Random Holonomy and Algebraic Structures

Steve Rosenberg
(with Michael Murray and Raymond Vozzo)

Boston University, U. of Adelaide

June 30, 2017

Overview

QFT/QM computes the time evolution of a system by Schrödinger operators

$$
e^{i t \Delta}: \mathcal{H} \rightarrow \mathcal{H}
$$

for some operator Δ on a Hilbert space \mathcal{H}.

Overview

QFT/QM computes the time evolution of a system by Schrödinger operators

$$
e^{i t \Delta}: \mathcal{H} \rightarrow \mathcal{H}
$$

for some operator Δ on a Hilbert space \mathcal{H}.
Formally, for $f \in \mathcal{H}$, we have

$$
\left\langle e^{i t \Delta} f, g\right\rangle=\int_{\mathcal{P}_{t}} e^{i t L(\gamma)} d \mu(\gamma)
$$

where \mathcal{P}_{t} is the space of paths starting at f and ending at g at time t, and $d \mu(\gamma)$ is some measure.

Overview

QFT/QM computes the time evolution of a system by Schrödinger operators

$$
e^{i t \Delta}: \mathcal{H} \rightarrow \mathcal{H}
$$

for some operator Δ on a Hilbert space \mathcal{H}.
Formally, for $f \in \mathcal{H}$, we have

$$
\left\langle e^{i t \Delta} f, g\right\rangle=\int_{\mathcal{P}_{t}} e^{i t L(\gamma)} d \mu(\gamma)
$$

where \mathcal{P}_{t} is the space of paths starting at f and ending at g at time t, and $d \mu(\gamma)$ is some measure.

Problem: $d \mu$ probably doesn't exist. Even if $d \mu$ exists as some Wiener measure, the integral doesn't exist in general.

Overview

QFT/QM computes the time evolution of a system by Schrödinger operators

$$
e^{i t \Delta}: \mathcal{H} \rightarrow \mathcal{H}
$$

for some operator Δ on a Hilbert space \mathcal{H}.
Formally, for $f \in \mathcal{H}$, we have

$$
\left\langle e^{i t \Delta} f, g\right\rangle=\int_{\mathcal{P}_{t}} e^{i t L(\gamma)} d \mu(\gamma)
$$

where \mathcal{P}_{t} is the space of paths starting at f and ending at g at time t, and $d \mu(\gamma)$ is some measure.

Problem: $d \mu$ probably doesn't exist. Even if $d \mu$ exists as some Wiener measure, the integral doesn't exist in general.

Partial solution: TQFT extracts meaningful information from formal path integrals. We treat the mysterious path integral as a functor Z.

Overview

QFT/QM computes the time evolution of a system by Schrödinger operators

$$
e^{i t \Delta}: \mathcal{H} \rightarrow \mathcal{H}
$$

for some operator Δ on a Hilbert space \mathcal{H}.
Formally, for $f \in \mathcal{H}$, we have

$$
\left\langle e^{i t \Delta} f, g\right\rangle=\int_{\mathcal{P}_{t}} e^{i t L(\gamma)} d \mu(\gamma)
$$

where \mathcal{P}_{t} is the space of paths starting at f and ending at g at time t, and $d \mu(\gamma)$ is some measure.

Problem: $d \mu$ probably doesn't exist. Even if $d \mu$ exists as some Wiener measure, the integral doesn't exist in general.

Partial solution: TQFT extracts meaningful information from formal path integrals. We treat the mysterious path integral as a functor Z.
In this talk, we'll try to put back some of the analysis into the TQFT picture. We choose a particular Z, and find algebraic structures in the theory.

1d TQFT

Let \mathcal{C} be the category whose objects are 0 -dimensional oriented manifolds and whose morphisms are oriented bordisms I between points.

1d TQFT

Let \mathcal{C} be the category whose objects are 0 -dimensional oriented manifolds and whose morphisms are oriented bordisms I between points.

Let \mathcal{V} be the category of vector spaces and homomorphisms.
Define the functor $Z: \mathcal{C} \rightarrow \mathcal{V}$ by: $Z\left(p_{+}\right)=\mathcal{H}, Z\left(p_{-}\right)=\mathcal{H}^{*}$. Set $Z(I)=e^{i t H}$, whatever that is, so $Z(I) \in \operatorname{Hom}(\mathcal{H}, \mathcal{H})=\mathcal{H}^{*} \otimes \mathcal{H}$.

$$
Z(I) \in Z\left(p_{-}\right) \otimes Z\left(p_{+}\right):=Z\left(\left\{p_{-}\right\} \cup\left\{p_{+}\right\}\right)=Z(\partial I)
$$

2d TQFT

A 2d TQFT is a functor Z which assigns to an oriented 1 d closed manifold $k S^{1}=\sqcup_{i=1}^{k} S^{1}$ a vector space $Z\left(k S^{1}\right)=V_{k}$ and to each oriented 2d manifold with boundary $\left(\Sigma, k S^{1}\right)$ a vector $Z(\Sigma) \in V_{k}=Z(\partial \Sigma)$. The axioms

$$
Z\left(S_{-}^{1}\right)=Z\left(S_{+}^{1}\right)^{*}, Z\left(S^{1} \sqcup S^{1}\right)=Z\left(S^{1}\right) \otimes Z\left(S^{1}\right)
$$

imply that pairs of pants give rise to products and coproducts:

2d TQFT

A 2d TQFT is a functor Z which assigns to an oriented 1d closed manifold $k S^{1}=\sqcup_{i=1}^{k} S^{1}$ a vector space $Z\left(k S^{1}\right)=V_{k}$ and to each oriented 2d manifold with boundary $\left(\Sigma, k S^{1}\right)$ a vector $Z(\Sigma) \in V_{k}=Z(\partial \Sigma)$. The axioms

$$
Z\left(S_{-}^{1}\right)=Z\left(S_{+}^{1}\right)^{*}, Z\left(S^{1} \sqcup S^{1}\right)=Z\left(S^{1}\right) \otimes Z\left(S^{1}\right)
$$

imply that pairs of pants give rise to products and coproducts:

gives

$$
\begin{aligned}
& Z\left(M_{1}\right) \in V^{*} \otimes V^{*} \otimes V=\operatorname{Hom}(V \otimes V, V) \\
& Z\left(M_{2}\right) \in V^{*} \otimes V \otimes V=\operatorname{Hom}(V, V \otimes V)
\end{aligned}
$$

String theory and pairs of pants

String theory: The main object is $\operatorname{Maps}\left(\Sigma^{2}, M\right)$. A map $f: \Sigma^{2} \rightarrow M$ is thought of as a circle/string moving inside M :

$f: \quad \longrightarrow M$

$$
\vec{t}
$$

String theory and pairs of pants

String theory: The main object is $\operatorname{Maps}\left(\Sigma^{2}, M\right)$. A map $f: \Sigma^{2} \rightarrow M$ is thought of as a circle/string moving inside M :

$f: \quad \longrightarrow M$

$$
\vec{t}
$$

A map decomposes into maps of pairs of pants into M :

Pairs of pants in loop space

Pairs of pants in loop space

A pair of pants in the loop space $L M=\operatorname{Maps}\left(S^{1}, M\right)$ looks like:

Choosing Z: Holonomy as a (failed) 2d TQFT

Start with a complex Hermitian bundle (E, ∇) with connection over LM.
Example: Given a complex Hermitian bundle ($E^{\prime}, \nabla^{\prime}$) with connection over M, we get a "loopified" infinite rank bundle $E=L E^{\prime} \rightarrow L M$, with fiber $L E_{\gamma}^{\prime}=\{$ the sections of E^{\prime} above $\left.\gamma\right\}$. There is an associated L^{2} connection on $L E$.

Example: If $E^{\prime}=T_{\mathbb{C}} M$, then $L E^{\prime}=T_{\mathbb{C}} L M$.

Choosing Z: Holonomy as a (failed) 2d TQFT

Start with a complex Hermitian bundle (E, ∇) with connection over LM.
Example: Given a complex Hermitian bundle ($E^{\prime}, \nabla^{\prime}$) with connection over M, we get a "loopified" infinite rank bundle $E=L E^{\prime} \rightarrow L M$, with fiber $L E_{\gamma}^{\prime}=\{$ the sections of E^{\prime} above $\left.\gamma\right\}$. There is an associated L^{2} connection on $L E$.

Example: If $E^{\prime}=T_{\mathbb{C}} M$, then $L E^{\prime}=T_{\mathbb{C}} L M$.
For $Z\left(k S^{1}\right)$, choose k fixed loops in M, i.e. k points x_{1}, \ldots, x_{k} in $L M$. Set $Z\left(x_{i}\right)=E_{x_{i}}$. This is already not a TQFT.

Choosing Z: Holonomy as a (failed) 2d TQFT

Start with a complex Hermitian bundle (E, ∇) with connection over LM.
Example: Given a complex Hermitian bundle ($E^{\prime}, \nabla^{\prime}$) with connection over M, we get a "loopified" infinite rank bundle $E=L E^{\prime} \rightarrow L M$, with fiber $L E_{\gamma}^{\prime}=\{$ the sections of E^{\prime} above $\left.\gamma\right\}$. There is an associated L^{2} connection on $L E$.

Example: If $E^{\prime}=T_{\mathbb{C}} M$, then $L E^{\prime}=T_{\mathbb{C}} L M$.
For $Z\left(k S^{1}\right)$, choose k fixed loops in M, i.e. k points x_{1}, \ldots, x_{k} in $L M$. Set $Z\left(x_{i}\right)=E_{x_{i}}$. This is already not a TQFT.

For $k=2$, define

$$
Z \text { (bordism between } k=2 \text { points) }
$$

by choosing a curve ℓ in $L M$ between the points, i.e. a cylinder between loops x_{1}, x_{2} in M. Set $Z(\ell) \in \operatorname{Hom}\left(E_{x_{1}}, E_{x_{2}}\right)$ to be the holonomy along the cylinder.

Holonomy as a 2d TQFT II

Assume E is an LM-groupoid.
For $k=3, Z$ (pair of pants) should be a product $E_{x_{1}} \otimes E_{x_{2}} \rightarrow E_{x_{3}}$.

Here $w=\gamma_{1} \cdot\left\|v_{2}+\right\| v_{1} \cdot \gamma_{2}$. So Z (pair of pants) $\left(v_{1}, v_{2}\right)=\| w=v_{3}$.

Holonomy as a 2d TQFT II

Assume E is an $L M$-groupoid.
For $k=3, Z$ (pair of pants) should be a product $E_{x_{1}} \otimes E_{x_{2}} \rightarrow E_{x_{3}}$.

Here $w=\gamma_{1} \cdot\left\|v_{2}+\right\| v_{1} \cdot \gamma_{2}$. So Z (pair of pants) $\left(v_{1}, v_{2}\right)=\| w=v_{3}$.
Reading left to right, the product takes $E_{x_{1}} \otimes E_{x_{2}}$ to $E_{x_{3}}$. Reading right to left, we see a coproduct.

Holonomy as a 2d TQFT II

Assume E is an $L M$-groupoid.
For $k=3, Z$ (pair of pants) should be a product $E_{x_{1}} \otimes E_{x_{2}} \rightarrow E_{x_{3}}$.

Here $w=\gamma_{1} \cdot\left\|v_{2}+\right\| v_{1} \cdot \gamma_{2}$. So Z (pair of pants) $\left(v_{1}, v_{2}\right)=\| w=v_{3}$.
Reading left to right, the product takes $E_{x_{1}} \otimes E_{x_{2}}$ to $E_{x_{3}}$. Reading right to left, we see a coproduct.

Problem: In string theory, we want to integrate over/average over all pairs of pants. What is the measure?

Holonomy on a Lie group

This picture is fine if G is a Lie group and (E, ∇) is a G-bundle.
The "broken tuning fork" is no longer a bordism. We're moving away from TQFT formalism.

We want to average over $\left\{\gamma_{1}, \gamma_{2}\right\}$ and over all paths. How to do this?

Average holonomy on a Riemannian manifold M

Let $W_{t, x}$ be Wiener (probability) measure on the path space

$$
P_{t, x}=\{\gamma:[0, t] \rightarrow M: \gamma(0)=x, \gamma \text { continuous }\} .
$$

For $A \subset P_{t, x}, W_{t, x}(A)=\int_{P_{t, x}} \chi_{A} d W_{t, x}=\int_{A} d W_{t, x}$ is the probability $\mathbb{P}[\gamma \in A]$ that a random path lies in A.

Similarly, there is a pinned Wiener measure $W_{t, x_{1}, x_{2}}$ on the path space

$$
P_{t, x_{1}, x_{2}}=\left\{\gamma:[0, t] \rightarrow M: \gamma(0)=x_{1}, \gamma(t)=x_{2}, \gamma \text { continuous }\right\} .
$$

Average holonomy on a Riemannian manifold M

Let $W_{t, x}$ be Wiener (probability) measure on the path space

$$
P_{t, x}=\{\gamma:[0, t] \rightarrow M: \gamma(0)=x, \gamma \text { continuous }\} .
$$

For $A \subset P_{t, x}, W_{t, x}(A)=\int_{P_{t, x}} \chi_{A} d W_{t, x}=\int_{A} d W_{t, x}$ is the probability $\mathbb{P}[\gamma \in A]$ that a random path lies in A.

Similarly, there is a pinned Wiener measure $W_{t, x_{1}, x_{2}}$ on the path space

$$
P_{t, x_{1}, x_{2}}=\left\{\gamma:[0, t] \rightarrow M: \gamma(0)=x_{1}, \gamma(t)=x_{2}, \gamma \text { continuous }\right\} .
$$

Example: For $U \subset M$, and for $A=\{\gamma: \gamma(t) \in U\}$,

$$
\mathbb{P}[\gamma \in A]=\mathbb{P}[\gamma(t) \in U]=W_{t, x}(A)=\int_{U} K_{t}(x, y) \operatorname{dvol}(y),
$$

where $K_{t}(x, y)$ is the heat kernel on M.

Average holonomy on a Riemannian manifold M

Let $W_{t, x}$ be Wiener (probability) measure on the path space

$$
P_{t, x}=\{\gamma:[0, t] \rightarrow M: \gamma(0)=x, \gamma \text { continuous }\} .
$$

For $A \subset P_{t, x}, W_{t, x}(A)=\int_{P_{t, x}} \chi_{A} d W_{t, x}=\int_{A} d W_{t, x}$ is the probability $\mathbb{P}[\gamma \in A]$ that a random path lies in A.

Similarly, there is a pinned Wiener measure $W_{t, x_{1}, x_{2}}$ on the path space

$$
P_{t, x_{1}, x_{2}}=\left\{\gamma:[0, t] \rightarrow M: \gamma(0)=x_{1}, \gamma(t)=x_{2}, \gamma \text { continuous }\right\} .
$$

Example: For $U \subset M$, and for $A=\{\gamma: \gamma(t) \in U\}$,

$$
\mathbb{P}[\gamma \in A]=\mathbb{P}[\gamma(t) \in U]=W_{t, x}(A)=\int_{U} K_{t}(x, y) \operatorname{dvol}(y)
$$

where $K_{t}(x, y)$ is the heat kernel on M.
Here the time t heat flow of an initial temperature distribution $f \in C^{\infty}(M)$ is given by

$$
\left(e^{-t \Delta} f\right)(x)=\int_{M} K_{t}(x, y) f(y) \operatorname{dvol}(y)
$$

Intuition for the Wiener measure

The heat kernel looks like

$$
K_{t}(x, y)=e^{-d^{2}(x, y) / 4 t}\left(c_{0} t^{-\operatorname{dim}(M) / 2}+c_{1} t^{-(\operatorname{dim}(M) / 2)+1}+\ldots\right) .
$$

So for small $t, K_{t}(x, y)$ is very large if $x=y$, and very small if $x \neq y$.

Intuition for the Wiener measure

The heat kernel looks like

$$
K_{t}(x, y)=e^{-d^{2}(x, y) / 4 t}\left(c_{0} t^{-\operatorname{dim}(M) / 2}+c_{1} t^{-(\operatorname{dim}(M) / 2)+1}+\ldots\right)
$$

So for small $t, K_{t}(x, y)$ is very large if $x=y$, and very small if $x \neq y$.

$$
\mathbb{P}[\gamma(t) \in U]=\int_{U} K_{t}(x, y) \operatorname{dvol}(y)
$$

For a path starting at $x, K_{t}(x, y)$ is small if $x \notin U$ and t is small: there is a low probability of traveling from x to U in a short time, and this probability is even lower if $d(x, U)$ is big.

Average holonomy on a Riemannian manifold II

As a warm-up, consider the $k=2$ case. We want the average holonomy over paths from x_{1} to x_{2}

Average holonomy on a Riemannian manifold II

As a warm-up, consider the $k=2$ case. We want the average holonomy over paths from x_{1} to x_{2}

The average holonomy is $\int_{P_{t, x_{1}, x_{2}}} \|_{\gamma} v d W_{t, x_{1}, x_{2}}(\gamma)$, for the case of M.

Average holonomy on a Riemannian manifold II

As a warm-up, consider the $k=2$ case. We want the average holonomy over paths from x_{1} to x_{2}

The average holonomy is $\int_{P_{t, x_{1}, x_{2}}} \|_{\gamma} v d W_{t, x_{1}, x_{2}}(\gamma)$, for the case of M.
Note: 1) It is unknown if $L M$ has a Wiener measure in general. $L G$ might be ok. 2) Parallel transport exists along continuous paths by solving a stochastic ODE.

Average holonomy for pairs of pants: disintegration

Recall the Fubini theorem for a rectangle:

$$
\begin{gathered}
\int_{[a, b] \times[c, d]} f(x, y) \frac{d x}{b-a} \frac{d y}{d-c}=\int_{[a, b]}\left(\int_{[c, d]} f(x, y) \frac{d y}{d-c}\right)\left(\frac{d x}{(b-a)}\right) \\
=\int_{[a, b]}\left(\int_{[c, d]} f(x, y) \frac{d y}{d-c}\right) \pi_{*}\left(\frac{d x d y}{(b-a)(d-c)}\right),
\end{gathered}
$$

where $\pi:(x, y) \mapsto x$ and $\pi_{*}(\ldots)=d x /(b-a)$. The support of each $d y /(d-c)$ is in $\pi^{-1}(x)$.

Average holonomy for pairs of pants: disintegration

Recall the Fubini theorem for a rectangle:

$$
\begin{gathered}
\int_{[a, b] \times[c, d]} f(x, y) \frac{d x}{b-a} \frac{d y}{d-c}=\int_{[a, b]}\left(\int_{[c, d]} f(x, y) \frac{d y}{d-c}\right)\left(\frac{d x}{(b-a)}\right) \\
=\int_{[a, b]}\left(\int_{[c, d]} f(x, y) \frac{d y}{d-c}\right) \pi_{*}\left(\frac{d x d y}{(b-a)(d-c)}\right),
\end{gathered}
$$

where $\pi:(x, y) \mapsto x$ and $\pi_{*}(\ldots)=d x /(b-a)$. The support of each $d y /(d-c)$ is in $\pi^{-1}(x)$.
This is the basic example of a disintegration formula: For $\pi:(Y, \mu) \rightarrow\left(X, \pi_{*} \mu\right)$ and $f: Y \rightarrow \mathbb{R}$ a measurable map on a probability space, in many cases there are probability measures μ_{x} supported in $\pi^{-1}(x)$ such that

$$
\int_{Y} f(y) d \mu(y)=\int_{X}\left(\int_{\pi^{-1}(x)} f(y) d \mu_{x}(y)\right) \pi_{*} \mu(x)
$$

Disintegration and Wiener measures

$$
\pi:(Y, \mu) \rightarrow\left(X, \pi_{*} \mu\right), \int_{Y} f(y) d \mu(y)=\int_{X}\left(\int_{\pi^{-1}(x)} f(y) d \mu_{x}(y)\right) \pi_{*} \mu(x)
$$

Example: $(Y, \mu)=\left(P_{t, x}, W_{t, x}\right), X=M, \pi=\mathrm{ev}_{t}: Y \rightarrow M$, where $\mathrm{ev}_{t}(\gamma)=\gamma(t)$.
Then $\left(\mathrm{ev}_{t, *} W_{t, x}\right)(y)=K_{t}(x, y) \operatorname{dvol}(y), \mathrm{ev}_{t}^{-1}(y)=\{\gamma: \gamma(t)=y\}=P_{t, x, y}$. For $f: P_{t, x} \rightarrow \mathbb{R}$, the average value of f is

$$
\mathbb{E}[f]=\int_{P_{t, x}} f d W_{t, x}=\int_{M}\left(\int_{P_{t, x, y}} f d W_{t, x, y}\right) K_{t}(x, y) d y .
$$

Disintegration and Wiener measures

$$
\pi:(Y, \mu) \rightarrow\left(X, \pi_{*} \mu\right), \int_{Y} f(y) d \mu(y)=\int_{X}\left(\int_{\pi^{-1}(x)} f(y) d \mu_{x}(y)\right) \pi_{*} \mu(x)
$$

Example: $(Y, \mu)=\left(P_{t, x}, W_{t, x}\right), X=M, \pi=\mathrm{ev}_{t}: Y \rightarrow M$, where $\mathrm{ev}_{t}(\gamma)=\gamma(t)$.
Then $\left(\mathrm{ev}_{t, *} W_{t, x}\right)(y)=K_{t}(x, y) \operatorname{dvol}(y), \operatorname{ev}_{t}^{-1}(y)=\{\gamma: \gamma(t)=y\}=P_{t, x, y}$. For $f: P_{t, x} \rightarrow \mathbb{R}$, the average value of f is

$$
\mathbb{E}[f]=\int_{P_{t, x}} f d W_{t, x}=\int_{M}\left(\int_{P_{t, x, y}} f d W_{t, x, y}\right) K_{t}(x, y) d y .
$$

Example: $Y=P_{t, x, y}, X=M, \pi=\mathrm{ev}_{s}$ for $s \in(0, t)$ some intermediate time. Then $\operatorname{ev}_{s}^{-1}(z)=\{\gamma: \gamma(s)=z\}=P_{s, \chi, z} \times P_{t-s, z, y}$ and

$$
\int_{P_{t, x, y}} f d W_{t, x, y}=\int_{M}\left(\int_{P_{s, x, z} \times P_{t-s, z, y}} f d\left(W_{s, x, z} \times W_{t-s, z, y}\right)\right) \mathrm{ev}_{s, *} W_{t, x, y}
$$

Disintegration and Wiener measures

$$
\pi:(Y, \mu) \rightarrow\left(X, \pi_{*} \mu\right), \int_{Y} f(y) d \mu(y)=\int_{X}\left(\int_{\pi^{-1}(x)} f(y) d \mu_{x}(y)\right) \pi_{*} \mu(x)
$$

Example: $(Y, \mu)=\left(P_{t, x}, W_{t, x}\right), X=M, \pi=\mathrm{ev}_{t}: Y \rightarrow M$, where $\mathrm{ev}_{t}(\gamma)=\gamma(t)$.
Then $\left(\mathrm{ev}_{t, *} W_{t, x}\right)(y)=K_{t}(x, y) \operatorname{dvol}(y), \operatorname{ev}_{t}^{-1}(y)=\{\gamma: \gamma(t)=y\}=P_{t, x, y}$. For $f: P_{t, x} \rightarrow \mathbb{R}$, the average value of f is

$$
\mathbb{E}[f]=\int_{P_{t, x}} f d W_{t, x}=\int_{M}\left(\int_{P_{t, x, y}} f d W_{t, x, y}\right) K_{t}(x, y) d y .
$$

Example: $Y=P_{t, x, y}, X=M, \pi=\mathrm{ev}_{s}$ for $s \in(0, t)$ some intermediate time. Then $\operatorname{ev}_{s}^{-1}(z)=\{\gamma: \gamma(s)=z\}=P_{s, \chi, z} \times P_{t-s, z, y}$ and

$$
\int_{P_{t, x, y}} f d W_{t, x, y}=\int_{M}\left(\int_{P_{s, x, z} \times P_{t-s, z, y}} f d\left(W_{s, x, z} \times W_{t-s, z, y}\right)\right) \mathrm{ev}_{s, *} W_{t, x, y}
$$

All these measures can be expressed in terms of the heat kernel.

Average holonomy and disintegration

From the average holonomy formula $\int_{P_{t, x, y}} \|_{\gamma} v d W_{t, x, y}(\gamma)$ and the disintegration formula

$$
\int_{P_{t, x, y}} f d W_{t, x, y}=\int_{M}\left(\int_{P_{s, x, z} \times P_{t-s, z, y}} f d\left(W_{s, x, z} \times W_{t-s, z, y}\right)\right) \mathrm{ev}_{s, *} W_{t, x, y}
$$

we get a holonomy disintegration formula

Average holonomy and disintegration

From the average holonomy formula $\int_{P_{t, x, y}} \|_{\gamma} v d W_{t, x, y}(\gamma)$ and the disintegration formula

$$
\int_{P_{t, x, y}} f d W_{t, x, y}=\int_{M}\left(\int_{P_{s, x, z} \times P_{t-s, z, y}} f d\left(W_{s, x, z} \times W_{t-s, z, y}\right)\right) \mathrm{ev}_{s, *} W_{t, x, y}
$$

we get a holonomy disintegration formula

$$
\begin{aligned}
& \int_{P_{t, x, y}} \|_{t, x \rightarrow y}^{\gamma} v d W_{t, x, y}(\gamma) \\
& =\int_{M}\left(\mathrm{ev}_{s, *} W_{t, x, y}\right)(z)\left(\int_{P_{t-s, z, y}} d W_{t-s, z, y} \|_{t-s, z, y}^{\gamma_{2}}\left(\int_{P_{s, x, z}} d W_{s, x, z} \|_{s, x \rightarrow z}^{\gamma_{1}} v\right)\right) . \\
& \underset{\bullet}{x} \quad \gamma_{1} \quad z=\gamma_{1}(s) \quad \gamma_{2} \quad y
\end{aligned}
$$

Average holonomy and coproducts

For a pair of pants "going right" in G:

Average holonomy and coproducts

For a pair of pants "going right" in G:

the average holonomy of $v \in E_{x}$ is $\Delta v \in E_{y_{1}} \otimes E_{y_{2}}$ given by $\Delta v=L_{1}(v) \otimes 1+1 \otimes L_{2}(v)$, with

$$
\begin{aligned}
& L_{1}(v)= \\
& \int_{\substack{\left(g_{1}, g_{2}\right) \\
\in G \times G}} \mathrm{ev}_{s, *} W_{t, x, y_{1} g_{2}}\left(g_{1}\right) \mathrm{ev}_{s, *} W_{t, x, g_{1} y_{2}}\left(g_{2}\right) \\
& \quad\left(\int_{P_{t-s, g_{1}, y_{1}}} d W_{t-s, g_{1}, y_{1}} \|\left(\left[\int_{P_{s, x, g_{1} g_{2}}} \| v(x) d W_{s, x, g_{1} g_{2}}\right] \cdot g_{2}^{-1}\right)\right)
\end{aligned}
$$

Average holonomy and coproducts II

$$
\begin{aligned}
& L_{2}(v)= \\
& \int_{\substack{\left(g_{1}, g_{2}\right) \\
\in G \times G}} \mathrm{ev}_{s, *} W_{t, x, y_{1} g_{2}}\left(g_{1}\right) \mathrm{ev}_{s, *} W_{t, x, g_{1} y_{2}}\left(g_{2}\right) \\
& \quad\left(\int_{P_{t-s, g_{2}, y_{2}}} d W_{t-s, g_{2}, y_{2}} \|\left(g_{1}^{-1} \cdot\left[\int_{P_{s, x, g_{1} g_{2}}} \| v(x) d W_{s, x, g_{1} g_{2}}\right]\right)\right)
\end{aligned}
$$

Note that $\Delta v=L_{1}(v) \otimes 1+1 \otimes L_{2}(v)$ means that $\Delta v \in \mathcal{T} E_{y_{1}} \otimes \mathcal{T} E_{y_{2}}$. Extending by $\Delta\left(v_{1} \otimes v_{2}\right)=\Delta\left(v_{1}\right) \otimes \Delta\left(v_{2}\right)$ gives $\Delta: \mathcal{T} E_{x} \rightarrow \mathcal{T} E_{y_{1}} \otimes \mathcal{T} E_{y_{2}}$.

Average holonomy and products

The product $*: \mathcal{T} E_{x_{1}} \otimes \mathcal{T} E_{x_{2}} \rightarrow \mathcal{T} E_{y}$ is given similarly:

$$
\begin{aligned}
& v_{1} * v_{2}=v_{1} *_{s, t} v_{2} \\
& =\int_{\substack{\left(g_{1}, g_{2}\right) \\
\in G \in G}} \operatorname{ev}_{s, *} W_{t, x_{1}, y g_{2}^{-1}}\left(g_{1}\right) \mathrm{ev}_{s, *} W_{t, x_{2}, g_{1}^{-1} y}\left(g_{2}\right) \\
& \quad \int_{P_{t-s, g_{1} \varepsilon_{2}, v}} \|\left[\left(\int_{P_{s, x_{1}, g_{1}}} \| v_{1} d W_{s, x_{1}, g_{1}}\right) \cdot g_{2}\right] d W_{t-s, g_{1} g_{2}, y} \\
& \left.\quad \otimes \text { (similar with } g_{1} \cdot\right)
\end{aligned}
$$

Time for examples

Example: $G=\mathbb{C}^{n},(E, \nabla)=\left(T \mathbb{C}^{n}, d\right)$.
$\|^{\gamma} v=v$ for all γ. Thus $L_{1}=L_{2}=\mathrm{Id}$, and the product on $\mathcal{T} \mathbb{C}^{n}$ is the usual

$$
\left(v_{1} \otimes \ldots \otimes v_{k}\right) *\left(w_{1} \otimes \ldots \otimes w_{\ell}\right)=v_{1} \otimes \ldots \otimes v_{k} \otimes w_{1} \otimes \ldots \otimes w_{\ell} .
$$

$\Delta v=v \otimes 1+1 \otimes v$ induces the standard shuffle product on $\mathcal{T} \mathbb{C}^{n}$:

$$
\Delta\left(v_{1} \otimes \ldots \otimes v_{n}\right)=\sum_{p=0}^{n} \sum_{S h_{p, n-p}}\left(v_{\sigma(1)} \otimes \ldots \otimes v_{\sigma(p)}\right) \otimes\left(v_{\sigma(p+1)} \otimes \ldots \otimes v_{\sigma(n)}\right)
$$

Time for examples

Example: $G=\mathbb{C}^{n},(E, \nabla)=\left(T \mathbb{C}^{n}, d\right)$.
$\|^{\gamma} v=v$ for all γ. Thus $L_{1}=L_{2}=\mathrm{Id}$, and the product on $\mathcal{T} \mathbb{C}^{n}$ is the usual

$$
\left(v_{1} \otimes \ldots \otimes v_{k}\right) *\left(w_{1} \otimes \ldots \otimes w_{\ell}\right)=v_{1} \otimes \ldots \otimes v_{k} \otimes w_{1} \otimes \ldots \otimes w_{\ell} .
$$

$\Delta v=v \otimes 1+1 \otimes v$ induces the standard shuffle product on $\mathcal{T} \mathbb{C}^{n}$:

$$
\Delta\left(v_{1} \otimes \ldots \otimes v_{n}\right)=\sum_{p=0}^{n} \sum_{S h_{p, n-p}}\left(v_{\sigma(1)} \otimes \ldots \otimes v_{\sigma(p)}\right) \otimes\left(v_{\sigma(p+1)} \otimes \ldots \otimes v_{\sigma(n)}\right)
$$

The product/coproduct form a Hopf algebra: there is a compatibility condition between the associative product and coassociative coproduct, there are units and counts, there is an antipode $v_{1} \otimes \ldots v_{k} \mapsto(-1)^{k} v_{1} \otimes \ldots v_{k}$.

Time for examples

Example: $G=\mathbb{C}^{n},(E, \nabla)=\left(T \mathbb{C}^{n}, d\right)$.
$\|^{\gamma} v=v$ for all γ. Thus $L_{1}=L_{2}=$ Id, and the product on $\mathcal{T} \mathbb{C}^{n}$ is the usual

$$
\left(v_{1} \otimes \ldots \otimes v_{k}\right) *\left(w_{1} \otimes \ldots \otimes w_{\ell}\right)=v_{1} \otimes \ldots \otimes v_{k} \otimes w_{1} \otimes \ldots \otimes w_{\ell} .
$$

$\Delta v=v \otimes 1+1 \otimes v$ induces the standard shuffle product on $\mathcal{T} \mathbb{C}^{n}$:

$$
\Delta\left(v_{1} \otimes \ldots \otimes v_{n}\right)=\sum_{p=0}^{n} \sum_{S h_{p, n-p}}\left(v_{\sigma(1)} \otimes \ldots \otimes v_{\sigma(p)}\right) \otimes\left(v_{\sigma(p+1)} \otimes \ldots \otimes v_{\sigma(n)}\right)
$$

The product/coproduct form a Hopf algebra: there is a compatibility condition between the associative product and coassociative coproduct, there are units and counts, there is an antipode $v_{1} \otimes \ldots v_{k} \mapsto(-1)^{k} v_{1} \otimes \ldots v_{k}$.
A classic example of a Hopf algebra: $H^{*}(G)$ with product given by \cup, and the multiplication $m: G \times G \rightarrow G$ induces the coproduct

$$
m^{*}: H^{*}(G) \rightarrow H^{*}(G \times G) \simeq H^{*}(G) \otimes H^{*}(G)
$$

More examples

Example: $G=S^{1},(E, \nabla)=\left(S^{1} \times \mathbb{C}, d\right)$.
Again, we get the tensor Hopf algebra. $v_{1} * v_{2}=v_{1} \otimes v_{2}$.

More examples

Example: $G=S^{1},(E, \nabla)=\left(S^{1} \times \mathbb{C}, d\right)$.
Again, we get the tensor Hopf algebra. $v_{1} * v_{2}=v_{1} \otimes v_{2}$.
Example: $G=S^{1},(E, \nabla)=\left(S^{1} \times \mathbb{C}, d_{\psi}\right)$, where d_{ψ} is the flat $U(1)$-connection with holonomy $e^{i \psi}$.

More examples

Example: $G=S^{1},(E, \nabla)=\left(S^{1} \times \mathbb{C}, d\right)$.
Again, we get the tensor Hopf algebra. $v_{1} * v_{2}=v_{1} \otimes v_{2}$.
Example: $G=S^{1},(E, \nabla)=\left(S^{1} \times \mathbb{C}, d_{\psi}\right)$, where d_{ψ} is the flat $U(1)$-connection with holonomy $e^{i \psi}$.
Set $x_{1}=x_{2}=y=1 \in S^{1}$. Let

$$
\mu_{s, e^{i \theta_{1}}}^{k}=W_{s, 1, e^{i \theta_{1}}}\left(\left\{\text { paths that wrap } k \text { times around } S^{1}\right\}\right) .
$$

More examples

Example: $G=S^{1},(E, \nabla)=\left(S^{1} \times \mathbb{C}, d\right)$.
Again, we get the tensor Hopf algebra. $v_{1} * v_{2}=v_{1} \otimes v_{2}$.
Example: $G=S^{1},(E, \nabla)=\left(S^{1} \times \mathbb{C}, d_{\psi}\right)$, where d_{ψ} is the flat $U(1)$-connection with holonomy $e^{i \psi}$.
Set $x_{1}=x_{2}=y=1 \in S^{1}$. Let

$$
\mu_{s, e^{i \theta_{1}}}^{k}=W_{s, 1, e^{i \theta_{1}}}\left(\left\{\text { paths that wrap } k \text { times around } S^{1}\right\}\right) .
$$

Then

$$
\begin{aligned}
& v_{1} * v_{2}=\frac{1}{Z} \int_{\left(e^{\left.i \theta_{1}, e^{i \theta_{2}}\right) \in T^{2}}\right.} d \theta_{1} d \theta_{2} K_{s}\left(1, e^{i \theta_{1}}\right) K_{t-s}\left(e^{i \theta_{2}}, e^{i \theta_{1}}\right) K_{t}^{-1}\left(1, e^{i \theta_{1}}\right) \\
& K_{s}\left(1, e^{i \theta_{2}}\right) K_{t-s}\left(e^{i \theta_{1}}, e^{i \theta_{2}}\right) K_{t}^{-1}\left(1, e^{i \theta_{2}}\right) \\
& \quad \sum_{\ell} e^{i \psi\left(\ell+\left(\theta_{1}+\theta_{2}\right) / 2 \pi\right)} \mu_{t-s, e^{i \theta_{1}} e^{i \theta_{2}}}^{\ell}\left(\sum_{k} e^{i \psi\left(k+\theta_{1} / 2 \pi\right)} \mu_{s, e^{i \theta_{1}} k}^{k} v_{1}\right. \\
& \left.\quad \otimes \sum_{k} e^{i \psi\left(k+\theta_{2} / 2 \pi\right)} \mu_{s, e^{i \theta_{2}}}^{k} v_{2}\right)
\end{aligned}
$$

Deformations of the Hopf algebra

The product

$$
\begin{aligned}
& v_{1} * v_{2}=\frac{1}{Z} \int_{\left(e^{\left.i \theta_{1}, e^{i \theta_{2}}\right) \in T^{2}}\right.} d \theta_{1} d \theta_{2} K_{s}\left(1, e^{i \theta_{1}}\right) K_{t-s}\left(e^{i \theta_{2}}, e^{i \theta_{1}}\right) K_{t}^{-1}\left(1, e^{i \theta_{1}}\right) \\
& K_{s}\left(1, e^{i \theta_{2}}\right) K_{t-s}\left(e^{i \theta_{1}}, e^{i \theta_{2}}\right) K_{t}^{-1}\left(1, e^{i \theta_{2}}\right) \\
& \quad \sum_{\ell} e^{i \psi\left(\ell+\left(\theta_{1}+\theta_{2}\right) / 2 \pi\right)} \mu_{t-s, e^{i \theta_{1}} e^{i \theta_{2}}}^{\ell}\left(\sum_{k} e^{i \psi\left(k+\theta_{1} / 2 \pi\right)} \mu_{s, e^{i \theta_{1}}}^{k} v_{1}\right. \\
& \left.\quad \otimes \sum_{k} e^{i \psi\left(k+\theta_{2} / 2 \pi\right)} \mu_{s, e^{i \theta_{2}}}^{k} v_{2}\right)
\end{aligned}
$$

with
$Z=$ the red stuff,

Deformations of the Hopf algebra

The product

$$
\begin{aligned}
& v_{1} * v_{2}=\frac{1}{Z} \int_{\left(e^{\left.i \theta_{1}, e^{i \theta_{2}}\right) \in T^{2}}\right.} d \theta_{1} d \theta_{2} K_{s}\left(1, e^{i \theta_{1}}\right) K_{t-s}\left(e^{i \theta_{2}}, e^{i \theta_{1}}\right) K_{t}^{-1}\left(1, e^{i \theta_{1}}\right) \\
& K_{s}\left(1, e^{i \theta_{2}}\right) K_{t-s}\left(e^{i \theta_{1}}, e^{i \theta_{2}}\right) K_{t}^{-1}\left(1, e^{i \theta_{2}}\right) \\
& \sum_{\ell} e^{i \psi\left(\ell+\left(\theta_{1}+\theta_{2}\right) / 2 \pi\right)} \mu_{t-s, e^{i \theta_{1}} e^{i \theta_{2}}\left(\sum_{k} e^{i \psi\left(k+\theta_{1} / 2 \pi\right)} \mu_{s, e^{i \theta_{1}}}^{k} v_{1}\right.} \\
& \left.\otimes \sum_{k} e^{i \psi\left(k+\theta_{2} / 2 \pi\right)} \mu_{s, e^{i \theta_{2}}}^{k} v_{2}\right)
\end{aligned}
$$

with

$$
Z=\text { the red stuff, }
$$

is determined by the deformation of the flat connection on $E=S^{1} \times \mathbb{C} \rightarrow S^{1}$ to the flat connection with holonomy $e^{i \psi}$. So we've deformed the Hopf tensor algebra to some product/coproduct structures, which are parametrized by the space of S^{1}-connections, i.e. in general by $\mathfrak{g} \times G L\left(\mathbb{C}^{n}\right)$.

Deformations of the Hopf algebra

The product

$$
\begin{aligned}
& v_{1} * v_{2}=\frac{1}{Z} \int_{\left(e^{\left.i \theta_{1}, e^{i \theta_{2}}\right) \in T^{2}}\right.} d \theta_{1} d \theta_{2} K_{s}\left(1, e^{i \theta_{1}}\right) K_{t-s}\left(e^{i \theta_{2}}, e^{i \theta_{1}}\right) K_{t}^{-1}\left(1, e^{i \theta_{1}}\right) \\
& K_{s}\left(1, e^{i \theta_{2}}\right) K_{t-s}\left(e^{i \theta_{1}}, e^{i \theta_{2}}\right) K_{t}^{-1}\left(1, e^{i \theta_{2}}\right) \\
& \quad \sum_{\ell} e^{i \psi\left(\ell+\left(\theta_{1}+\theta_{2}\right) / 2 \pi\right)} \mu_{t-s, e^{i \theta_{1}} e^{i \theta_{2}}\left(\sum_{k} e^{i \psi\left(k+\theta_{1} / 2 \pi\right)} \mu_{s, e^{i \theta_{1}} v_{1}}^{k}\right.}^{\otimes} \begin{array}{l}
k \\
\left.\sum_{k}^{i \psi\left(k+\theta_{2} / 2 \pi\right)} \mu_{s, e^{i \theta_{2}}}^{k} v_{2}\right)
\end{array}, l
\end{aligned}
$$

with

$$
Z=\text { the red stuff, }
$$

is determined by the deformation of the flat connection on $E=S^{1} \times \mathbb{C} \rightarrow S^{1}$ to the flat connection with holonomy $e^{i \psi}$. So we've deformed the Hopf tensor algebra to some product/coproduct structures, which are parametrized by the space of S^{1}-connections, i.e. in general by $\mathfrak{g} \times G L\left(\mathbb{C}^{n}\right)$.
Question: What is the algebraic structure on the deformed product/coproduct?

Dealing with nonassociativity

From now on, set $x=y_{1}=y_{2}$, so the product/coproduct takes $\mathcal{T} E_{x}$ to $\mathcal{T} E_{x}$.

Dealing with nonassociativity

From now on, set $x=y_{1}=y_{2}$, so the product/coproduct takes $\mathcal{T} E_{x}$ to $\mathcal{T} E_{x}$. Is the deformed product associative? No.

$$
(a * b) * c=L_{1}^{2} a \otimes L_{1} L_{2} b \otimes L_{2} c, a *(b * c)=L_{1} a \otimes L_{2} L_{1} b \otimes L_{2}^{2} c .
$$

Dealing with nonassociativity

From now on, set $x=y_{1}=y_{2}$, so the product/coproduct takes $\mathcal{T} E_{x}$ to $\mathcal{T} E_{x}$. Is the deformed product associative? No.

$$
(a * b) * c=L_{1}^{2} a \otimes L_{1} L_{2} b \otimes L_{2} c, a *(b * c)=L_{1} a \otimes L_{2} L_{1} b \otimes L_{2}^{2} c .
$$

Is the deformed coproduct coassociative? No.

Dealing with nonassociativity

From now on, set $x=y_{1}=y_{2}$, so the product/coproduct takes $\mathcal{T} E_{x}$ to $\mathcal{T} E_{x}$. Is the deformed product associative? No.

$$
(a * b) * c=L_{1}^{2} a \otimes L_{1} L_{2} b \otimes L_{2} c, a *(b * c)=L_{1} a \otimes L_{2} L_{1} b \otimes L_{2}^{2} c .
$$

Is the deformed coproduct coassociative? No.
Are the product and coproduct compatible? No.

Measuring nonassociativity

"Definition": An A_{∞}-algebra is a differential graded algebra A in which associativity fails only "up to homotopy."

Measuring nonassociativity

"Definition": An A_{∞}-algebra is a differential graded algebra A in which associativity fails only "up to homotopy."

Example: Take a fiber E_{X} of E with the $*$-product on $\mathcal{T} E_{X}$ as the algebra. Then

$$
g_{3}(a \otimes b \otimes c)=(a * b) * c-a *(b * c)
$$

measures nonassociativity.

$$
g_{3} \in \operatorname{Hom}\left(\mathcal{T} E^{\otimes 3}, \mathcal{T} E\right)
$$

Measuring nonassociativity

"Definition": An A_{∞}-algebra is a differential graded algebra A in which associativity fails only "up to homotopy."

Example: Take a fiber E_{X} of E with the $*$-product on $\mathcal{T} E_{X}$ as the algebra. Then

$$
g_{3}(a \otimes b \otimes c)=(a * b) * c-a *(b * c)
$$

measures nonassociativity.

$$
g_{3} \in \operatorname{Hom}\left(\mathcal{T} E^{\otimes 3}, \mathcal{T} E\right)
$$

If $\mathcal{T} E$ is graded and has a differential $d(?!)$, then d induces a differential ∂ on $\operatorname{Hom}^{*}\left(\mathcal{T} E^{\otimes 3}, \mathcal{T} E\right)$. If $g_{3}=\partial m_{3}$ for some $m_{3} \in \operatorname{Hom}^{-1}\left(\mathcal{T} E^{\otimes 3}, \mathcal{T} E\right)$, then the *-product induces an associative product on $\left(H^{*}(\operatorname{Hom}(\ldots),. \partial)\right.$.

Measuring nonassociativity

"Definition": An A_{∞}-algebra is a differential graded algebra A in which associativity fails only "up to homotopy."

Example: Take a fiber E_{X} of E with the $*$-product on $\mathcal{T} E_{X}$ as the algebra. Then

$$
g_{3}(a \otimes b \otimes c)=(a * b) * c-a *(b * c)
$$

measures nonassociativity.

$$
g_{3} \in \operatorname{Hom}\left(\mathcal{T} E^{\otimes 3}, \mathcal{T} E\right) .
$$

If $\mathcal{T} E$ is graded and has a differential d (?!), then d induces a differential ∂ on $\operatorname{Hom}^{*}\left(\mathcal{T} E^{\otimes 3}, \mathcal{T} E\right)$. If $g_{3}=\partial m_{3}$ for some $m_{3} \in \operatorname{Hom}^{-1}\left(\mathcal{T} E^{\otimes 3}, \mathcal{T} E\right)$, then the *-product induces an associative product on $\left(H^{*}(\operatorname{Hom}(\ldots),. \partial)\right.$.

Similarly, we want to keep track of all products $a *(b *(c * r)),(a * b) *(c * r), \ldots$ in an explicit expression $g_{4}(a \otimes b \otimes c \otimes r)$ and solve $\partial m_{4}=g_{4}$. etc.

A_{∞}-algebras

An A_{∞}-algebra is a differential graded algebra with $g_{k} \in \operatorname{Hom}^{1-k}\left(A^{\otimes k}, A\right)$, $k \in \mathbb{Z}^{+}$, measuring failure of associativity of k-fold products, and operations $m_{k} \in \operatorname{Hom}^{2-k}\left(A^{\otimes k}, A\right)$ with $\partial m_{k}=g_{k}$.

A_{∞}-algebras

An A_{∞}-algebra is a differential graded algebra with $g_{k} \in \operatorname{Hom}^{1-k}\left(A^{\otimes k}, A\right)$, $k \in \mathbb{Z}^{+}$, measuring failure of associativity of k-fold products, and operations $m_{k} \in \operatorname{Hom}^{2-k}\left(A^{\otimes k}, A\right)$ with $\partial m_{k}=g_{k}$.

Examples: The singular chain complex for the based loop space ΩM. The Fukaya A_{∞}-category on the symplectic side of mirror symmetry.

A_{∞}-algebras

An A_{∞}-algebra is a differential graded algebra with $g_{k} \in \operatorname{Hom}^{1-k}\left(A^{\otimes k}, A\right)$, $k \in \mathbb{Z}^{+}$, measuring failure of associativity of k-fold products, and operations $m_{k} \in \operatorname{Hom}^{2-k}\left(A^{\otimes k}, A\right)$ with $\partial m_{k}=g_{k}$.
Examples: The singular chain complex for the based loop space ΩM. The Fukaya A_{∞}-category on the symplectic side of mirror symmetry.

We need a differential on $\mathcal{T} E$. As a trick, we replace $\mathcal{T} E$ with

$$
A=\Lambda^{*} E^{*} \otimes \mathcal{T} E
$$

the Fock space of E.

$$
(\alpha \otimes v) *(\beta \otimes w)=(\alpha \wedge \beta) \otimes(v * w)
$$

A_{∞}-algebras

An A_{∞}-algebra is a differential graded algebra with $g_{k} \in \operatorname{Hom}^{1-k}\left(A^{\otimes k}, A\right)$, $k \in \mathbb{Z}^{+}$, measuring failure of associativity of k-fold products, and operations $m_{k} \in \operatorname{Hom}^{2-k}\left(A^{\otimes k}, A\right)$ with $\partial m_{k}=g_{k}$.

Examples: The singular chain complex for the based loop space ΩM. The Fukaya A_{∞}-category on the symplectic side of mirror symmetry.

We need a differential on $\mathcal{T} E$. As a trick, we replace $\mathcal{T} E$ with

$$
A=\Lambda^{*} E^{*} \otimes \mathcal{T} E
$$

the Fock space of E.

$$
(\alpha \otimes v) *(\beta \otimes w)=(\alpha \wedge \beta) \otimes(v * w)
$$

This has a differential on the exterior algebra part: take a nonzero vector $v \in E^{*}$ and set

$$
\left.d_{v}\left(v_{1} \wedge \ldots \wedge v_{k} \otimes\left(a_{1} \otimes \ldots \otimes a_{r}\right)\right)=v \wedge v_{1} \wedge \ldots \wedge v_{k} \otimes\left(a_{1} \otimes \ldots \otimes a_{r}\right)\right) .
$$

The A_{∞}-algebra in our context

We want to find $m_{k} \in \operatorname{Hom}\left(A^{\otimes k}, A\right)$ with $\partial m_{k}=g_{k}$. We certainly need $\partial g_{k}=0$.

The A_{∞}-algebra in our context

We want to find $m_{k} \in \operatorname{Hom}\left(A^{\otimes k}, A\right)$ with $\partial m_{k}=g_{k}$. We certainly need $\partial g_{k}=0$. Examples: (1) $m_{3}(a \otimes b \otimes c)=c_{v^{\sharp}} L a \otimes L^{2} b \otimes L^{2} c-(-1)^{|a|+|b|} L^{2} a \otimes L^{2} b \otimes i_{v^{\sharp}} L c$. (Here $L=L_{1}$ or L_{2}.)

The A_{∞}-algebra in our context

We want to find $m_{k} \in \operatorname{Hom}\left(A^{\otimes k}, A\right)$ with $\partial m_{k}=g_{k}$. We certainly need $\partial g_{k}=0$. Examples: (1) $m_{3}(a \otimes b \otimes c)=\imath_{v^{\sharp}} L a \otimes L^{2} b \otimes L^{2} c-(-1)^{|a|+|b|} L^{2} a \otimes L^{2} b \otimes \imath_{v^{\sharp}} L c$. (Here $L=L_{1}$ or L_{2}.)
(2)

$$
\begin{aligned}
& m_{4}(a \otimes b \otimes c \otimes d) \\
& =-(-1)^{|c|} L^{3} a \otimes L^{3} b \otimes \imath_{v^{\sharp}} L^{2} c \otimes \imath_{\nu \sharp} L d+(-1)^{|a|+|b|+|c|} \imath_{v^{\sharp}} L a \otimes L^{3} b \otimes L^{3} c \otimes \imath_{\nu^{\sharp}} L^{2} d \\
& +(-1)^{|a|+|b|+|c|} \nu_{\nu^{\sharp}} L^{2} a \otimes L^{3} b \otimes L^{3} c \otimes \imath_{\nu^{\sharp}} L d-(-1)^{|a|} \imath_{\nu^{\sharp}} L a \otimes \imath_{\nu^{\sharp}} L^{2} b \otimes L^{3} c \otimes L^{3} d \\
& -(-1)^{|a|+|b|} \imath_{v^{\sharp}} L^{2} a \otimes L^{2} b \otimes \imath_{v^{\sharp}} L^{2} c \otimes L^{2} d-(-1)^{|b|+|c|} L^{2} a \otimes \imath_{v^{\sharp}} L^{2} b \otimes L^{2} c \otimes \imath_{v^{\sharp}} L^{2} d \text {. }
\end{aligned}
$$

Main algebraic result

Theorem

If $\partial g_{k}=0$, then there exists an explicit solution to the equation $\partial m_{k}=g_{k}$. Thus if $\partial g_{k}=0$ for all k,

$$
A=\Lambda^{*} E \otimes \mathcal{T} E
$$

is an A_{∞}-algebra.

Main algebraic result

Theorem

If $\partial g_{k}=0$, then there exists an explicit solution to the equation $\partial m_{k}=g_{k}$. Thus if $\partial g_{k}=0$ for all k,

$$
A=\Lambda^{*} E \otimes \mathcal{T} E
$$

is an A_{∞}-algebra.
Proof: There is a homotopy operator $H=H_{k} \in \operatorname{Hom}^{-1}\left(A^{\otimes k}, A\right)$ with

$$
\partial H+H \partial=k \cdot I d .
$$

For $\partial=v \wedge, H$ is essentially the interior product with v^{\sharp}. Thus

$$
g_{k}=\frac{1}{k}(\partial H+H \partial) g_{k}=\partial\left(\frac{1}{k} H g_{k}\right) .
$$

Main algebraic result

Theorem

If $\partial g_{k}=0$, then there exists an explicit solution to the equation $\partial m_{k}=g_{k}$. Thus if $\partial g_{k}=0$ for all k,

$$
A=\Lambda^{*} E \otimes \mathcal{T} E
$$

is an A_{∞}-algebra.
Proof: There is a homotopy operator $H=H_{k} \in \operatorname{Hom}^{-1}\left(A^{\otimes k}, A\right)$ with

$$
\partial H+H \partial=k \cdot \mathrm{Id} .
$$

For $\partial=v \wedge, H$ is essentially the interior product with v^{\sharp}. Thus

$$
g_{k}=\frac{1}{k}(\partial H+H \partial) g_{k}=\partial\left(\frac{1}{k} H g_{k}\right) .
$$

Moral: An endomorphism of an inner product space and a choice of a nonzero vector should give rise to an A_{∞}-algebra on the Fock space. These algebras are isomorphic for different vectors, so we should have an A_{∞}-algebra associated to an endomorphism.

Final comments

From Brownian motion and a G-bundle E over a Lie group, we produce a product on a fiber E_{x} which conjecturally has an A_{∞}-structure. These give deformations of the standard Hopf tensor algebra parametrized by G-connections on E. We should also have A_{∞}-coproduct structures with compatibility. So we should have an " A_{∞}-Hopf algebra."

Final comments

From Brownian motion and a G-bundle E over a Lie group, we produce a product on a fiber E_{x} which conjecturally has an A_{∞}-structure. These give deformations of the standard Hopf tensor algebra parametrized by G-connections on E. We should also have A_{∞}-coproduct structures with compatibility. So we should have an " A_{∞}-Hopf algebra."

First order deformations of A_{∞}-algebras are characterized by elements of the Hochschild cohomology $H H^{*}(A, A)$. First order deformations of Hopf algebras are characterized by elements in H^{2} of a triple complex.

Final comments

From Brownian motion and a G-bundle E over a Lie group, we produce a product on a fiber E_{x} which conjecturally has an A_{∞}-structure. These give deformations of the standard Hopf tensor algebra parametrized by G-connections on E. We should also have A_{∞}-coproduct structures with compatibility. So we should have an " A_{∞}-Hopf algebra."

First order deformations of A_{∞}-algebras are characterized by elements of the Hochschild cohomology $H H^{*}(A, A)$. First order deformations of Hopf algebras are characterized by elements in H^{2} of a triple complex.
Questions: (1) What cohomology theory do our deformations lie in?
(2) Which path integrals can be treated by this method? Maybe QM?

Final comments

From Brownian motion and a G-bundle E over a Lie group, we produce a product on a fiber E_{x} which conjecturally has an A_{∞}-structure. These give deformations of the standard Hopf tensor algebra parametrized by G-connections on E. We should also have A_{∞}-coproduct structures with compatibility. So we should have an " A_{∞}-Hopf algebra."

First order deformations of A_{∞}-algebras are characterized by elements of the Hochschild cohomology $H H^{*}(A, A)$. First order deformations of Hopf algebras are characterized by elements in H^{2} of a triple complex.
Questions: (1) What cohomology theory do our deformations lie in?
(2) Which path integrals can be treated by this method? Maybe QM?

Final comments

From Brownian motion and a G-bundle E over a Lie group, we produce a product on a fiber E_{x} which conjecturally has an A_{∞}-structure. These give deformations of the standard Hopf tensor algebra parametrized by G-connections on E. We should also have A_{∞}-coproduct structures with compatibility. So we should have an " A_{∞}-Hopf algebra."

First order deformations of A_{∞}-algebras are characterized by elements of the Hochschild cohomology $H H^{*}(A, A)$. First order deformations of Hopf algebras are characterized by elements in H^{2} of a triple complex.
Questions: (1) What cohomology theory do our deformations lie in?
(2) Which path integrals can be treated by this method? Maybe QM?

Thank you!

