Theory of solvability of generalized Hamiltonian systems and a study on abnormal extremals of rank two distributions

Asahi TSUCHIDA

Hokkaido university

Boston university/ Keio university Workshop - Geometry and Mathematical Physics -

> at Boston university, Boston, USA. 29th June, 2017

Contents

Motivations

- Implicit defferential systems, generalized Hamiltonian systems and their smooth solvability
- A study of abnormal extremals on a sub-Riemannian manifold

Theorem (T)

Let (M, \mathcal{D}, g) be a sub-Riemannian smooth manifold with a distribution \mathcal{D} of rank two. Suppose that $\mathcal{D}_1 := \mathcal{D} + [\mathcal{D}, \mathcal{D}]$ is a sub-bundle of rank three and $\mathcal{D}_2 := \mathcal{D}_1 + [\mathcal{D}, \mathcal{D}_1]$ is a sub-bundle of rank four. Then for any point q_0 in M, there exist a closed submanifold V_{q_0} of q_0 in M and a smooth (2n - 4) parameter family of C^{∞} immersive abnormal bi-extremal $\{\gamma_q(t)\}_{q \in V_{q_0}}$ of which projection are not normal geodesics defined on a small interval.

Motivation (Sub-Riemannian geometry)

Definition

- $M: \ C^\infty$ manifold
- \mathcal{D} : a distribution (i.e. a sub-bdl. of TM)
- ullet g : a bi-linear positive definite form on ${\cal D}$
- $\longrightarrow (M, \mathcal{D}, g)$: sub-Riemannian manifold.
 - A horizontal curve : abs. conti. curve $\gamma \colon I \to M$ s.t. $\dot{\gamma}(t)$ is measurable & bounded & $\dot{\gamma}(t) \in \mathcal{D}_{\gamma(t)}$ a.e. $t \in I$.

Chow–Rashevsky's theorem

If ${\cal D}$ satisfies Hörmander's condition on conn. mfd M, every two points are connected by a horizontal curve.

→ we may define Carnot-Carathéodory (or sub-Riemannian) distance.

$$egin{aligned} d_{CC}(p,q) &:= \inf_{\gamma} \Big\{ L(\gamma) := \int_{[a,b]} \sqrt{g(\dot{\gamma}(t),\dot{\gamma}(t)}) dt \mid \ \gamma \colon [a,b] o M : horizontal, \gamma(a) = p, \gamma(b) = q \Big\} \end{aligned}$$

• A minimizer γ : a horizontal curve γ connecting p and q s.t. $d_{CC}(p,q) = L(\gamma)$.

Extremals

Normal extremal

 $egin{aligned} H_E \in C^\infty(T^*M,\mathbb{R}) \ H_E(x,p) &= -rac{1}{2}\sum_{i,j}g^{ij}(x)p_ip_j, \end{aligned}$

Abnormal extremal

 $H \colon T^*M imes_M \mathcal{D} o \mathbb{R} \ H(x,p,u) := \langle p_x, u
angle,$

$$egin{aligned} \dot{x}(t) &= rac{\partial H_E}{\partial p}(x(t),p(t)) \ \dot{p}(t) &= -rac{\partial H_E}{\partial x}(x(t),p(t)) \end{aligned}$$

$$\begin{split} \dot{x}(t) &= \frac{\partial H}{\partial p}(x(t), p(t), u(t)), \\ \dot{p}(t) &= -\frac{\partial H}{\partial x}(x(t), p(t), u(t)), \\ \frac{\partial H}{\partial u_i}(x(t), p(t), u(t)) &= 0 \\ & (1 \leq i \leq k). \end{split}$$

Extremals

Let $\{X_1, \ldots, X_k\}$ be a local framing of \mathcal{D} .

Normal extremals (normal geodesics)

Set C^∞ function $H_E \colon T^*M o \mathbb{R}$ as

$$H_E(x,p) = -rac{1}{2}\sum_{i,j}g^{ij}(x)\langle p,X_i(x)
angle\langle p,X_j(x)
angle$$

where $g_{ij} = g(X_i, X_j)$ and $(g^{ij})_{i,j}$ is the inverse matrix of $(g_{ij})_{i,j}$. A solution of the Hamiltonian equation associated to H_E is called a normal bi-extremal and its projection to M is called a normal extremal (or a normal geodesic). The eqn's are expressed as

$$\dot{x}(t)=rac{\partial H_E}{\partial p}(x(t),p(t)), \ \ \dot{p}(t)=-rac{\partial H_E}{\partial x}(x(t),p(t))$$

with Darboux coordinates (x, p) of T^*M .

Extremals

Set

• $H : T^*M \times_M \mathcal{D} \to \mathbb{R}, H(x, p, u) := \langle p, u \rangle$ for $x \in M, p \in T^*_xM$ and $u \in \mathcal{D}_x$.

Abnormal extremals

The constrained Hamiltonian system for H is def. by

$$\left\{ egin{array}{l} \dot{x}(t) = rac{\partial H}{\partial p}(x(t),p(t),u(t)), \ \dot{p}(t) = -rac{\partial H}{\partial x}(x(t),p(t),u(t)), \ rac{\partial H}{\partial u_i}(x(t),p(t),u(t)) = 0 \ (1 \leq i \leq k) \end{array}
ight.$$

If $\exists x(t)$: a horizontal curve on $[0, \varepsilon)$, p(t) on $T^*_{x(t)}M \setminus \{0\}$ and $u(t) \in \mathcal{D}_{x(t)}$ which satisfies the equations for a.e. $t \in [0, \varepsilon)$, the curve (x(t), p(t)) on T^*M is called an abnormal bi-extremal and the projection of an abnormal bi-extremal to M is called an abnormal extremal.

- Local minimizers \longrightarrow Extremals
- Extremals local minimizers?

- Local minimizers → Extremals
- Extremals \longrightarrow local minimizers? <u>No.</u> (R. Montrgomery)

But not much is known about abnormal extremals.

Abnormal extremal

 $egin{aligned} H \colon T^*M imes_M \mathcal{D} o \mathbb{R} \ H(x,p,u) &:= \langle p_x, u
angle, \end{aligned}$

$$\begin{split} \dot{x}(t) &= \frac{\partial H}{\partial p}(x(t), p(t), u(t)), \\ \dot{p}(t) &= -\frac{\partial H}{\partial x}(x(t), p(t), u(t)), \\ \frac{\partial H}{\partial u_i}(x(t), p(t), u(t)) &= 0 \\ (1 \leq i \leq k). \end{split}$$

 Study the constrained system as an implicit differential system

Implicit differential systems (cf. Fukuda–Janeczko 2004)

- M: m-dim. C^{∞} manifold.
- $\pi: TM \to M$: tangent bundle projection

Definition

An implicit differential system on M is a submanifold $S \subset TM$.

Example

For a vector field $X \in \Gamma(TM)$, set

$$gragh(X) := \{(x, \dot{x}) \in TM \mid \dot{x} = X(x)\}.$$

gragh(X) is an implicit differential system.

Several natural questions from theory of ODEs.

- existence of a (local) solution
- uniqueness of the solution of Cauchy problem
- smoothness of solutions
- a range of the largest domain of prolongation of solutions and so on

 \longrightarrow We stick to consider the first two problems.

Smooth solvability over submanifolds

Let N be a submanifold of M.

Definition

- A solution of S over N is a C^1 curve $\gamma \colon (a, b) \to N$ s.t. $(\gamma(t), \dot{\gamma}(t)) \in S \cap \pi^{-1}(N)$ for all $t \in (a, b)$.
- A point $(x_0, \dot{x}_0) \in S$ is a solvable point of S over N if $\exists \varepsilon > 0$ and $\exists \gamma \colon (-\varepsilon, \varepsilon) \to N$: solution s. t. $(\gamma(0), \dot{\gamma}(0)) = (x_0, \dot{x}_0)$.
- A point $(x_0, \dot{x}_0) \in S$ is a smoothly solvable point of S over N if $\exists W \subset S \times \mathbb{R}$: open nbd. of $(x_0, \dot{x}_0, 0), \exists \bar{\gamma} \colon W \to N : C^{\infty}$ map s.t.

$$\gamma_{(x,\dot{x})}(t):=ar{\gamma}(x,\dot{x},t)$$

is a solution of S over N with $(\gamma(0), \dot{\gamma}(0)) = (x, \dot{x})$ $\forall (x, \dot{x}) \in \pi_1(W)$, where $\pi_1 \colon S \times \mathbb{R} \to S$ is a natural projection.

• An implicit differential system S over N is called a smoothly solvable submanifold over N if S consists only of smoothly solvable points of S over N.

Smooth solvability over submanifolds

Necessary condition of smooth solvability.

```
Tangential solvability condition
```

A point $(x,\dot{x})\in S$ is solvable point. Then

 $\dot{x} \in d(\pi|_S)_{(x,\dot{x})}(T_{(x,\dot{x})}S).$

QUESTION: What is a sufficient condition for S to be smoothly solvable? There are some answers (cf. Fukuda-Janeczko, 2004).

We consider such conditions for symplectic case.

Implicit Hamiltonian systems

• (M, ω) a symplectic manifold.

 \longrightarrow Tangent bundle $(TM, \dot{\omega})$: a symplectic manifold. where

• $\flat \colon TM o T^*M$: bdl. isom. def. by $\flat_x(v_q) = \iota_{v_q}\omega_q$, $q \in M$,

- heta : the Liouville form on T^*M ,
- $\dot{\omega} := b^* d\theta$.

In what follows we set $M = \mathbb{R}^{2n}$ with the standard symplectic form ω .

Definition (Fukuda–Janeczko, 2004)

A Lagrangian submanifold L of $(T\mathbb{R}^{2n}, \dot{\omega})$ (i.e., dim L = 2n and $\dot{\omega}|_L = 0$) is called an implicit Hamiltonian system.

Generalized Hamiltonian systems

Now we focus on implicit Hamiltonian systems which is generated by a Morse family of particular type:

$$F\colon \mathbb{R}^{2n} imes \mathbb{R}^k o \mathbb{R}, \quad F(x,p,u) = \sum_{j=1}^k a_j(x,p)u_j + b(x,p).$$

The catastrophe set of F:

$$C(F) = \left\{ (x, p, u) \in \mathbb{R}^{2n} imes \mathbb{R}^k \mid rac{\partial F}{\partial u_i}(x, p, u) = 0, i = 1, \dots, k
ight\}$$
 $= K imes \mathbb{R}^k$

where $K := \{(x,p) \in \mathbb{R}^{2n} \mid a_i(x,p) = 0, i = 1, \dots, k\}$. $\phi_F \colon \mathbb{R}^{2n} \times \mathbb{R}^k \to T\mathbb{R}^{2n}$

$$\phi_F(x,p,u) = (x,p,rac{\partial F}{\partial p_i}(x,p,u), -rac{\partial F}{\partial x_i}(x,p,u)).$$

 $\longrightarrow L_F = \phi_F(C(F))$: a generalized Hamiltonian system.

Smoothly solvable submanifolds of L_F over submanifolds

<u>The case $b \equiv 0$ </u>. L_F induced from co-normal bundles of the submanifold K.

For the case $\underline{k = 2}$. • $F: \mathbb{R}^{2n} \times \mathbb{R}^2 \to \mathbb{R}$: Morse family def. by

$$F(x, p, u) = a_1(x, p)u_1 + a_2(x, p)u_2.$$

Notation

- $\langle a_1, a_2, \{a_1, a_2\} \rangle_{\mathcal{E}_{\mathbb{R}^{2n}, q_0}}$: $\mathcal{E}_{\mathbb{R}^{2n}, q_0}$ -module gen. by a_1, a_2 and $\{a_1, a_2\}$.
- $\xi_1 := \{a_1, \{a_1, a_2\}\}, \ \xi_2 := \{a_2, \{a_1, a_2\}\}$
- $A_1 := \{(x,p) \in K \mid a_1 = a_2 = \{a_1,a_2\} = 0\}$

Proposition (T)

Assume that a_1, a_2 , and $\{a_1, a_2\}$ are independent. Then $\phi_F(A_1 \times \mathbb{R}^2)$ is a smoothly solvable submanifold of L_F over A_1 if and only if $\xi_1, \xi_2 \in \langle a_1, a_2, \{a_1, a_2\} \rangle_{\mathcal{E}_{\mathbb{R}^{2n}, q_0}}$ for any point q_0 in A_1 .

Proposition (T)

Assume that a_1, a_2 and $\{a_1, a_2\}$ are independent. Assume also that

$$\xi_2 \in \langle a_1, a_2, \{a_1, a_2\}
angle_{\mathbb{R}^{2n}, q_0}$$
 and $\xi_1 \notin \langle a_1, a_2, \{a_1, a_2\}
angle_{\mathbb{R}^{2n}, q_0}$

at every point q_0 of A_1 . Then the followings hold.

- φ_F(A_{1,1}²) is a smoothly solvable submanifold of L_F over A_{1,1}.
 Assume, furthermore, that ξ₁, a₁, a₂, {a₁, a₂} are independent.
 φ_F(A₁²) is a smoothly solvable submanifold of L_F over A₂¹.
 φ_F(A₁² × ℝ²) is a smoothly solvable submanifold of L_F over A₁² if
 - $\{a_1,ar{\xi_1}\}\in \langle a_1,a_2,\{a_1,a_2\},\xi_1
 angle arepsilon_{\mathbb{R}^{2n},q_0}$ for any point q_0 in $ar{A}^1_2$.

Proposition (T)

Assume that a_1, a_2 and $\{a_1, a_2\}$ are independent. Assume also that

$$\xi_2 \in \langle a_1, a_2, \{a_1, a_2\} \rangle_{\mathcal{E}_{\mathbb{R}^{2n}, q_0}} \text{ and } \xi_1 \notin \langle a_1, a_2, \{a_1, a_2\} \rangle_{\mathcal{E}_{\mathbb{R}^{2n}, q_0}}$$

at every point q_0 of A_1 . Then the followings hold.

- φ_F(A_{1,1}²) is a smoothly solvable submanifold of L_F over A_{1,1}.
 Assume, furthermore, that ξ₁, a₁, a₂, {a₁, a₂} are independent.
 - $\phi_F(\overline{A_2^1}^2)$ is a smoothly solvable submanifold of L_F over A_2^1 .
 - $\phi_F(A_2^1 \times \mathbb{R}^2)$ is a smoothly solvable submanifold of L_F over A_1^1 if $\{a_1, \xi_1\} \in \langle a_1, a_2, \{a_1, a_2\},$

Proposition (T)

Assume that a_1, a_2 and $\{a_1, a_2\}$ are independent. Assume also that

 $\xi_1 \in \langle a_1, a_2, \{a_1, a_2\} \rangle_{\mathcal{E}_{\mathbb{R}^{2n}, q_0}} \text{ and } \xi_2 \notin \langle a_1, a_2, \{a_1, a_2\} \rangle_{\mathcal{E}_{\mathbb{R}^{2n}, q_0}}$

at every point q_0 of A_1 . Then the followings hold.

- ($\phi_F(\overline{A_{1,2}}^1)$ is a smoothly solvable submanifold of L_F over $A_{1,2}$.
- Assume, furthermore, that \$2, a1, a2, {a1, a2} are independent.
 - $\phi_F(\overline{A_2^2}^1)$ is a smoothly solvable submanifold of L_F over A_2^2 . • $\phi_F(A_2^2 \times \mathbb{R}^2)$ is a smoothly solvable submanifold of L_F over A_2^2 if $\xi_2)_{\mathcal{E}_{2^{2n}, q_1}}$ for any point q_0 in A_2^2 .

In the case $\xi_1, \xi_2 \notin \langle a_1, a_2, \{a_1, a_2\} \rangle_{\mathcal{E}_{\mathbb{P}^{2n} an}}$ we have

Proposition (T)

Assume that a_1,a_2 and $\{a_1,a_2\}$ are independent. Then $\phi_F(\overline{A_{1,(1,2)}}^{1,2})$ is a smoothly solvable submanifold of L_F over $A_{1,(1,2)}$ if $\xi_1,\xi_2\notin \langle a_1,a_2,\{a_1,a_2\}\rangle_{\mathcal{E}_{\mathbb{R}^{2n},q_1}}$ for every point q_0 in $A_{1,(1,2)}$.

Proposition (T)

Assume that $a_1, a_2, \{a_1, a_2\}$ and ξ_1 are independent. Then $\phi_F(\overline{A_2^{1,1}})$ is a smoothly solvable submanifold of L_F over A_2^{1} if $\{a_1, \xi_1\} \in \langle a_1, a_2, \{a_1, a_2\}, \xi_1 \rangle_{\mathcal{E}_{\mathbb{R}^{2n, an}}}$ for any point q_0 in A_2^{1} .

Proposition (T)

Assume that $a_1, a_2, \{a_1, a_2\}$ and ξ_2 are independent. Then $\phi_F(\overline{A_2^2}^2)$ is a smoothly solvable submanifold of L_F over A_2^2 if $\{a_2, \xi_2\} \in \langle a_1, a_2, \{a_1, a_2\}, \xi_2 \rangle_{\mathcal{E}_2 a_{n,q_0}}$ for any point q_0 in A_2^2 .

A lemma for the proof

Let ullet A : a submanifold of K, C : a submanifold of \mathbb{R}^k

•
$$\widetilde{A}$$
 : a submanifold of $A imes \mathbb{R}^k$

• $\alpha : \widetilde{A} \to A$ a locally trivial fibration which fibre is C with $\alpha(q, v) := q$ for $(q, v) \in \widetilde{A} \subset A \times \mathbb{R}^k$.

•
$$X_u: A \to T(\mathbb{R}^{2n})$$
: a family of vector fields along A
 $X_u(x,p) = (x,p, \frac{\partial F}{\partial p}(x,p,u(x,p)), -\frac{\partial F}{\partial x}(x,p,u(x,p)).$
Lemma (T)

A point $(q_0, \dot{q}_0) \in \phi_F(\widetilde{A})$ is a smoothly solvable point of $\phi_F(\widetilde{A})$ over A if there exist an open neighborhood V_0 of q_0 in A and a smooth map $s \colon V_0 \times C \to \widetilde{A}$ of smooth family of sections

$$s_c := s(\cdot, c) \colon V_0 \to \widetilde{A}$$

for each $c\in C$ such that for any $(q,\dot{q})\in \phi_F(lpha^{-1}(V_0))$ there exists $c\in C$ which satisfies

$$\phi_F(s_c(q)) = \dot{q}$$

and X_{S_c} is tangent vector field on V_0 .

An application to sub-Riemannian geometry

Lie algebra homomorphism

$$(\Gamma(TM), [\cdot, \cdot]) o (C^{\infty}(T^*M, \mathbb{R}), \{\cdot, \cdot\}), \quad X \mapsto \langle p, X(x)
angle$$

Proposition (T)

For a rank 2 distribution \mathcal{D} with small growth vector $(2, 3, 3, \ldots)$ at each point in M, there exist a close manifold S of $T^{\sharp}M$ with codimension 3 and a smooth (2n-3)-parameter family of totally singular abnormal bi-extremals $\{(x_q(t), p_q(t))\}_{q \in S}$ in S.

Proposition (T)

For a rank 2 distribution \mathcal{D} with small growth vector $(2, 3, 4, \ldots)$ at each point in M, there exist a close submanifold S of $T^{\sharp}M$ and a smooth family of abnormal bi-extremals $\{(x_q(t), p_q(t))\}_{q \in S}$ in S which is either regular or totally singular.

Here (x(t), p(t)) is

regular
$$\longleftrightarrow p(t) \in (\mathcal{D})^{\perp}_{x(t)} \setminus ([\mathcal{D}, \mathcal{D}])^{\perp}_{x(t)}$$

totally singular $\longleftrightarrow p(t) \in ([\mathcal{D}, \mathcal{D}])^{\perp}_{x(t)}$

Theorem (T)

Let (M, \mathcal{D}, g) be a sub-Riemannian smooth manifold with a distribution \mathcal{D} of rank two. Suppose that $\mathcal{D}_1 := \mathcal{D} + [\mathcal{D}, \mathcal{D}]$ is a sub-bundle of rank three and $\mathcal{D}_2 := \mathcal{D}_1 + [\mathcal{D}, \mathcal{D}_1]$ is a sub-bundle of rank four. Then for any point q_0 in M, there exist a closed submanifold V_{q_0} of q_0 in M and a smooth (2n - 4) parameter family of C^{∞} immersive abnormal bi-extremal $\{\gamma_q(t)\}_{q \in V_{q_0}}$ of which projection are not normal geodesics defined on a small interval.

References

- Fukuda. T, Janeczko. S, Singularities of implicit differential systems and their integrability, *Banach center publications*, **65** (2004), 23-47
- Fukuda. T, Janeczko. S, A résumé on Workshop on singularities, geometry, topology and related topics (2014, September 1st – 3rd), personal communication.
- Liu. W, Sussmann. H, Shortest paths for sub-Riemannian metrics on rank -two distributions, Memoir of the AMS, no. 564, vol. 118, (1995).
- Montgomery. R, A tour of suriemannian geometries, their geodesics and applications, AMS, Mathematical survays and monographs, vol. 91(2002).
- Tsuchida. A, Smooth solvability of implicit Hamiltonian systems and existence of singular control for affine control systems (in Japanese), *RIMS* Kôkyûroku 1948 (2015), 153-159.
- Tsuchida. A, Implicit Hamiltonian systems and singular curves of Distributions, accepted.

Thank you for your attention !!

Asahi TSUCHIDA

Theory of solvability of generalized Hamiltonian systems and a study on abnor

Supplementation

Hörmander condition

 $\begin{array}{l} \mathcal{D} \text{ satisfies Hörmander condition if } \exists d \in \mathbb{N} \text{ s. t. } \forall x \in M, \text{ a local framing} \\ \{X_1, \ldots, X_k\} \text{ of } \mathcal{D} \text{ around } x \text{ satisfies} \\ span\{X_1, \ldots, X_k, [X_i, X_j], \ldots, [X_{i_1}, [X_{i_2}, [\cdots, [X_{i_{d-1}}, X_{i_d}], \cdots,]]]\} \\ = T_x M \end{array}$

For a bounded measurable curve $c : [0,T] \to \mathcal{D}$, if a curve $\gamma := \pi_{\mathcal{D}} \circ c : [0,T] \to M$ satisfies $\dot{\gamma}(t) = c(t)$ for almost everywhere on [0,T], then γ is a horizontal curve and c is called an admissible velocity. Here $\pi_{\mathcal{D}} : \mathcal{D} \to M$ is the canonical projection.

Endpoint mapping

The map

$$\operatorname{End}(q_0) \colon \mathcal{V}_{q_0} \to M, c \mapsto \gamma(T)$$

is called an *end-point mapping* and is differentiable by means of Fréchet derivative.