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Abstract

These are lecture notes associated with the 45-minute talk “Stability of patterns in reaction-diffusion

equations,” given at the BU/Keio Workshop in Dynamical Systems, during June 25-29, 2018, at Boston

University. The abstract of the talk was:

“Reaction-diffusion equations model a wide variety of chemical and biological processes. Such systems

are well known for exhibiting patterns, such as traveling waves and spatially- and/or temporally-periodic

structures. One important property of such solutions is whether or not they are stable, which is im-

portant because it is typically only the stable solutions that are observed in real world settings. In this

talk, I will discus the difference between spectral, linear, and nonlinear stability, and highlight some key

methods for analyzing stability.”

These notes also contain associated exercises.

1 Introduction

This lecture is focused on understanding the stability of patterns in reaction-diffusion equations, which

have the form

ut = Duxx + f(u). (1.1)

In the above equation, u = u(x, t) ∈ Rn, x ∈ R, and t ≥ 0. The diffusion matrix D ∈ Rn×n is assumed

to be diagonal with positive entries. Such equations appear in a wide variety of applications, including

chemistry and biology.

These equations (and the physical systems they model) exhibit a striking variety of patterns, which are

also often referred to as coherent structures or nonlinear waves. Examples include pulses, with profiles that

qualitatively resemble sech(x), fronts, with profiles that qualitatively resemble tanh(x), spatially periodic

solutions including wave trains of the form ei(kx+ωt), and more complicated structures such as defects

[SS04].

Note that such patterns can also travel. For example, a traveling wave is a solution that satisfies utw(x, t) =

qtw(x− ct) for some function qtw, where c is referred to as the wavespeed. Thus, one can change variables

in (1.1) to the moving (ξ, t) frame, and then qtw(ξ) will be a stationary solution.

The purpose of this lecture is to understand some issues related to the stability of such solutions. Stability

means, roughly speaking, that if the system starts with an initial condition near that particular solution,
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then the system will stay near it for all time. Let us assume that our solution of interest, q(x), is a

stationary solution of (1.1). We can then make the Ansatz

u(x, t) = q(x) + v(x, t),

where we think of v as representing the perturbation of q. Inserting this into (1.1), we find

vt = Dvxx + df(q(x))v + [f(q(x) + v(x, t))− f(q(x))− df(q(x))v] =: Lv +N(v), (1.2)

where L = D∂2
x+df(q(x)) is the linear part and N collects the remaining nonlinear terms. We will focus on

local stability, which means we will assume that v(x, 0) is small. If the resulting solution of (1.2) decays to

zero (or at least does not grow), then we say that q is stable. Equivalently, we say that the zero solution of

(1.2) is stable. The following makes this more precise. In the below definition, X represents an appropriate

Banach space, such as L2(R).

Definition 1.1. The solution v(t) ≡ 0 of (1.2) is said to be stable if, given any ε > 0, there exists a

δ = δ(ε) > 0 such that, for all initial data v0 ∈ X with ‖v0‖X ≤ δ, the corresponding solution to (1.2)

satisfies ‖v(t)‖X ≤ ε for all t ≥ 0. If in addition there exists a δ∗ such that for all initial conditions with

‖v0‖X < δ∗ the corresponding solution satisfies limt→∞ ‖v(t)‖X = 0, then the zero solution is said to be

asymptotically stable.

Note that the choice of Banach space is very important. It is possible for solutions to be stable with respect

to one Banach space, but unstable with respect to another.

Our main goal will be to discuss some key notions associated with stability – spectral, linear, and nonlinear

stability, as well as some of the main techniques used in conducting stability analysis.

1.1 Exercises

1.1.1 Standing wave of a reaction diffusion equation

This example comes from [San], which can be found at http://www.dam.brown.edu/people/sandsted/

documents/evans-function-example.pdf. Consider the nonlinear equation ut = uxx − u + u3, u ∈ R,

x ∈ R, which has an explicit standing pulse given by a(x) =
√

2sech(x). Confirm that this is indeed

a solution and show that, near this standing pulse, the PDE can be written vt = Lv + N(v), where

Lv = vxx + (6sech2(x) − 1)v and N(v) = 3u∗v
2 + v3. Thus, the linearization of the PDE at this pulse is

vt = vxx + (6sech2(x)− 1)v.

1.1.2 Traveling wave of the bistable equation

The bistable equation is given by ut = uxx − u(1 − u)(1 + u), where µ ∈ (0, 1), and it has an explicit

traveling wave given by

q(ξ) =
1

1 + e
− 1√

2
ξ
, c =

√
2(µ− 1/2), if µ ∈ (0, 1/2].

If µ ∈ [1/2, 1), then the explicit traveling wave is given by the above formula with (ξ, c) replaced by

(−ξ,−c). Confirm that, in terms of the moving coordinate frame (ξ, t) := (x − ct, t), this is indeed a
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stationary solution. Show that, with respect to these coordinates, the dynamics near the traveling wave

can be written vt = vξξ+cvξ+[2(1+µ)q−µ−3q2]v+[(1+µ)−3q2]v2−v3, so Lv = vξξ+cvξ[2(1+µ)q−µ−3q2]v

and N(v) = [(1+µ)−3q2]v2−v3. More information about the stability of the traveling wave in the bistable

equation can be found, for example, in [Xin00].

2 Spectral Stability

Since we are interested in local stability, which means that v is small (at least initially), it is reasonable

to expect the linear terms to dominate the nonlinear ones in (1.2), at least for short times. Thus, for the

moment we focus on the linear part of the equation.

To begin, consider the finite-dimensional linear equation

ut = Au, u ∈ Rn, A ∈ Rn×n, t ∈ R. (2.1)

Recall that the behavior of solutions to this equation is completely determined by the eigenvalues, or

spectrum, of the matrix A. In particular, we have the following result.

Proposition 2.1. The zero solution of (2.1) is stable if and only if Reλk ≤ 0 for all k and any eigenvalue

with zero real part has its geometric multiplicity equal to its algebraic multiplicity. The zero solution is

asymptotically stable if and only if Reλk < 0 for all k.

Note that the condition on the multiplicities of the eigenvalues is needed to prevent algebraic growth in

the marginally stable case where there exists an eigenvalue with zero real part. Thus, we would expect to

also need supReσ(L) ≤ 0, where σ(L) is the spectrum of the operator L. One key difference between the

ODE and PDE cases is that it is significantly harder to compute the spectrum of a (typically) unbounded

operator in infinite-dimensions.

Often it is useful to separate the spectrum of L into the essential spectrum and the point spectrum

(eigenvalues). The essential spectrum is relatively easy to compute (see, eg, [Hen81, San02]), but the point

spectrum can be quite difficult to locate. Thus, we focus on techniques for determining the latter.

2.1 Techniques for determining spectral stability - computing the point spectrum

In the scalar case (n = 1), a powerful tool for computing the spectrum is Sturm-Liouville theory. A nice

overview of this can be found in the book [KP13]. It is currently not completely understood if and how this

technique can be generalized to higher dimensions, but it is believed that the Maslov Index, a topological

invariant similar to a winding number, may be useful. See [Jon88, BJ95, JLM13, BM14].

Perhaps the most widely used tool for computing the spectrum of a linear operator in this context is the

Evans function. We will only briefly describe it here, but more details can be found in [AGJ90, San02].

We must find values of λ such that there exists a solution to λv = Lv, with v ∈ X. Typically the Banach

space X will require that the function v decay to zero as |x| → ∞. If we write the eigenvalue equation as

a first order system, we obtain

Ux = A(x, λ)U, U =

(
v

vx

)
, A(x, λ) =

(
0 1

D−1(λ− df(q(x))) 0

)
.

3



Assuming that the limits limx→±∞A(x, λ) = A±(λ) are hyperbolic (at least for values of λ to the right of

the essential spectrum, where potentially unstable eigenvalues are expected to lie), then any eigenfunction

must lie in the intersection of the unstable subspace Eu−(x;λ), coming from −∞, and the stable subspace

Es+(x;λ), coming from +∞. These represent the evolution of the unstable eigenspace of A−(λ) forwards

in x and the evolution of the stable eigenspace of A+(λ) backwards in x, respectively. If

Eu−(x;λ) = span[u−1 (x, λ), . . . , u−k (x, λ)], Es−(x;λ) = span[u+
k+1(x, λ), . . . , u+

2n(x, λ)],

then the Evans function is

E(λ) = det[u−1 (0, λ), . . . , u−k (0, λ), u+
k+1(0, λ), . . . , u+

2n(0, λ)].

Thus, the Evans function maps the complex plane to itself. It can be shown that its zeros, including

multiplicity, correspond exactly to eigenvalues of L. The real power of the Evans function comes from the

fact that, in many cases, its zeros and other associated properties can be computed relatively explicitly.

See [AGJ90, San02] for more details.

3 Linear Stability

We will still focus, for the moment, on the linear equation vt = Lv. If L were a matrix, then Proposition 2.1

tells us that spectral stability implies linear stability, meaning that if the spectrum of the matrix satisfies

the spectral conditions of that Proposition, the solutions to vt = Lv will actually decay to zero (or remain

bounded in the case of eigenvalues with zero real part).

For PDEs where the space X is unbounded, spectral stability does not necessarily imply linear stability.

The reason is as follows. At least when L generates a semigroup eLt (which is typically the case in our

setting), solutions to the linear equation are v(t) = eLtv0 [EN00]. (If you’re not familiar with semigroups,

think of them as generalizations of matrix exponentials.) Thus, decay of solutions will be determined by

‖eLt‖. In order to relate this to the spectrum of L, we need to use a spectral mapping theorem, which

essentially says that

σ(eL) \ {0} = eσ(L).

Understanding for which operators L such a theorem holds is a rather subtle question, and so we won’t

get into it. See [EN00] for more details.

Rather than relying on the semigroup, another method for determining linear stability is to use a pointwise

Green’s function. To explain what this is, recall the formula

eLtv0 =
1

2πi

∫
Γ
eλt(λ− L)−1v0dλ,

where Γ is an appropriate contour in the complex plane [EN00]. It is often possible to find an integral

kernel, G(x, y, λ), that describes the action of the resolvent operator:

u(x) =

∫
R
G(x, y, λ)v(y)dy ⇒ (λ− L)u = v.

This allows us to write solutions to vt = Lv as

v(x, t) =

∫
R

1

2πi

∫
Γ
eλtG(x, y, λ)v0(y)dλdy =:

∫
R
G(x, y, t)v0(y)dy.
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The function

G(x, y, t) =
1

2πi

∫
Γ
eλtG(x, y, λ)dλ

is called the pointwise Greens function. If, for example, L = ∂2
x, then G(x, y, λ) = 1

2
√
λ
e−
√
λ|x−y| and

G(x, y, t) =
1√
4πt

e−
(x−y)2

4t

is just the heat kernel. It is often possible to work with G directly, to show that v(x, t) must decay to

zero as t → ∞. This can be particularly useful when the spectrum is only marginally stable, so at best

the solutions to the linear equation will decay algebraically in time. Such techniques are referred to as

pointwise Greens function estimates, and they we largely developed in the context of viscous conservation

laws by Zumbrun and colleagues [ZH98, Zum11]. See also [BNSZ12, BNSZ14], as well as [BSZ10] for how

to extend these results to the time-periodic case.

3.1 An example and some exercises

3.1.1 Example: Standing wave of a reaction diffusion equation

This is a continuation of the example in 1.1.1. We’ll work in X = L2(R). The equation λu = Lu can be

written

λu = uxx + (6sech2(x)− 1)u.

Since this is a second-order ODE, we know that for each value of λ there are two independent solutions.

One can check that

u1(x;λ) = e
√

1+λx

[
1 +

λ

3
−
√

1 + λtanh(x)− sech2(x)

]
u2(x;λ) = e−

√
1+λx

[
1 +

λ

3
+
√

1 + λtanh(x)− sech2(x)

]
are indeed two independent solutions of the above equation. (They can be found using hypergeometric

series.) In order to investigate linear stability, we can determine the resolvent kernel. It turns out that,

for this example, we can calculate it explicitly as follows. Suppose we are given a function w and we

seek a function u such that (λ − L)u = w; hence, u = (λ − L)−1w. We’ll use the method of variation of

parameters, which means that we assume the function u has the form

u(x;λ) = v1(x;λ)u1(x;λ) + v2(x;λ)u2(x;λ),

and solve for the functions v1,2 in terms of w. To do this, we impose the condition that v′1u1 + v′2u2 = 0,

which is one equation, and insert the above form of u into the equation (λ− L)u = w to obtain a second

equation. These two equations can be written(
v′1
v′2

)
=

1

u1u′2 − u2u′1

(
u′2 −u2

−u′1 u1

)(
0

−w

)
= − 9

2λ
√

1 + λ(3− λ)

(
u′2 −u2

−u′1 u1

)(
0

−w

)
,

where to obtain the final equality we have used the above expressions for u1,2 to explicitly calculate the

Wronskian u1u
′
2 − u2u

′
1. We can see immediately that there will be problems if λ ∈ {0, 3} ∪ (−∞,−1].
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Continuing our calculation of v1,2 (for λ not in this bad set), we find

v′1 = − 9

2λ
√

1 + λ(3− λ)
u2w, v′2 =

9

2λ
√

1 + λ(3− λ)
u1w.

To integrate these expressions, we note that u1 is well-behaved at −∞ while u2 is well-behaved at +∞.

Hence, we define

v1(x;λ) =
9

2λ
√

1 + λ(3− λ)

∫ ∞
x

u2(y;λ)w(y)dy, v2(x;λ) =
9

2λ
√

1 + λ(3− λ)

∫ x

−∞
u1(y;λ)w(y)dy.

Inserting these formulas back into the expression for u, one finds that the solution can be written

u(x) =
9

2λ
√

1 + λ(3− λ)

∫
R

[u1(x;λ)u2(y;λ)H(y − x) + u2(x;λ)u1(y;λ)H(x− y)]w(y)dy

=:

∫
R
G(x, y;λ)w(y)dy.

Therefore, the action of the resolvent operator can be expressed through the integral kernel G(x, y;λ).

One can now investigate for which values of λ this operator is well-defined and bounded on all of L2 and

prove that σpt(L) = {0, 3} and σess(L) = (−∞,−1]. If λ = 0 or λ = 3, then the kernel of (λ − L) is

one-dimensional: −u1(x;λ) = u2(x; 0) = sech(x)tanh(x) and u1(x; 3) = u2(x; 3) = sech2(x), which are the

corresponding eigenfunctions. (In each case, the second, linearly independent solution to λu = uxx is a

function that’s not in L2.)

Note that one can also compute the Evans function in this example and see that it is

E(λ) = −2

9
λ
√

1 + λ(λ− 3).

3.1.2 Exercise: The Laplacian

Use the method of variation of parameters, illustrated in the previous examples, to show that the resolvent

kernel for the Laplacian is indeed G(x, y, λ) = 1
2
√
λ
e−
√
λ|x−y|.

3.1.3 Exercise: pulses of scalar reaction-diffusion equations are always linearly unstable

Consider a scalar reaction diffusion equation

ut = uxx + f(u),

and suppose that there exist a pulse-type solution, ie a function u∗(x) such that u′∗(x) ≥ 0 for all x < x0,

u′∗(x) ≤ 0 for all x > x0, and u∗(x) → 0 exponentially fast as |x| → 0. (As an example, consider §3.1.1,

above.) Show that this solution is linearly unstable using the following steps.

• Show that the linearization is vt = vxx +Df(u∗(x))v.

• Show that u′∗(x) is an eigenfunction with eigenvalue zero.

• Apply Sturm-Liouville theory to the equation λu = Lu.

• Explain why this implies that the pulse is linearly unstable.
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4 Nonlinear Stability

Now we seek to understand when solutions to the full nonlinear equation (1.2) decay to zero. Assuming

one has already shown linear stability, one can often extend that decay to the nonlinear equation via

Duhamel’s formula, which is sometimes also called variation of constants or parameters. In particular,

using the semigroup eLt, solutions to (1.2) can be written

v(t) = eLtv0 +

∫ t

0
eL(t−s)N(v(s))ds.

Alternatively, using the pointwise Greens function, we have

v(x, t) =

∫
R
G(x, y, t)v0(y)dy +

∫ t

0

∫
R
G(x, y, t− s)N(v(y, s))dyds.

It is ofter nontrival to prove nonlinear stability, even if one has detailed information about linear stability.

See [Zum11, BNSZ12, BNSZ14, BSZ10] for some examples. Also, it is possible for a solution to be linearly

unstable, but nonlinearly stable (and vice versa) [BGS09].
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