

INTRODUCTION

In [5, 7], the notion of coherent tangent bundle is introduced. It is a bundle homomorphism between the tangent bundle and a vector bundle with the same rank with a kind of metric. This is a generalization of fronts and C^{∞} -maps between the same dimensional manifolds. Singular points of bundle homomorphisms $\varphi: TM \to E$ are points where $\varphi(p): T_pM \to E_p$ is not a bijection. In [5, 7], differential geometric invariants of singularities of bundle homomorphisms are defined and investigated. On the other hand, in [8], topological properties of singular sets of bundle homomorphisms without metric are studied. See [1] for another kind of application of coherent tangent bundle. In this poster, we consider rank r(< m)tangent distributions instead of the tangent bundles of *m*-dimensional manifolds. Since r < m, the singularities appearing on the bundle homomorphisms are slightly different from the case $\varphi: TM \to E$, where dim M = rank E = m, and the case $\varphi : TM \to E$, where dim M = rank E = r either. Let D_1 be a rank r tangent distribution on an m-dimensional manifold M. Let N be an r dimensional

manifold, and $f: M \to N$ a map. Then a bundle homomorphism $\varphi = df: D_1 \to f^*TN$ is induced from f. Singularities of φ should be related to D_1 and f. Here we stick to our interest into the low dimensional case, we study the relationships when f is a Morin map, and D_1 is the foliation or the contact structure when m = 3, r = 2.

BUNDLE HOMOMORPHISMS AND THEIR SINGULAR POINT

With the terminology of [7], we give definition of singular points of bundle homomorphisms. We set

- M : m-manifold, $D_1 : \operatorname{rank} r (r < m)$ tangent distribution of M, $D_2 : a \operatorname{rank} r$ vector bundle over M,
- $\varphi: D_1 \to D_2$ be a bundle homomorphism.

A point $p \in M$ is called *singular point* of φ if rank $\varphi_p < r$.

Lemma 1.1 ([9]). If p is a corank one singular point of φ . Then there exists a neighborhood U of p and a section $\eta_{\varphi} \in \Gamma(D_1)$ such that if $q \in S \cap U$ then $(\eta_{\varphi})_q$ is a generator of the kernel of φ_q .

We call η_{φ} the *null section* of φ . We set $\lambda_{\varphi} = \det M_{\varphi}$. We call $p \in S$ is *non-degenerate* if $d\lambda_{\varphi}(p) \neq 0$. The notions of the null section and the non-degeneracy is introduced in [2]. It is shown that non-degenerate singular points are of corank one. Since $S = \{\lambda_{\varphi}(p) = 0\}$, S is a codimension one submanifold near a non-degenerate singular point. With the terminology of [3, 6], we give the following definition:

Definition 1.2 ([9]). We call a singular point $p \in S$ is a *fold-like singular point* if it is corank one, and $\eta_{\varphi}\lambda_{\varphi}(p) \neq 0$. We call $p \in S$ is a *cusp-like singular point* if p is non-degenerate and $\eta_{\varphi}\lambda_{\varphi}(p) = 0$ and $\eta_{\varphi}^2 \lambda_{\varphi}(p) \neq 0$. We call $p \in S$ is a swallow tail-like singular point if p is non-degenerate, and $\eta_{\varphi}\lambda_{\varphi}(p) = \eta_{\varphi}^2\lambda_{\varphi}(p) = 0$ and rank $d(\lambda_{\varphi}, \eta_{\varphi}\lambda_{\varphi}, \eta_{\varphi}^2\lambda_{\varphi}) = 3$ at p.

If p is a fold-like singular point, and $(D_1)_p = T_p S$, then $(\eta_{\varphi})_p \in T_p S$. Thus $(D_1)_p \neq T_p S$. Let p be a cusp-like singular point. If $e_1\lambda_{\varphi} = e_2\lambda_{\varphi} = 0$ at p, then $(D_1)_p = T_pS$. In this case, we call p *cusp-like singular point of tangent type*. If $(e_1\lambda_{\varphi}, e_2\lambda_{\varphi}) \neq (0, 0)$ at p, then $(D_1)_p$ is transversal to T_pS . In this case, we call p cusp-like singular point of transverse type. The picture of S and D_1 can be drawn in the following figures:

fold-like singular point cusp-like singular point of tangent type cusp-like singular point of transverse type If $p \in S$ is a swallowtail-like singular point, then S_2 is one-dimensional submanifold of S. Let (u, v)be a coordinate system near p of S. Let $\gamma(t) = (\gamma_1(t), \gamma_2(t)) (\gamma(0) = p)$ be a parameterization of S₂ with respect to (u, v), and let $\eta_{\gamma(t)} = a(t)\partial_u + b(t)\partial_v$. Then we have the following

Proposition 1.3 ([9]). Let $p \in S$ is a swallowtail-like singular point. We set $\mu(t) = \begin{pmatrix} \gamma_1(t) & a(t) \\ \gamma_2(t) & b(t) \end{pmatrix}$. Under the above notation, it holds that $\mu(0) = 0, \mu'(0) \neq 0$.

Swallowtail-like singular point also has tangent and transverse types. If $e_1\lambda_{\varphi} = e_2\lambda_{\varphi} = 0$ at p, then $(D_1)_p = T_pS$. We call p a *swallowtail-like singular point of tangent type* in this case. If $(e_1\lambda_{\varphi}, e_2\lambda_{\varphi}) \neq (0,0)$ at p, then $(D_1)_p$ is transversal to T_pS . In this case, we call p a swallowtail-like singular point of transverse type (see the figures below.) Ignoring arrangements of D_1 , relationship of S, S₂ and η_{φ} is similar to that of the Morin singularities of $(\mathbb{R}^3, 0) \to (\mathbb{R}^3, 0)$ ([6]).

swallowtail-like singular point of tangent type

swallowtail-like singular point of transverse type

A NOTE ON SINGULAR POINTS OF BUNDLE HOMOMORPHISMS BETWEEN A TANGENT DISTRIBUTION INTO A VECTOR BUNDLE OF THE SAME RANK

ASAHI TSUCHIDA (JOINT WORK WITH KENTARO SAJI)

Graduate School of Science, Department of Mathematics, Hokkaido University. e-mail: asahi-t@math.sci.hokudai.ac.jp

2 GENERIC SINGULARITIES

We see the generic singularities of φ is fold-like, cusp-like and swallowtail-like singular points if m = 3and r = 2. The bundle homomorphism φ can be regarded as a section of the homomorphism bundle Hom (D_1, D_2) . We set $E = \text{Hom}(D_1, D_2)$. Since the set of sections $\Gamma(E)$ is a subset of $C^{\infty}(M, E)$, we derive the Whitney C^{∞} topology to $\Gamma(E)$.

Proposition 2.1 ([9]). Assume that m = 3 and r = 2. Then the set $\{\varphi \in \Gamma(E) \mid \text{any } p \in S \text{ is fold-like, cusp-like or swallowtail-like} \}$

is dense.

3 MORIN SINGULARITIES FROM A MANIFOLD WITH A DISTRIBUTION

Let N be an r-dimensional manifold and $f: M \to N$ a map. Setting $D_2 = f^*TN$ we obtain a bundle homomorphism $\varphi: D_1 \to D_2$, which is called a *bundle homomorphism induced by* f, by $\varphi(v) = df(v)$. In this section, assuming f be a Morin singularity, we see relationships of φ , D_1 and f in the case of m = 3, r = 2. Since we consider local cases, we regard a map $f: M \to N$ as a map germ $f: (\mathbb{R}^3, 0) \to (\mathbb{R}^2, 0)$.

Morin singularities

We give a belief review on the Morin singularities of $(\mathbb{R}^3, 0) \to (\mathbb{R}^2, 0)$. The map-germ $f, g: (\mathbb{R}^3, 0) \to (\mathbb{R}^3, 0)$ $(\mathbb{R}^2, 0)$ are said to be \mathcal{A} -equivalent (which is denoted by $f \stackrel{\mathcal{A}}{\sim} g$) if there exist diffeomorphism-germs $\sigma: (\mathbb{R}^m, 0) \to (\mathbb{R}^m, 0) \text{ and } \tau: (\mathbb{R}^n, 0) \to (\mathbb{R}^n, 0) \text{ such that } \tau \circ f \circ \sigma^{-1} = g.$

Definition 3.1 ([4]). • The map-germ $f : (\mathbb{R}^3, 0) \to (\mathbb{R}^2, 0)$ is called a *definite fold* (respectively, a *indefinite fold*) if $f \stackrel{\mathcal{A}}{\sim} (u, v, w) \mapsto (u, v^2 + w^2)$ (respectively, $(u, v^2 - w^2)$) at 0. • The map-germ $f: (\mathbb{R}^3, 0) \to (\mathbb{R}^2, 0)$ is called a *cusp* if the map-germ $f \stackrel{\mathcal{A}}{\sim} (u, v, w) \mapsto (u, v^2 + w^3 + uw)$.

Definite fold, indefinite fold and cusp are called Morin singularities, and it is known that generic singularities appearing on maps from a 3-manifold to a 2-manifold are only Morin singularities. A characterization of Morin singularities is given as follows: Let $f : (\mathbb{R}^3, 0) \to (\mathbb{R}^2, 0)$ be a map-germ and rank $df_0 = 1$. Then there exists a tuple of vector fields $\{\xi, \eta_1, \eta_2\}$ such that

 $\langle \xi(0), \eta_1(0), \eta_2(0) \rangle = T_0 \mathbb{R}^3, \quad \langle \eta_1, \eta_2 \rangle = \ker df_p, \quad p \in S(f),$ where S(f) is the set of singular points of f. We set

 $\lambda_1 = \det(\xi f, \eta_1 f), \quad \lambda_2 = \det(\xi f, \eta_2 f), \quad H = \begin{pmatrix} \eta_1 \lambda_1 & \eta_2 \lambda_1 \\ \eta_1 \lambda_2 & \eta_2 \lambda_2 \end{pmatrix}.$

Then f at 0 is a definite fold (respectively, indefinite fold) if and only if det H(0) > 0 (respectively, det H(0) < 0). We assume that rank H(0) = 1, then there exists a vector field $\theta = a_1\eta_1 + a_2\eta_2$ on S(f)such that $\langle \theta_0 \rangle = \ker H(0)$. Then f at 0 is a cusp if and only if $\theta H(0) \neq 0$. See [4] in detail.

Conditions for singularities

We consider the conditions of singular points of fold-like, cusp-like and swallowtail-like singular points under the assumption that f is regular, fold and cusp since these are generic singular points. When f is regular at 0, and $D_1 \not\subset \ker df_0$, then φ is non-singular. When f is singular at 0, and $D_1 \subset \ker df_0$, then φ is of rank zero at 0. Since we are stick to rank one singular points of φ , we assume that $D_1 \cap \ker df_0$ is one-dimensional. By taking a suitable local frame $\{e_1, e_2\}$ of D_1 , we may assume that $e_1 f(0) \neq 0$. The bundle homomorphism φ can be represented by the matrix $(e_1 f, e_2 f)$

by $\{e_1, e_2\}$ and the trivial frame on \mathbb{R}^2 . Since rank $\varphi = 1$ at 0, we take a null section η_{φ} , and set $\lambda_{\varphi} = \det(e_1 f, e_2 f) = \det(e_1 f, \eta_{\varphi} f).$

The following proposition holds.

Proposition 3.2 ([9]). The singular point p of φ is fold-like singular point if and only if det $(e_1 f, \eta_{\varphi}^2 f) \neq 0$ at p. A non-degenerate singular point p is cusp-like singular point (respectively, swallowtail-like singular point) if and only if $det(e_1f, \eta_{\varphi}^2 f) = 0$, and $det(e_1f, \eta_{\varphi}^3 f) \neq 0$ at p (respectively, $det(e_1f, \eta_{\varphi}^2 f) = 0$) $\det(e_1f, \eta_{\omega}^3 f) = 0, \det(e_1f, \eta_{\omega}^4 f) \neq 0, \text{ and } d \det(\det(e_1f, \eta_{\omega}f), \det(e_1f, \eta_{\omega}^2 f), \det(e_1f, \eta_{\omega}^3 f)) \neq 0 \text{ at } p).$

Restriction of singularities of φ by singular types of f

We assume that f at 0 is a definite fold singular point. Then $rank(e_1f, e_2f, e_3f) = 1$ on S(f), where $\{e_1, e_2, e_3\}$ is a frame of $T\mathbb{R}^3$. Thus there exist functions k_1, k_2 such that $e_2f = k_1e_1f, e_3f = k_2e_1f$ on S(f). Taking extensions of k_1, k_2 on \mathbb{R}^3 , we set

 $\eta_2 = -k_1e_1 + e_2, \ \eta_3 = -k_2e_1 + e_3, \ \lambda_2 = \det(e_1f, e_2f) = \det(e_1f, \eta_2f), \ \lambda_3 = \det(e_1f, e_3f) = \det(e_1f, \eta_3f).$ Then we see that η_2 is a null section of φ , and λ_2 is the same as λ_{φ} . Since f is definite fold,

$$I = \det \begin{pmatrix} \eta_2 \lambda_2 & \eta_3 \lambda_2 \\ \eta_2 \lambda_3 & \eta_3 \lambda_3 \end{pmatrix} > 0$$

In particular, $\eta_2 \lambda_2 \neq 0$. Thus φ is fold-like at 0 if rank $\varphi(0) = 1$

assume that φ is not fold-like, namely, $\eta_2 \lambda_2(0) = 0$. Then since f is cusp,

 $H(0) = \det \begin{pmatrix} \eta_2 \lambda_2 & \eta_3 \lambda_2 \\ n_2 \lambda_2 & n_3 \lambda_2 \end{pmatrix} (0) = 0.$

Since $\eta_3 \lambda_2(0) = \eta_2 \lambda_3(0)$, it holds that $\eta_3 \lambda_2(0) = 0$. Hence the kernel of *H* is $\theta = \eta_1$ at 0. Then *f* is cusp if and only if

 $\eta_1^2 \lambda_1(0) \ \eta_2 \lambda_2(0) \neq 0.$ Thus φ is non-degenerate and not fold-like at 0, then φ is cusp-like at 0.

Here we assume D_1 is a foliation. By taking a coordinate system (x, y, z) on \mathbb{R}^3 , we may assume $D_1 = \langle e_1, e_2 \rangle = \langle \partial_x, \partial_y \rangle$. Let L(x, y) be the leaf which contains the origin, namely, L(x, y) = f(x, y, 0). We have the following proposition

Proposition 4.1 ([9]). Under the above setting, the following holds: (1) φ is fold-like if and only if L is fold. (2) if φ is non-degenerate, then φ is cusp-like if and only if L is cusp. (3) if φ satisfies that rank $d(\lambda_{\varphi}, \eta_{\varphi}\lambda_{\varphi})(0) = 2$, then φ is swallowtail-like if and only if L is swallowtail.

A map-germ $f : (\mathbb{R}^2, 0) \to (\mathbb{R}^2, 0)$ is called a *fold* if f is $f \stackrel{\mathcal{A}}{\sim} (u, v) \mapsto (u, v^2)$ at 0. A map-germ $f: (\mathbb{R}^2, 0) \to (\mathbb{R}^2, 0)$ is called a *cusp* (respectively, *swallowtail*) if $f \stackrel{\mathcal{A}}{\sim} (u, v) \mapsto (u, v^3 + uv)$ at 0 (respectively, $(u, v) \mapsto (u, v^4 + uv)$ at 0). Criteria for these singularities are obtained as follows: Let $f: (\mathbb{R}^2, 0) \to (\mathbb{R}^2, 0)$ be a map-germ. We set $\lambda = \det J$, where J is the Jacobian matrix of f. A singular point $p \in S(f)$ is *non-degenerate* if $d\lambda(p) \neq 0$. Then the following holds.

Fact 4.2 ([11, 6, 3]). A singular point p is fold if $\eta \lambda(p) \neq 0$. Moreover, a non-degenerate singular point p is cusp (respectively, swallowtail) if $\eta\lambda(p) = 0$ and $\eta^2\lambda(p) \neq 0$ (respectively, $\eta\lambda(p) = \eta^2\lambda(p) = 0$ and $\eta^3 \lambda(p) \neq 0$).

The case D_1 is a contact structure

Here we assume D_1 is a contact structure. Since the Hamilton vector field X associated to λ_{φ} is contained in D_1 on S, we consider the relationship with the behavior of X and the singularities of φ . We may assume $D_1 = \langle e_1, e_2 \rangle = \langle \partial_x, \partial_y - x \partial_z \rangle$ without loss of generality. Since φ can be expressed by $(f_x, f_y - x f_z)$, $\lambda_{\varphi} = \det(f_X, f_V - xf_Z).$

The Hamilton vector field X associated to λ_{φ} is $X = (\lambda_y - x\lambda_z)\partial_x - \lambda_x\partial_y - (\lambda - x\lambda_x)\partial_z = (\lambda_y - x\lambda_z)e_1 - \lambda_xe_2 - \lambda\partial_z.$ Since $S = \{\lambda_{\varphi} = 0\}$ holds, $X_p \in D_1$ is equivalent to $p \in S$. We have the following theorem.

and only if

are linearly independent, where η_{φ} is a null section of φ .

We have the following corollary.

Corollary 4.4 ([9]). If $p \in S$ is a cusp-like singular point, then $X_p \notin T_pS_2$. If $p \in S$ is a swallowtail-like singular point. Then

 $\tilde{\mu}(0) = 0, \quad \tilde{\mu}'(0) \neq 0,$ $\tilde{\mu}(t) = \begin{pmatrix} \gamma_1(t) & a(t) \\ \gamma_2(t) & b(t) \end{pmatrix}.$

where $\gamma(t) = (\gamma_1(t), \gamma_2(t)) (\gamma(0) = p)$ is a parameterization of S_2 , and $\eta_{\gamma(t)} = a(t)\partial_u + b(t)\partial_{\gamma}$, and

- Math. 221 (2005), no. 2, 303–351.
- **40** (2010), no. 2, 229–239.
- 315–336, Contemp. Math., 675, Amer. Math. Soc., Providence, RI, 2016.
- 3, 731–746.
- Anal. 22 (2012), no. 2, 383–409.
- bundle of the same rank, and its applications, J. Math. Soc. Japan 69 (2017), no. 1, 417–457.
- [9] K. Saji, A. Tsuchida, A note on singular points of bundle homomorphisms from a tangent distribution into a vector bundle of the same rank, arXiv:1706.05777.
- 4429-4448.
- **62** (1955), 374–410.

Next we assume that f at 0 is a cusp singular point. Then we take k_1, k_2, η_2, η_3 and λ_2, λ_3 as above. We

The case D_1 is a foliation

Theorem 4.3 ([9]). If φ has a corank one singular point at p, under the above setting, $p \in S$ is fold-like if

 X_p and $(\eta_{\varphi})_p$

References

[1] A. Honda, Isometric immersions with singularities between space forms of the same positive curvature, arXiv:1508.07223. [2] M. Kokubu, W. Rossman, K. Saji, M. Umehara and K. Yamada, Singularities of flat fronts in hyperbolic space, Pacific J.

[3] K. Saji, Criteria for singularities of smooth maps from the plane into the plane and their applications, Hiroshima Math. J.

[4] K. Saji, Criteria for Morin singularities for maps into lower dimensions, and applications, Real and complex singularities,

[5] K. Saji, M. Umehara and K. Yamada, The geometry of fronts, Ann. of Math. (2) 169 (2009), no. 2, 491–529.

[6] K. Saji, M. Umehara and K. Yamada, A_k singularities of wave fronts, Math. Proc. Cambridge Philos. Soc. 146 (2009), no.

[7] K. Saji, M. Umehara and K. Yamada, Coherent tangent bundles and Gauss-Bonnet formulas for wave fronts, J. Geom.

[8] K. Saji, M. Umehara and K. Yamada, An index formula for a bundle homomorphism of the tangent bundle into a vector

[10] T. Schmah and C. Stoica, Saari's conjecture is true for generic vector fields, Trans. Amer. Math. Soc. 359 (2007), no. 9,

[11] H. Whitney, On singularities of mappings of euclidean spaces. I. Mappings of the plane into the plane, Ann. of Math. (2)