (v1 ∧ ... ∧ vk ⊗ (a1 ⊗ . . .⊗ ar )) = v ∧ v1 ∧ ... ∧ vk ⊗ (a1 ⊗ . . .⊗ ar )).
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The A∞-algebra in our context

We want to find mk ∈ Hom(A⊗k ,A) with ∂mk = gk . We certainly need ∂gk = 0.

Examples: (1) m3(a⊗ b⊗ c) = ıv]La⊗ L2b⊗ L2c − (−1)|a|+|b|L2a⊗ L2b⊗ ıv]Lc .
(Here L = L1 or L2.)

(2)

m4(a⊗ b ⊗ c ⊗ d)
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Main algebraic result

Theorem
If ∂gk = 0, then there exists an explicit solution to the equation ∂mk = gk . Thus
if ∂gk = 0 for all k,

A = Λ∗E ⊗ T E

is an A∞-algebra.

Proof: There is a homotopy operator H = Hk ∈ Hom−1(A⊗k ,A) with

∂H + H∂ = k · Id.

For ∂ = v∧, H is essentially the interior product with v ]. Thus

gk =
1

k
(∂H + H∂)gk = ∂

(
1

k
Hgk

)
.

Moral: An endomorphism of an inner product space and a choice of a nonzero
vector should give rise to an A∞-algebra on the Fock space. These algebras are
isomorphic for different vectors, so we should have an A∞-algebra associated to
an endomorphism.
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Final comments

From Brownian motion and a G -bundle E over a Lie group, we produce a product
on a fiber Ex which conjecturally has an A∞-structure. These give deformations
of the standard Hopf tensor algebra parametrized by G -connections on E . We
should also have A∞-coproduct structures with compatibility. So we should have
an “A∞-Hopf algebra.”

First order deformations of A∞-algebras are characterized by elements of the
Hochschild cohomology HH∗(A,A). First order deformations of Hopf algebras are
characterized by elements in H2 of a triple complex.

Questions: (1) What cohomology theory do our deformations lie in?

(2) Which path integrals can be treated by this method? Maybe QM? Maybe not

Thank you!
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