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Factorization algebras

I Factorization algebras are a formalism for describing the
algebra of observables in classical/quantum field theories.

I A factorization algebra F on a manifold M with values in a
category C assigns for each:

I openU 7→ F(U) ∈ C
I inclusion U ↪→ V , F(U)→ F(V )
I disjoint U1, . . . ,Uk ⊂ V , F(U1)⊗ . . .⊗F(Uk)→ F(V )

I F satisfies natural coherence and gluing conditions.
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Recovering a vertex algebra

I Suppose F is a factorization algebra on C.

I If F is translation invariant and carries an S1 action (in a
precise sense, see [Costello-Gwilliam, 2016]), one can recover
a vertex algebra.
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Kac-Moody algebras

I For g a finite dim. simple Lie algebra, can form affine
Kac-Moody algebra ĝ.

I ĝ = Lg⊕ CK is a central extension of the loop algebra
Lg = g⊗ C [t±].

I [·,K ] = 0, i.e. K is central.

I [A⊗ f (t),B ⊗ g(t)] = [A,B]⊗ f (t)g(t)− Rest=0fdg(A,B)K
where (·, ·) = 1
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Vertex algebras associated to Kac-Moody algebras

I There are vertex algebras naturally associated to
representations of Kac-Moody algeabras.

I The simplest VA is the vacuum module

Vk(g) = Indĝ
Lg+⊕CKCk = U(ĝ)⊗U(Lg+⊕CK) Ck

of level k where Ck is 1-dim. rep’n of Lg+ ⊕ CK ⊂ ĝ.

I Lg+ = g⊗ C [t] acts by zero and K acts by k .
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Recovering Vk(g)

I OTOH, we can naturally associate a factorization algebra to g
via the factorization envelope construction [CG, 2016].

I Let κ : g⊗2 → C be a g-invariant pairing.

I gκ : U 7→ (Ω0,∗
c (U)⊗ g, ∂)⊕ CK is a cosheaf of dg-Lie

algebras.

I Obtain factorization algebra by taking Chevalley-Eilenberg
cochains,

Fκ : U 7→ C∗(gκ(U)) = Sym(Ω0,∗
c (U)⊗ g [1] , ∂ + dCE ).

I The vertex algebra recovered from Fκ is isomorphic to the
vertex algebra Vκ(g).
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Toroidal algebras

I Toroidal algebras are a certain N-variable generalization of
Kac-Moody algebras.

I MLg = g⊗ C
[
t±1
1 , . . . , t±N

]
is a “multi-loop” algebra.

I A central extension is given by g̃ = MLg⊕ Ω1
R/dR where

R = C
[
t±1 , . . . , t

±
N

]
.

I For N = 1, this is just the affine Kac-Moody algebra. For
N > 1, the central term is infinite dimensional.

I There have been vertex algebras associated to representations
of this Lie algebra [Berman-Billig-Szmigielski, 2013].
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Goal: Recover toroidal vertex algebras via factorization
algebras

I Let Y = C× X with X = (C∗)N be the trivial torus fibration
over C with natural projection π : Y → C.

I For U ⊂ C open, π−1(U) = U × X open in Y .

I Ω(U) = Ω
0,∗

(U × X , ∂t0 + ∂X ) = smooth forms of type (0, ∗)
which are zero outside K × X where K ⊂⊂ U.

I F(U) = C∗(Ω(U)) defines a factorization algebra on C.
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I Easy to show F is translation invariant carries and carries
appropriate S1 action, so can recover a vertex algebra.

I Idea: Relate this vertex algebra to vertex algebras associated
to toroidal algebras as found in literature.
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