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Let (M,D, g) be a sub-Riemannian smooth manifold with a distribution D of
rank two. Suppose that D1 := D + [D,D] is a sub-bundle of rank three and
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of
which projection are not normal geodesics defined on a small interval.
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Motivation ( Sub-Riemannian geometry)

Definition

M : C∞ manifold

D : a distribution (i.e. a sub-bdl. of TM)

g : a bi-linear positive definite form on D

−→ (M,D, g) : sub-Riemannian manifold.

• A horizontal curve : abs. conti. curve γ : I → M s.t. γ̇(t) is measurable
& bounded & γ̇(t) ∈ Dγ(t) a.e. t ∈ I.

Chow–Rashevsky’s theorem

If D satisfies Hörmander’s condition on conn. mfd M , every two points are
connected by a horizontal curve.

−→ we may define Carnot–Carathéodory (or sub-Riemannian) distance.

dCC(p, q) := inf
γ

{
L(γ) :=

∫
[a,b]

√
g(γ̇(t), γ̇(t))dt |

γ : [a, b] → M : horizontal,γ(a) = p, γ(b) = q
}

A minimizer γ: a horizontal curve γ connecting p and q s.t.
dCC(p, q) = L(γ).
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Extremals

Local minimizers −→ Extremals

Normal extremal

HE ∈ C∞(T ∗M,R)
HE(x, p) = −1

2

∑
i,j gij(x)pipj ,

ẋ(t) =
∂HE

∂p
(x(t), p(t))

ṗ(t) = −
∂HE

∂x
(x(t), p(t))

Abnormal extremal

H : T ∗M ×M D → R
H(x, p, u) := ⟨px, u⟩,

ẋ(t) =
∂H

∂p
(x(t), p(t), u(t)),

ṗ(t) = −
∂H

∂x
(x(t), p(t), u(t)),

∂H

∂ui
(x(t), p(t), u(t)) = 0

(1 ≤ i ≤ k).
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Extremals

Let {X1, . . . , Xk} be a local framing of D.

Normal extremals (normal geodesics)

Set C∞ function HE : T ∗M → R as

HE(x, p) = −1

2

∑
i,j

gij(x)⟨p,Xi(x)⟩⟨p,Xj(x)⟩

where gij = g(Xi, Xj) and (gij)i,j is the inverse matrix of (gij)i,j .
A solution of the Hamiltonian equation associated to HE is called a normal
bi-extremal and its projection to M is called a normal extremal (or a normal
geodesic). The eqn’s are expressed as

ẋ(t) =
∂HE

∂p
(x(t), p(t)), ṗ(t) = −∂HE

∂x
(x(t), p(t))

with Darboux coordinates (x, p) of T ∗M .
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Extremals

Set

H : T ∗M ×M D → R,H(x, p, u) := ⟨p, u⟩ for x ∈ M,p ∈ T ∗
xM

and u ∈ Dx.

Abnormal extremals

The constrained Hamiltonian system for H is def. by
ẋ(t) =

∂H

∂p
(x(t), p(t), u(t)),

ṗ(t) = −∂H

∂x
(x(t), p(t), u(t)),

∂H

∂ui
(x(t), p(t), u(t)) = 0 (1 ≤ i ≤ k).

If ∃x(t): a horizontal curve on [0, ε), p(t) on T ∗
x(t)M \ {0} and

u(t) ∈ Dx(t) which satisfies the equations for a.e. t ∈ [0, ε), the curve
(x(t), p(t)) on T ∗M is called an abnormal bi-extremal and the projection of
an abnormal bi-extremal to M is called an abnormal extremal.
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• Local minimizers −→ Extremals

• Extremals −→ local minimizers?

No. ( R. Montrgomery)

But not much is known about abnormal extremals.

Abnormal extremal

H : T ∗M ×M D → R
H(x, p, u) := ⟨px, u⟩,

ẋ(t) =
∂H

∂p
(x(t), p(t), u(t)),

ṗ(t) = −
∂H

∂x
(x(t), p(t), u(t)),

∂H

∂ui
(x(t), p(t), u(t)) = 0

(1 ≤ i ≤ k).

←− Study the constrained system
as an implicit differential system
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Implicit differential systems (cf. Fukuda–Janeczko 2004)

M : m-dim. C∞ manifold.

π : TM → M : tangent bundle projection

Definition

An implicit differential system on M is a submanifold S ⊂ TM .

Example

For a vector field X ∈ Γ(TM), set

gragh(X) := {(x, ẋ) ∈ TM | ẋ = X(x)}.

gragh(X) is an implicit differential system.
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Several natural questions from theory of ODEs.

existence of a (local) solution

uniqueness of the solution of Cauchy problem

smoothness of solutions

a range of the largest domain of prolongation of solutions

and so on...

−→ We stick to consider the first two problems.

Asahi TSUCHIDA Theory of solvability of generalized Hamiltonian systems and a study on abnormal extremals of rank two distributions



Smooth solvability over submanifolds

Let N be a submanifold of M .

Definition

A solution of S over N is a C1 curve γ : (a, b) → N s.t.
(γ(t), γ̇(t)) ∈ S ∩ π−1(N) for all t ∈ (a, b).

A point (x0, ẋ0) ∈ S is a solvable point of S over N if ∃ε > 0 and
∃γ : (−ε, ε) → N : solution s. t. (γ(0), γ̇(0)) = (x0, ẋ0).

A point (x0, ẋ0) ∈ S is a smoothly solvable point of S over N if
∃W ⊂ S × R: open nbd. of (x0, ẋ0, 0), ∃γ̄ : W → N :C∞ map s.t.

γ(x,ẋ)(t) := γ̄(x, ẋ, t)

is a solution of S over N with (γ(0), γ̇(0)) = (x, ẋ)
∀(x, ẋ) ∈ π1(W ), where π1 : S × R → S is a natural projection.

An implicit differential system S over N is called a smoothly solvable
submanifold over N if S consists only of smoothly solvable points of S
over N .
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Smooth solvability over submanifolds
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Necessary condition of smooth solvability.

Tangential solvability condition

A point (x, ẋ) ∈ S is solvable point. Then

ẋ ∈ d(π|S)(x,ẋ)(T(x,ẋ)S).

QUESTION: What is a sufficient condition for S to be smoothly solvable?
There are some answers (cf. Fukuda-Janeczko, 2004).

We consider such conditions for symplectic case.
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Implicit Hamiltonian systems

(M,ω) a symplectic manifold.

−→ Tangent bundle (TM, ω̇) : a symplectic manifold.
where

♭ : TM → T ∗M : bdl. isom. def. by ♭x(vq) = ιvqωq, q ∈ M ,

θ : the Liouville form on T ∗M ,

ω̇ := ♭∗dθ.

In what follows we set M = R2n with the standard symplectic form ω.

Definition (Fukuda–Janeczko, 2004)

A Lagrangian submanifold L of (TR2n, ω̇) ( i.e., dimL = 2n and ω̇|L = 0)
is called an implicit Hamiltonian system.
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Generalized Hamiltonian systems

Now we focus on implicit Hamiltonian systems which is generated by a Morse
family of particular type:

F : R2n × Rk → R, F (x, p, u) =

k∑
j=1

aj(x, p)uj + b(x, p).

The catastrophe set of F :

C(F ) =

{
(x, p, u) ∈ R2n × Rk | ∂F

∂ui
(x, p, u) = 0, i = 1, . . . , k

}
= K × Rk

where K := {(x, p) ∈ R2n | ai(x, p) = 0, i = 1, . . . , k}.
ϕF : R2n × Rk → TR2n

ϕF (x, p, u) = (x, p,
∂F

∂pi
(x, p, u),− ∂F

∂xi
(x, p, u)).

−→ LF = ϕF (C(F )): a generalized Hamiltonian system.
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Smoothly solvable submanifolds of LF over submanifolds

The case b ≡ 0.
LF induced from co-normal bundles of the submanifold K.

For the case k = 2.
• F : R2n × R2 → R: Morse family def. by

F (x, p, u) = a1(x, p)u1 + a2(x, p)u2.

Notation

⟨a1, a2, {a1, a2}⟩ER2n,q0
: ER2n,q0

-module gen. by a1, a2 and

{a1, a2}.
ξ1 := {a1, {a1, a2}}, ξ2 := {a2, {a1, a2}}
A1 := {(x, p) ∈ K | a1 = a2 = {a1, a2} = 0}

Proposition (T)

Assume that a1, a2, and {a1, a2} are independent. Then ϕF (A1 × R2) is a
smoothly solvable submanifold of LF over A1 if and only if
ξ1, ξ2 ∈ ⟨a1, a2, {a1, a2}⟩ER2n,q0

for any point q0 in A1.
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Proposition (T)

Assume that a1, a2 and {a1, a2} are independent. Assume also that

ξ2 ∈ ⟨a1, a2, {a1, a2}⟩ER2n,q0
and ξ1 /∈ ⟨a1, a2, {a1, a2}⟩ER2n,q0

at every point q0 of A1. Then the followings hold.

1 ϕF (A1,1
2
) is a smoothly solvable submanifold of LF over A1,1.

2 Assume, furthermore, that ξ1, a1, a2, {a1, a2} are independent.

1 ϕF (A1
2

2
) is a smoothly solvable submanifold of LF over A1

2.
2 ϕF (A1

2 × R2) is a smoothly solvable submanifold of LF over A1
2 if

{a1, ξ1} ∈ ⟨a1, a2, {a1, a2}, ξ1⟩ER2n,q0
for any point q0 in A1

2.
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1

Proposition (T)

Assume that a1, a2 and {a1, a2} are independent. Assume also that

ξ1 ∈ ⟨a1, a2, {a1, a2}⟩ER2n,q0
and ξ2 /∈ ⟨a1, a2, {a1, a2}⟩ER2n,q0

at every point q0 of A1. Then the followings hold.

1 ϕF (A1,2
1
) is a smoothly solvable submanifold of LF over A1,2.

2 Assume, furthermore, that ξ2, a1, a2, {a1, a2} are independent.

1 ϕF (A2
2

1
) is a smoothly solvable submanifold of LF over A2

2.
2 ϕF (A2

2 × R2) is a smoothly solvable submanifold of LF over A2
2 if

{a2, ξ2} ∈ ⟨a1, a2, {a1, a2}, ξ2⟩ER2n,q0
for any point q0 in A2

2.

1

In the case ξ1, ξ2 /∈ ⟨a1, a2, {a1, a2}⟩ER2n,q0
we have

Proposition (T)

Assume that a1, a2 and {a1, a2} are independent. Then ϕF (A1,(1,2)
1,2

) is
a smoothly solvable submanifold of LF over A1,(1,2) if
ξ1, ξ2 /∈ ⟨a1, a2, {a1, a2}⟩ER2n,q0

for every point q0 in A1,(1,2).

1

Proposition (T)

Assume that a1, a2, {a1, a2} and ξ1 are independent. Then ϕF (A1
2

1
) is a

smoothly solvable submanifold of LF over A1
2 if

{a1, ξ1} ∈ ⟨a1, a2, {a1, a2}, ξ1⟩ER2n,q0
for any point q0 in A1

2.

1

Proposition (T)

Assume that a1, a2, {a1, a2} and ξ2 are independent. Then ϕF (A2
2

2
) is a

smoothly solvable submanifold of LF over A2
2 if

{a2, ξ2} ∈ ⟨a1, a2, {a1, a2}, ξ2⟩ER2n,q0
for any point q0 in A2

2.

1
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A lemma for the proof

Let • A : a submanifold of K, C : a submanifold of Rk

• Ã : a submanifold of A × Rk

• α : Ã → A a locally trivial fibration which fibre is C with α(q, v) := q

for (q, v) ∈ Ã ⊂ A × Rk.

• Xu : A → T (R2n) : a family of vector fields along A

Xu(x, p) = (x, p,
∂F

∂p
(x, p, u(x, p)),−∂F

∂x
(x, p, u(x, p)).

Lemma (T)

A point (q0, q̇0) ∈ ϕF (Ã) is a smoothly solvable point of ϕF (Ã) over A if
there exist an open neighborhood V0 of q0 in A and a smooth map
s : V0 × C → Ã of smooth family of sections

sc := s(·, c) : V0 → Ã

for each c ∈ C such that for any (q, q̇) ∈ ϕF (α−1(V0)) there exists c ∈ C
which satisfies

ϕF (sc(q)) = q̇

and XSc is tangent vector field on V0.
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An application to sub-Riemannian geometry
Lie algebra homomorphism

(Γ(TM), [·, ·]) → (C∞(T ∗M,R), {·, ·}), X 7→ ⟨p,X(x)⟩

Proposition (T)

For a rank 2 distribution D with small growth vector (2, 3, 3, . . .) at each
point in M , there exist a close manifold S of T ♯M with codimension 3 and a
smooth (2n − 3)-parameter family of totally singular abnormal bi-extremals
{(xq(t), pq(t))}q∈S in S.

Proposition (T)

For a rank 2 distribution D with small growth vector (2, 3, 4, . . .) at each
point in M , there exist a close submanifold S of T ♯M and a smooth family of
abnormal bi-extremals {(xq(t), pq(t))}q∈S in S which is either regular or
totally singular.

Here (x(t), p(t)) is

regular←→ p(t) ∈ (D)
⊥
x(t) \ ([D,D])

⊥
x(t)

totally singular←→ p(t) ∈ ([D,D])
⊥
x(t)

Asahi TSUCHIDA Theory of solvability of generalized Hamiltonian systems and a study on abnormal extremals of rank two distributions



Theorem (T)

Let (M,D, g) be a sub-Riemannian smooth manifold with a distribution D of
rank two. Suppose that D1 := D + [D,D] is a sub-bundle of rank three and
D2 := D1 + [D,D1] is a sub-bundle of rank four. Then for any point q0 in
M , there exist a closed submanifold Vq0 of q0 in M and a smooth (2n − 4)
parameter family of C∞ immersive abnormal bi-extremal {γq(t)}q∈Vq0

of
which projection are not normal geodesics defined on a small interval.

(x(t), ẋ(t)) ∈ D

⟲πTM

��

(x(t), p(t), ẋ(t), ṗ(t)) ∈ LF

πT (T∗M)

��

oo

x(t) ∈M (x(t), p(t)) ∈ A ⊂ T ∗M
πT∗M

oo
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Thank you for your attention !!
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Supplementation

Hörmander condition

D satisfies Hörmander condition if ∃d ∈ N s. t. ∀x ∈ M , a local framing
{X1, . . . , Xk} of D around x satisfies

span{X1, . . . , Xk, [Xi, Xj ], . . . , [Xi1 , [Xi2 , [· · · , [Xid−1
, Xid

], · · · , ]]]}

= TxM

For a bounded measurable curve c : [0, T ] → D, if a curve
γ := πD ◦ c : [0, T ] → M satisfies γ̇(t) = c(t) for almost everywhere on
[0, T ], then γ is a horizontal curve and c is called an admissible velocity. Here
πD : D → M is the canonical projection.

Endpoint mapping

The map
End(q0) : Vq0 → M, c 7→ γ(T )

is called an end-point mapping and is differentiable by means of Fréchet
derivative.
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