K-Theory for Locally Compact Spaces Airi Takeuchi (Keio University)

Definition of Vect(*X*)

Let X be a topological space.

- The collection of isomorphism classes $\langle \xi \rangle$ of complex vector bundles ξ over X is denoted Vect(X).
- Addition on Vect(X) is defined by (ξ) + (η) = (ξ ⊕ η), where ξ ⊕ η := {(v₁, v₂) ∈ V₁ × V₂ | π₁(v₁) = π₂(v₂)} is the direct sum of two vector bundles ξ = (V₁, π₁) and η = (V₂, π₂).

Definition of $K^{-n}(X)$

- Let X be a compact Hausdorff space. Define $K^0(X)$ be the Grothendieck group of $(\operatorname{Vect}(X), +)$.
- Let X be a locally compact Hausdorff Space and let X^+ be the

The Six-Term Exact Sequence

Let A be a closed subspace of a locally compact space X, and let $j: A \rightarrow X$ be the inclusion map. Then there exists an exact sequence

$$\begin{array}{c} K^{0}(X \setminus A) \longrightarrow K^{0}(X) \xrightarrow{j^{*}} K^{0}(A) \\ \stackrel{\delta^{\dagger}}{\overset{\delta^{\dagger}}{\overset{j^{*}}}{\overset{j^{*}}{\overset{j^{*}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$$

with natural connecting maps δ .

Definition of $\mathbb{R}P^n$

 $\mathbb{R}P^n$ is defined as the quotient space S^n/\sim , where $x \sim y \iff x = \pm y$, equipped with the quotient topology. (Remark

• For each natural number n, $\mathbb{R}P^{n-1}$ is a closed subset of $\mathbb{R}P^n$ and $\mathbb{R}P^n \setminus \mathbb{R}P^{n-1} \cong \mathbb{R}^n$

one-point compactification of X. Define $K^0(X)$ be $\operatorname{Ker}(j^* : K^0(X^+) \to K^0(pt) \cong \mathbb{Z})$, where the group homomorphism j^* is induced by the inclusion map $j : pt \to X^+$.

• Define $K^{-n}(X) = K^0(X \times \mathbb{R}^n)$ for every natural number *n* and locally compact Hausdorff space *X*.

Remark

• The definition of *K*⁰-groups for locally compact spaces is an extension of that for compact spaces.

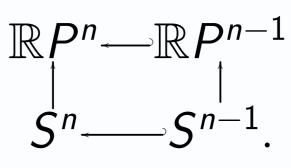
The Long Exact Sequence

Let A be a closed subspace of a locally compact Hausdorff space X, and let $j : A \to X$ be the inclusion map. Then, for each natural number n there exists a natural homomorphism $\delta : K^{-n-1}(X) \to K^{-n}(X \setminus A)$ that makes the infinite sequence

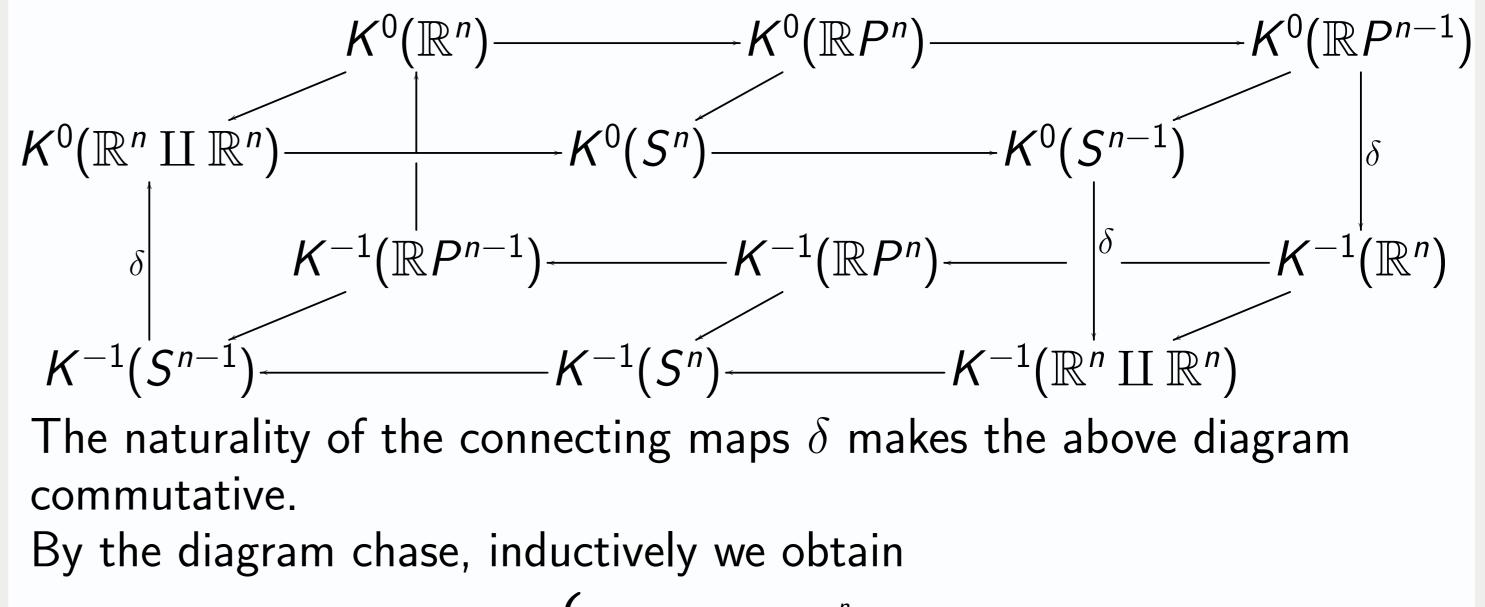
$$\cdots \to K^{-2}(X) \xrightarrow{j^*} K^{-2}(A) \xrightarrow{\delta} \\ K^{-1}(X \setminus A) \to K^{-1}(X) \xrightarrow{j^*} K^{-1}(A) \xrightarrow{\delta} K^0(X \setminus A) \to K^0(X) \xrightarrow{j^*} K^0(A)$$
exact.

K-Groups of $\mathbb{R}P^n$

Consider the following commutative diagram



This yields



Bott Periodicity

For every locally compact Hausdorff space X, there exists a natural isomorphism

 $\beta: K^0(X) \to K^{-2}(X).$

K-Groups of \mathbb{R}^n and S^n

Fact • $K^0(pt) \cong \mathbb{Z}$ and $K^{-1}(pt) \cong 0$.

Bott periodicity gives us

$$K^0(\mathbb{R}^n)\cong K^0((pt) imes \mathbb{R}^n)=K^{-n}(pt)\cong egin{cases} \mathbb{Z} & ext{ if }n ext{ is even}\ 0 & ext{ if }n ext{ is odd} \end{cases}$$

This yields

$$K^{-1}(\mathbb{R}^n) = K^0(\mathbb{R}^{n+1}) \cong egin{cases} 0 & ext{if } n ext{ is even} \ \mathbb{Z} & ext{if } n ext{ is odd}. \end{cases}$$

Fact • Let X^+ be the one-point compactification of a locally compact space X, then $K^0(X^+) \cong K^0(X) \oplus \mathbb{Z}$ and $K^{-1}(X^+) \cong K^{-1}(X)$. $K^{0}(\mathbb{R}P^{n}) \cong egin{cases} \mathbb{Z} \oplus (\mathbb{Z}/2\mathbb{Z})^{rac{n}{2}} & (ext{if } n ext{ is even}) \ \mathbb{Z} \oplus (\mathbb{Z}/2\mathbb{Z})^{rac{n-1}{2}} & (ext{if } n ext{ is odd}) \end{cases}$

$$K^{-1}(\mathbb{R}P^n) \cong egin{cases} 0 & (ext{if } n ext{ is even}) \ \mathbb{Z} & (ext{if } n ext{ is odd}). \end{cases}$$

Definition of $\mathbb{C}P^n$

 $\mathbb{C}P^n$ is defined as the quotient space $(\mathbb{C}^{n+1}\setminus\{0\})/\sim$, where $x \sim y \iff x = \lambda y$ for some complex number λ , equipped with the quotient topology.

– Remark –

and

For each natural number n, CPⁿ⁻¹ is a closed subset of CPⁿ and CPⁿ\CPⁿ⁻¹ ≅ Cⁿ

K-Groups of $\mathbb{C}P^n$

Considering the inclusion

$$\mathbb{C}P^n \hookrightarrow \mathbb{C}P^{n-1},$$

Since
$$S^n$$
 is the one-point compactification of \mathbb{R}^n , we obtain
 $\mathcal{K}^0(S^n) \cong \mathcal{K}^0((\mathbb{R}^n)^+) \cong \mathcal{K}^0(\mathbb{R}^n) \oplus \mathbb{Z} \cong \begin{cases} \mathbb{Z}^2 & \text{if } n \text{ is even} \\ \mathbb{Z} & \text{if } n \text{ is odd.} \end{cases}$
Similarly,
 $\mathcal{K}^{-1}(S^n) \cong \mathcal{K}^{-1}((\mathbb{R}^n)^+) \cong \mathcal{K}^{-1}(\mathbb{R}^n) \cong \begin{cases} 0 & \text{if } n \text{ is even} \\ \mathbb{Z} & \text{if } n \text{ is odd.} \end{cases}$

we have the exact sequence

This yields

and

$$K^0(\mathbb{C}P^n)\cong\mathbb{Z}^{n+1}$$

$${\sf K}^{-1}({\mathbb C}{\sf P}^n)\cong 0$$

References

- Park, Efton. *Complex topological K-theory*. Vol. 111. Cambridge University Press, 2008.
- Rørdam, Mikael, Flemming Larsen, and Niels Laustsen. An Introduction to K-theory for C*-algebras. Vol. 49. Cambridge University Press, 2000.