SYZ mirror symmetry of hypertoric varieties

Xiao Zheng Boston University

June, 2017

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Outline

- What is mirror symmetry?
- What are hypertoric varieties?
- > SYZ mirror construction for hypertoric varieties.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Section 1

What is mirror symmetry?

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Mirror Symmetry

- Mirror symmetry was discovered in the early 90's by Greene-Plesser and Candelas-De la Ossa-Green-Parkes.
- It asserts that Calabi-Yau manifolds come in mirror pairs (X, X), with dualities:

Symplectic geometry(X) \longleftrightarrow Complex geometry(\check{X}), Complex geometry(X) \longleftrightarrow Symplectic geometry(\check{X}).

- ▶ \exists deep relations between X and \check{X} :
 - 1. symmetry of Hodge diamonds $h^{p,q}(X) = h^{n-p,q}(\check{X})$,
 - 2. counting of rational curves in X and period integral in \dot{X} ,
 - 3. equivalence of derived categories $DFuk(X) \cong D^bCoh(\check{X})$

4. etc...

The SYZ Conjecture

- Fundamental question: Given a Calabi-Yau manifold X, how to construct its mirror X geometrically?
- In 1996, Strominger-Yau-Zaslow proposed that mirror symmetry is T-duality.

Conjecture

X and \check{X} admit dual Lagrangian torus fibrations $\mu : X \to B$ and $\check{\mu} : \check{X} \to B$ over the same base B. Namely for a regular value $b \in B$, $\mu^{-1}(b)$ and $\check{\mu}^{-1}(b)$ are dual tori.

Thus, given a Lagrangian torus fibration μ : X → B, X ⊂ can be reconstructed as the total space of dual tori μ˜⁻¹(b) = Hom(π₁(μ⁻¹(b)), U(1)).

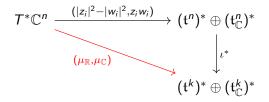
Section 2

What are hypertoric varieties?

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Constructing hypertoric varieties

- Hypertoric varieties: hyperkhler analogue of toric varieties.
- Construction: hyperkhler quotient or GIT quotient of $T^*\mathbb{C}^n$.
- ▶ $\vec{t} \in K \subset T^n$ acts on $(T^* \mathbb{C}^n, dz_i \wedge d\bar{z}_i, dz_i \wedge dw_i)$ by $\vec{t} \cdot (\vec{z}, \vec{w}) = (t_i z_i, t_i^{-1} w_i)$, and gives moment maps



• Choose $(\theta, \lambda) \in (\mathfrak{t}^k)^* \oplus (\mathfrak{t}^k_{\mathbb{C}})^*$, the hyperkhler quotient $X_{\theta,\lambda} = (\mu_{\mathbb{R}}, \mu_{\mathbb{C}})^{-1}(\theta, \lambda)/K$

is called a hypertoric variety.

• Alternatively, one can construct $X_{\theta,\lambda}$ as the GIT quotient

$$X_{\theta,\lambda} = \mu_{\mathbb{C}}^{-1}(\lambda) / /_{\theta} K_{\mathbb{C}}$$

where $\theta: K \to C^{\times}$ is the stability parameter, and $K_{\mathbb{C}}$ is K complexified.

- X_{θ,λ} is Calabi-Yau since Hol(X_{θ,λ}) ⊂ Sp(d) ⊂ SU(2d), d = n − k.
- ► Examples: *T**Pⁿ, *A_n* the crepant resolution of *A_n* singularities, etc...

Hyperplane Arrangements

• Toric varieties \leftrightarrow polytopes.

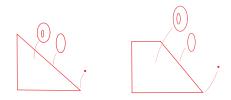
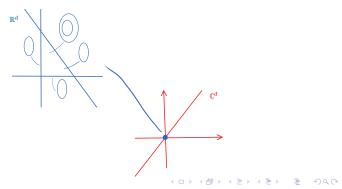


Figure: moment polytopes of \mathbb{P}^2 and \mathcal{H}_2

- Hypertoric varieties \longleftrightarrow hyperplane arrangements $\{H_i\}_{i=1}^n$.
- Quotient torus $T^n/K = T^d$ acts on $X_{\theta,\lambda}$, and gives moment maps $(\bar{\mu}_{\mathbb{R}}, \bar{\mu}_{\mathbb{C}}) : X_{\theta,\lambda} \twoheadrightarrow \mathbb{R}^d \oplus \mathbb{C}^d$. We have hyperplane arrangements in both \mathbb{R}^d , and \mathbb{C}^d .

• Example: hyperplane arrangements for $\widetilde{A_n} = T^* \mathbb{P}^1$, and $T^* \mathbb{P}^2$.

If λ = 0, all hyperplanes in C^d passes through the origin, and we see a holomorphic P² ⊂ T*P²:



Section 3

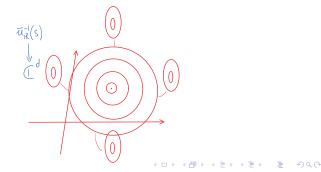
SYZ mirror construction for hypertoric varieties.

Lagrangian torus fibrations on hypertoric varieties

- **Step 1:** Constructing Lagrangian torus fibration on $X_{\theta,\lambda}$.
- Recall we have moment map

$$\bar{\mu}_{\mathbb{R}}: X_{\theta,\lambda} \to \mathbb{R}^{c}$$

- ► Symplectic quotient at level $\bar{\mu}_{\mathbb{R}}^{-1}(s) \subset X_{\theta,\lambda}$, $s \in \mathbb{R}^d$: $\bar{\mu}_{\mathbb{R}}^{-1}(s)/T^d = \mathbb{C}^d$
- ▶ Idea: pulling-back Lagrangian torus fibration from \mathbb{C}^d to $\bar{\mu}_{\mathbb{R}}^{-1}(s)$ and assemble!



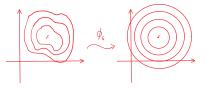
- Such construction was invented by Harvey-Lawson, and later generalized by Gross, Goldstein. It was also used by Chan-Lau-Leung to construct SYZ mirrors of toric Calabi-Yau manifolds.
- Problem: $\omega_{Red} \neq \omega_{std}$, standard torus fibration

 $\operatorname{Log} := (\log_t |\zeta_1 - c_1|, \cdots, \log_{t^d} |\zeta_d - c_d|) : \mathbb{C}^d \to (\mathbb{R} \cup -\{\infty\})^d,$

is not Lagrangian w.r.t. ω_{Red} .

Solution: Moser's trick:

$$\phi_{\rm s}^*\omega_{\rm std}=\omega_{\rm Red}$$



We get a Lagrangian torus fibration

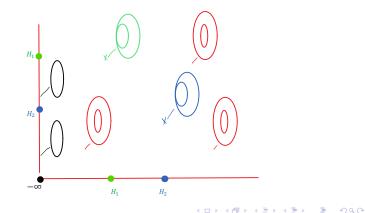
 $\pi = (\bar{\mu}_{\mathbb{R}}, \operatorname{Log} \circ \bar{\mu}_{\mathbb{C}} \circ \phi) : X_{\theta, \lambda} \to \mathbb{R}^d \oplus (\mathbb{R} \cup \{-\infty\})^d$

- ► Remark: taking Log simplifies construction.
- The additional Moser's trick was used by Auroux-Abouzaid-Katzarkov to construct SYZ mirrors of blowups of toric varieties along a hypersurface. Our situation differs in that the fibrations constructed have more directions of degeneracy.

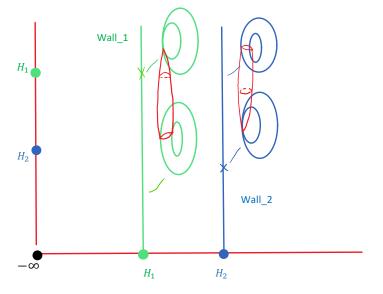
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Singular loci, walls

- π has singular fibers, mirror construction requires quantum corrections.
- **Step 2:** Analyzing singular loci and walls of *π*:
- We demonstrate with π : T*P¹ → R ⊕ (R ∪ {−∞}), where the fibration can be easily visualized.

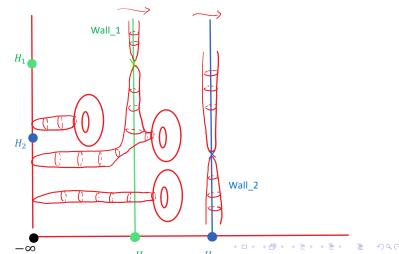


 Walls: fibers over which bound nontrivial holomorphic disc of Maslov index zero.



Wall-crossing, quantum corrections

- **Step 3:** Computing the corrected mirror $\check{X_{\theta,\lambda}}$.
- Wall-crossing: When a Lagrangian torus fiber L is isotoped across the walls, discs bounded by L could interact with the discs bounded over the walls.



- Quantum corrections account for the disc interactions and give correction gluing of local charts on the mirror.
- ▶ It is defined as the genus 0 open Gromov-Witten invariants n_{β} , $\beta \in \pi_2(X_{\theta,\lambda}, L_b)$

$$n_{\beta} := ev_*([\overline{\mathcal{M}}_1(L_b,\beta)]^{vir}) \in H_n(L_b,\mathbb{Q}) = \mathbb{Q}.$$

$$\widetilde{\mathcal{M}}_{1}(\mathsf{L}_{\flat},\beta) := \left\{ \bigcup_{u \in \mathcal{U}} \bigcup_{u \in \mathcal{U}} \left| \begin{array}{c} \widetilde{\mathsf{s}} u = 0 \\ \mathbb{I}_{\mathcal{M}}(u) = [\beta] \end{array} \right| \right\}$$

- Computing n_{β} for L_b in different chambers gives $X_{\theta,\lambda}$.
- Example: the mirror of *T*^{*}ℙ¹ is the subvariety of (*u*₁, *v*₁, *u*₂, *v*₂, ζ) ∈ ℂ⁴ × ℂ[×] defined by

$$u_1v_1 = 1 + \zeta,$$

 $u_2v_2 = (1 + \zeta)(1 + \zeta^{-1}),$
 $u_1v_2 = 1.$

partially compactified to account for the Floer theory of the singular fibers.

Multiplicative hypertoric varieties

 The mirrors of hypertoric varieties are in fact multiplicative hypertoric varieties.

• GIT quotient of
$$(T^*\mathbb{C}^n \setminus \{z_i w_i = 1\}, \frac{dz_i \wedge dw_i}{1 + z_i w_i}) \to (\mathbb{C}^{\times})^n$$
.

It was discovered by Mcbreen-Shenfeld that the quantum connection on equivariant quantum cohomology H^{*}_{T^d×ℂ×}(X_{θ,λ}, ℂ) can be identified with certain Gauss-Mannin connection on multiplicative X_{θ,λ}.

- They predicated multiplicative $X_{\theta,\lambda}$ to be mirror to $X_{\theta,\lambda}$.
- The mirrors we constructed can be identified with multiplicative hypertoric varieties.