Non-generic properties of optimizing measures for continuous functions

Mao Shinoda

Keio University

June 27, 2017

shinoda (Keio Univ.)

2017 BostonKeioWorkshop

June 27, 2017 1 / 14

What is Ergodic Optimization?

 $\begin{array}{ll} (X, T) & \mbox{dynamical system} \\ X & \mbox{compact metric space (phase space)} \\ T: X \to X & \mbox{continuous map (law of time evolution)} \end{array}$

For a continuous "performance" function $\phi:X\to\mathbb{R}$ we consider its time average. Define

$$\overline{\phi}(x) := \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \phi \circ T^k(x),$$

if it exists.

Problem 1

Fined orbits maximizing the time average $\overline{\phi}$.

Why is the time average interesting?

• Full shift

$$X = \{0, 1\}^{\mathbb{N}}$$

 $\sigma : X \to X$ defined by $\sigma(\{x_i\}) = \{x_{i+1}\}$

Example 2 (Hitting Frequency)

 $A \subset X$ clopen subset e.g. $A := [0] = \{\{x_i\} \in X : x_0 = 0\}$ $\phi = \chi_A$ the characteristic function of A

$$\overline{\phi}(x) = \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \chi_A(T^k(x))$$
$$= \lim_{n \to \infty} \frac{1}{n} \# \left\{ k \in \{0, 1, \dots, n-1\} : T^k(x) \in A \right\}$$

• The time average $\overline{\phi}$ represents the hitting frequency for the set A.

Why is the time average interesting?

Expanding Map

 $S^1 = \mathbb{R}/\mathbb{Z}$ the circle $T: S^1 \to S^1$ with $\min_{x \in S^1} |DT(x)| > 1$ e.g $T(x) = 2x \mod 1$

Example 3 (Lyapunov Exponent)

 $\phi(x) = \log |DT(x)|$ geometric function

$$\overline{\phi}(x) = \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \log |DT(T^k x)| = \lim_{n \to \infty} \frac{1}{n} \log |DT^n(x)|$$

• The time average $\overline{\phi}$ coincides with the Lyapunov exponent.

How do we find maximizing orbits?

 $\mathcal{M}_{\mathcal{T}}$ — the space of all invariant Borel probability measures

Proposition 4

For all continuous function ϕ on X we have

$$\sup_{x\in X} \limsup_{n\to\infty} \frac{1}{n} \sum_{k=0}^{n-1} \phi \circ T^k(x) = \max_{\nu\in\mathcal{M}_T} \int \phi \ d\nu$$

• $\mu \in \mathcal{M}_T$ attaining the maximum is called a maximizing measure.

Problem 5

Study the properties of maximizing measures.

2 Generic and Non-generic properties

What does "generic" mean?

We are interested in the properties of maximizing measures for "many" functions.

C(X) the space of continuous functions with the supremum norm

Definition 6

A property \mathcal{P} is generic if $\{\phi \in C(X) : \mathcal{P} \text{ holds for } \phi\}$ contains a residual set.

Uniqueness

Generic property

Theorem 7 (Jenkinson)

There exists a residual subset \mathcal{R} of C(X) such that for every $\phi \in \mathcal{R}$ there exists

G1 a unique maximizing measure

• Non-generic property

 \mathcal{M}_e the set of all ergodic Borel probability measures on X

Theorem A

Assume \mathcal{M}_e is arcwise-connected.

Then there exists a dense subset D of C(X) such that for every $\phi \in D$ there exist

D1 uncountably many ergodic maximizing measures.

Support and Entropy

• Generic

Theorem 8 (Bousch, Brémont, Jenkinson, Morris)

Assume T satisfies the specification property. There exists a residual subset \mathcal{R} of C(X) such that for every $\phi \in \mathcal{R}$ there exists

G1 a unique maximizing measureG2 and it is fully supportedG3 and has zero entropy.

Main Theorems

• Non-generic

Theorem B

Let (X, T) be a topologically mixing subshift of finite type. Then there exists a dense subset \mathcal{D} of C(X) such that for every $\phi \in \mathcal{D}$ there exist

D1 uncountably many ergodic maximizing measuresD2 which are full support

D3 and have positive entropy.

2 Generic and Non-generic properties

Idea of the proof

Take $\phi_0 \in C(X)$ and consider the graph of $\nu \mapsto \int \phi_0 d\nu$.

The perturbation is ensured by the Bishop Phelps theorem.

Thank you for your attention

Tangency to the Convex Functional Q

Define $Q: C(X) \to \mathbb{R}$ by

$$Q(\phi) = \max_{\nu \in M(X,T)} \int \phi \ d\nu.$$

The functional Q is continuous and convex functional on C(X). We can characterize maximizing measures by the tangency to Q.

Proposition 9 Let $\phi \in C(X)$. The following conditions are equivalent. M1 : $\mu \in M(X, T)$ is a maximizing measure for ϕ ; M2 : μ is tangent to Q at ϕ

Tangency to the Convex Functional Q

C(X) the Banach space with the supremum norm $Q: C(X) \to \mathbb{R}$ the convex and continuous functional $\mu: C(X) \to \mathbb{R}$ a signed measure (bounded linear functional)

Definition 10

```
\mu is tangent to Q at \phi \in C(X) if
```

$$\mu(\psi) \leq Q(\phi + \psi) - Q(\phi)$$

for all $\psi \in C(X)$.

Bishop Phelps Theorem

Theorem (Bishop Phelps)

For every $\phi_0 \in C(X)$ and $\varepsilon > 0$ there exits $\phi \in C(X)$ and a signed measure μ which is a ϕ -maximizing measure such that

$$\|\mu-\mu_0\|\leq arepsilon \quad \|\phi-\phi_0\|\leq rac{1}{arepsilon}\left(Q(\phi_0)-\mu_0(\phi_0)
ight)$$

Support and Entropy

Theorem 11 (Contreras)

Let T be "expanding". Then there exists a open and dense subset \mathcal{O} of Lip(X) such that for every $\phi \in \mathcal{O}$ there exists

O1 a unique maximizing measure

O2 and its has periodic support.

Idea of the Proof

It is known that for every $\mu \in \mathcal{M}(X, T)$ there exits a unique Borel probability measure α on $\mathcal{M}_e(X, T)$ such that

$$\mu(\phi) = \int_{\mathcal{M}_{e}(X,T)} m(\phi) \ d\alpha(m)$$

for all $\phi \in C(X)$. We call the α the ergodic decomposition of μ .

Bishop Phelps Theorem

Theorem (Bishop Phelps)

For every $\phi_0 \in C(X)$, $\varepsilon > 0$ and $\mu_0 \in \mathcal{M}(X, T)$ there exits $\phi \in C(X)$ and a ϕ -maximizing measure μ such that

$$\|\mu - \mu_0\| \le \varepsilon \quad \|\phi - \phi_0\| \le \frac{1}{\varepsilon} \left(\max_{\nu \in \mathcal{M}(X,T)} \int \phi_0 \ d\nu - \mu_0(\phi_0)\right)$$

Sketch of the Proof

Let
$$\phi_0 \in C(X)$$
 and $\varepsilon > 0$. Pick $\mu_{\max} \in \mathcal{M}(\phi_0)$.
There exists $f : [0,1] \to \mathcal{M}_e(X,T)$ such that $f(0) = \mu_{\max}$
and $f(1) = \nu$. Define $\tilde{\alpha} = f_* \text{Leb}_{[0,1]} \rightsquigarrow$ non-atomic

Restricting
$$\tilde{\alpha}$$
 to the set
 $\{\nu \in \mathcal{M}_e(X, T) : \max_{\nu \in \mathcal{M}(X, T)} \int \phi_0 \ d\nu - \varepsilon^2 < \int \phi_0 \ d\nu \},\$ we have α_0 and $\mu_0 = \int_{\mathcal{M}_e(X, T)} m \ d\alpha_0(m).$

By the Bishop Phelps Theorem, we have ε -close $\phi \in C(X)$ and $\mu \in \mathcal{M}(\phi)$.

Let α be the mass distribution of μ .

$$\alpha_0(\operatorname{supp} \alpha) > 0 \quad \text{and} \quad \operatorname{supp} \alpha \subset \mathcal{M}(\phi)$$

Then $\operatorname{supp} \alpha$ contains uncountably many points, which prove the theorem.