SYZ mirror symmetry of hypertoric varieties

Xiao Zheng
Boston University

June, 2017

Outline

-What is mirror symmetry?

- What are hypertoric varieties?
- SYZ mirror construction for hypertoric varieties.

Section 1

What is mirror symmetry?

Mirror Symmetry

- Mirror symmetry was discovered in the early 90 's by Greene-Plesser and Candelas-De la Ossa-Green-Parkes.
- It asserts that Calabi-Yau manifolds come in mirror pairs (X, \check{X}), with dualities:

Symplectic geometry $(X) \longleftrightarrow$ Complex geometry (\check{X}),
Complex geometry $(X) \longleftrightarrow$ Symplectic geometry (\check{X}).

- \exists deep relations between X and \check{X} :

1. symmetry of Hodge diamonds $h^{p, q}(X)=h^{n-p, q}(\check{X})$,
2. counting of rational curves in X and period integral in \check{X},
3. equivalence of derived categories $\operatorname{DFuk}(X) \cong D^{b} \operatorname{Coh}(\check{X})$
4. etc...

The SYZ Conjecture

- Fundamental question: Given a Calabi-Yau manifold X, how to construct its mirror \check{X} geometrically?
- In 1996, Strominger-Yau-Zaslow proposed that mirror symmetry is T-duality.

Conjecture

X and \check{X} admit dual Lagrangian torus fibrations $\mu: X \rightarrow B$ and
$\check{\mu}: \check{X} \rightarrow B$ over the same base B. Namely for a regular value
$b \in B, \mu^{-1}(b)$ and $\check{\mu}^{-1}(b)$ are dual tori.

- Thus, given a Lagrangian torus fibration $\mu: X \rightarrow B, \check{X}$ can be reconstructed as the total space of dual tori $\check{\mu}^{-1}(b)=\operatorname{Hom}\left(\pi_{1}\left(\mu^{-1}(b)\right), U(1)\right)$.

Section 2

What are hypertoric varieties?

Constructing hypertoric varieties

- Hypertoric varieties: hyperkhler analogue of toric varieties.
- Construction: hyperkhler quotient or GIT quotient of $T^{*} \mathbb{C}^{n}$.
- $\vec{t} \in K \subset T^{n}$ acts on $\left(T^{*} \mathbb{C}^{n}, d z_{i} \wedge d \bar{z}_{i}, d z_{i} \wedge d w_{i}\right)$ by $\vec{t} \cdot(\vec{z}, \vec{w})=\left(t_{i} z_{i}, t_{i}^{-1} w_{i}\right)$, and gives moment maps

- Choose $(\theta, \lambda) \in\left(\mathfrak{t}^{k}\right)^{*} \oplus\left(\mathfrak{t}_{\mathbb{C}}^{k}\right)^{*}$, the hyperkhler quotient

$$
X_{\theta, \lambda}=\left(\mu_{\mathbb{R}}, \mu_{\mathbb{C}}\right)^{-1}(\theta, \lambda) / K
$$

is called a hypertoric variety.

- Alternatively, one can construct $X_{\theta, \lambda}$ as the GIT quotient

$$
X_{\theta, \lambda}=\mu_{\mathbb{C}}^{-1}(\lambda) / /_{\theta} K_{\mathbb{C}}
$$

where $\theta: K \rightarrow C^{\times}$is the stability parameter, and $K_{\mathbb{C}}$ is K complexified.

- $X_{\theta, \lambda}$ is Calabi-Yau since $\operatorname{Hol}\left(X_{\theta, \lambda}\right) \subset S p(d) \subset S U(2 d)$, $d=n-k$.
- Examples: $T^{*} \mathbb{P}^{n}, \widetilde{A_{n}}$ the crepant resolution of A_{n} singularities, etc...

Hyperplane Arrangements

- Toric varieties \longleftrightarrow polytopes.

Figure: moment polytopes of \mathbb{P}^{2} and \mathcal{H}_{2}

- Hypertoric varieties \longleftrightarrow hyperplane arrangements $\left\{H_{i}\right\}_{i=1}^{n}$.
- Quotient torus $T^{n} / K=T^{d}$ acts on $X_{\theta, \lambda}$, and gives moment maps $\left(\bar{\mu}_{\mathbb{R}}, \bar{\mu}_{\mathbb{C}}\right): X_{\theta, \lambda} \rightarrow \mathbb{R}^{d} \oplus \mathbb{C}^{d}$. We have hyperplane arrangements in both \mathbb{R}^{d}, and \mathbb{C}^{d}.
- Example: hyperplane arrangements for $\widetilde{A_{n}}=T^{*} \mathbb{P}^{1}$, and $T^{*} \mathbb{P}^{2}$.

- If $\lambda=0$, all hyperplanes in \mathbb{C}^{d} passes through the origin, and we see a holomorphic $\mathbb{P}^{2} \subset T^{*} \mathbb{P}^{2}$:

Section 3

SYZ mirror construction for hypertoric varieties.

Lagrangian torus fibrations on hypertoric varieties

- Step 1: Constructing Lagrangian torus fibration on $X_{\theta, \lambda}$.
- Recall we have moment map

$$
\bar{\mu}_{\mathbb{R}}: X_{\theta, \lambda} \rightarrow \mathbb{R}^{d}
$$

- Symplectic quotient at level $\bar{\mu}_{\mathbb{R}}^{-1}(s) \subset X_{\theta, \lambda}, s \in \mathbb{R}^{d}$:

$$
\bar{\mu}_{\mathbb{R}}^{-1}(s) / T^{d}=\mathbb{C}^{d}
$$

- Idea: pulling-back Lagrangian torus fibration from \mathbb{C}^{d} to $\bar{\mu}_{\mathbb{R}}^{-1}(s)$ and assemble!

- Such construction was invented by Harvey-Lawson, and later generalized by Gross, Goldstein. It was also used by
Chan-Lau-Leung to construct SYZ mirrors of toric
Calabi-Yau manifolds.
- Problem: $\omega_{\text {Red }} \neq \omega_{\text {std }}$, standard torus fibration
$\log :=\left(\log _{t}\left|\zeta_{1}-c_{1}\right|, \cdots, \log _{t^{d}}\left|\zeta_{d}-c_{d}\right|\right): \mathbb{C}^{d} \rightarrow(\mathbb{R} \cup-\{\infty\})^{d}$, is not Lagrangian w.r.t. $\omega_{\text {Red }}$.
- Solution: Moser's trick:

$$
\phi_{s}^{*} \omega_{s t d}=\omega_{R e d}
$$

- We get a Lagrangian torus fibration

$$
\pi=\left(\bar{\mu}_{\mathbb{R}}, \log \circ \bar{\mu}_{\mathbb{C}} \circ \phi\right): X_{\theta, \lambda} \rightarrow \mathbb{R}^{d} \oplus(\mathbb{R} \cup\{-\infty\})^{d}
$$

- Remark: taking Log simplifies construction.
- The additional Moser's trick was used by Auroux-Abouzaid-Katzarkov to construct SYZ mirrors of blowups of toric varieties along a hypersurface. Our situation differs in that the fibrations constructed have more directions of degeneracy.

Singular loci, walls

- π has singular fibers, mirror construction requires quantum corrections.
- Step 2: Analyzing singular loci and walls of π :
- We demonstrate with $\pi: T^{*} \mathbb{P}^{1} \rightarrow \mathbb{R} \oplus(\mathbb{R} \cup\{-\infty\})$, where the fibration can be easily visualized.

- Walls: fibers over which bound nontrivial holomorphic disc of Maslov index zero.

Wall-crossing, quantum corrections

- Step 3: Computing the corrected mirror $\check{X_{\theta, \lambda}}$.
- Wall-crossing: When a Lagrangian torus fiber L is isotoped across the walls, discs bounded by L could interact with the discs bounded over the walls.

- Quantum corrections account for the disc interactions and give correction gluing of local charts on the mirror.
- It is defined as the genus 0 open Gromov-Witten invariants $n_{\beta}, \beta \in \pi_{2}\left(X_{\theta, \lambda}, L_{b}\right)$

$$
n_{\beta}:=e v_{*}\left(\left[\overline{\mathcal{M}}_{1}\left(L_{b}, \beta\right)\right]^{v i r}\right) \in H_{n}\left(L_{b}, \mathbb{Q}\right)=\mathbb{Q}
$$

- Computing n_{β} for L_{b} in different chambers gives $X_{\theta, \lambda}^{\ulcorner }$.
- Example: the mirror of $T^{*} \mathbb{P}^{1}$ is the subvariety of $\left(u_{1}, v_{1}, u_{2}, v_{2}, \zeta\right) \in \mathbb{C}^{4} \times \mathbb{C}^{\times}$defined by

$$
\begin{aligned}
& u_{1} v_{1}=1+\zeta \\
& u_{2} v_{2}=(1+\zeta)\left(1+\zeta^{-1}\right), \\
& u_{1} v_{2}=1
\end{aligned}
$$

partially compactified to account for the Floer theory of the singular fibers.

Multiplicative hypertoric varieties

- The mirrors of hypertoric varieties are in fact multiplicative hypertoric varieties.
- GIT quotient of $\left(T^{*} \mathbb{C}^{n} \backslash\left\{z_{i} w_{i}=1\right\}, \frac{d z_{i} \wedge d w_{i}}{1+z_{i} w_{i}}\right) \rightarrow\left(\mathbb{C}^{\times}\right)^{n}$.
- It was discovered by Mcbreen-Shenfeld that the quantum connection on equivariant quantum cohomology $H_{T^{d} \times \mathbb{C}^{\times}}^{*}\left(X_{\theta, \lambda}, \mathbb{C}\right)$ can be identified with certain Gauss-Mannin connection on multiplicative $X_{\theta, \lambda}$.
- They predicated multiplicative $X_{\theta, \lambda}$ to be mirror to $X_{\theta, \lambda}$.
- The mirrors we constructed can be identified with multiplicative hypertoric varieties.

