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Rotating Waves

Rotating waves abound in nature and occur mathematically as
solutions to equations which model real-world chemical and biological
processes

Temporal evolution is given by the action of a group of rotations

Spiral waves are a specific example of rotating waves

Examples include:

Belousov-Zhabotinsky reaction in a petri dish,
cortical spreading depression and cardiac electrophysiology
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Spiral Waves
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Reaction-Diffusion Equations and Euclidean Symmetry

Investigations of spiral waves have primarily focused on
reaction-diffusion equations (RDEs) such as:

∂u

∂t
= D ·

(
∂2u

∂x2
+
∂2u

∂y2

)
+ F(u), (1)

where D > 0, u = u(x , y , t) : R2 × R+ → Rn and F : Rn → Rn

System (1) has the property that if u(x , y , t) is a solution then so is

ũ(x , y , t) = u(x cos θ − y sin θ + p1, x sin θ + y cos θ + p2, t)

Many investigations lately concerned with breaking this symmetry
property
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The Retracting Tip Phenomenon

Image taken from Ashwin, Melbourne, and Nicole (1999)
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Lattice Dynamical Systems

For a spatial step size h > 0, one uses the approximation

∂2u

∂x2
(x , y) ≈ u(x + h, y) + u(x − h, y)− 2u(x , y)

h2
,

and an analogous approximation for ∂2u/∂y2

Moving to the spatial grid x = ih and y = jh for i , j ∈ Z, (1) gives
the discrete spatial approximation

d

dt
u(ih, jh, t) ≈ α

∑
i ′,j ′

(u(i ′h, j ′h, t)− u(ih, jh, t)) + F(u(ih, jh, t))

for each i , j ∈ Z and α = D
h2

Throughout we will write u(ih, jh, t) = ui ,j(t) to emphasize that this
is now an ODE
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Traveling Waves in Lattice Dynamical Systems

Zinner (1992) first proved the existence of traveling waves in LDSs in
1 dimension

Continuous Space (1D): Taking F(x) = x(1− x)(x − a) we find
propagation failure when a = 1/2

Discrete Space (1D): Taking F(x) = x(1− x)(x − a) and 0 < α� 1
there is an interval about a = 1/2 which gives propagation failure

Discrete Space (2D): Cahn, Mallet-Paret and Van Vleck (1998) have
shown that propagation success/failure depends on the direction of
propagation
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Lambda-Omega Reaction-Diffusion Equations

Howard and Kopell (1979) introduced so-called Lambda-Omega
RDEs in terms of a single complex variable z(x , y , t) : R2 × R+ → C
of the form:

∂z

∂t
= D

(
∂2z

∂x2
+
∂2z

∂y2

)
+ z [λ(|z |) + iω(|z |)]

Specific forms of λ and ω functions are taken to induce oscillatory
behaviour when D = 0

Well-known to arise as the lowest order perturbation of any
reaction-diffusion system near a Hopf bifurcation (Cohen, Neu, and
Rosales, 1978)

Typical examples are

λ(r) = ±1∓ r2, ω(r) = constant
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Lambda-Omega Lattice Differential Equations

My work focusses on the analogous Lambda-Omega LDS, given as

żi ,j = α
∑
i ′,j ′

(zi ′j ′ − zi ,j) + zi ,j [λ(|zi ,j |) + iω(|zi ,j |, α)]

Hypothesis

(1) λ : [0,∞)→ R is continuously differentiable and there exists some
a > 0, with the property that λ(a) = 0 and λ′(a) 6= 0.

(2) ω = ω(R, α) : [0,∞)× R→ R is continuously differentiable in both its
arguments such that

ω(R, α)− ω(a, α) = αω1(R, α), (2)

for some function ω1(R, α) which is continuously differentiable on the same
domain with ω1(a, α) = 0 for all α ∈ R.
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Two Cases for the Uncoupled System

x

y

x

y

Typical phase portraits of the uncoupled system (α = 0) and some nearby
trajectories. There are two cases: (Left) locally repelling when λ′(a) > 0
and (Right) locally attracting when λ′(a) < 0.
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Reduction to Polar Coordinates

Writing zi ,j = ri ,je
i(ω(a,α)t+θi,j ), the Lambda-Omega LDS becomes

ṙi ,j = α
∑
i ′,j ′

[ri ′,j ′ cos(θi ′,j ′ − θi ,j)− ri ,j ] + ri ,jλ(ri ,j),

θ̇i ,j = α
∑
i ′,j ′

ri ′,j ′

ri ,j
sin(θi ′,j ′ − θi ,j) + αω1(ri ,j , α)

Rotating waves will satisfy the symmetry condition:

zj ,i−1(t) = e i
π
2 · zi ,j(t)

Interested in rotating waves for α→ 0+
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The Phase System

When α = 0 the radial components completely decouple leaving one
to solve

ri ,jλ(ri ,j) = 0

With ri ,j = a the phase components reduce to solving∑
i ′,j ′

sin(θi ′,j ′ − θi ,j) = 0

This phase system can be shown to possess a rotating wave solution
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The Phase Solution
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To construct a rotating wave solution
to the phase system we:

Restrict to 1 ≤ j < i

Take N ≥ 2 and follow similar
results for finite lattices due to
Ermentrout and Paullet (1994)
by constructing solutions for
1 ≤ j < i ≤ N

Track the solution as N →∞
and show it converges pointwise

Use symmetry extensions to
extend over entire lattice
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Extending Into α > 0

Traditionally one would employ the Implicit Function Theorem to
extend the solution at α = 0

This work requires a technical and meticulous application of an
alternative Implicit Function Theorem due to Craven and Nashed
(1982)

Set up a mapping whose roots lie in one-to-one correspondence with
the steady-states of the polar decomposition

Can prove that there exists a spiral wave solution to the
Lambda-Omega system for sufficiently small α > 0
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A Spiral Wave Solution

Contour plot of real part of the solution on a 250× 250 lattice with α = 1,
λ(R) = 1− R2 and ω(R, α) = 1 + 0.5αR2
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Necessity that ω is ‘Almost Constant’
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Discussion

From the work of Ermentrout and Paullet (1998) on the finite square
lattice, one expects the solution to exist for all α > 0 when ω(R, α) is
independent of R

Extension to existence of multi-armed spirals is significantly different
and potentially more difficult

Still wish to examine how the dynamics of discrete space solutions
compares to continuous space solutions
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Stability

Even in the continuum setting very little is known about the stability
of spiral waves

In the small α > 0 parameter region the system becomes an infinite
dimensional fast-slow dynamical system:

ṙi ,j = α
∑
i ′,j ′

[ri ′,j ′ cos(θi ′,j ′ − θi ,j)− ri ,j ] + ri ,jλ(ri ,j),

θ̇i ,j = α
∑
i ′,j ′

ri ′,j ′

ri ,j
sin(θi ′,j ′ − θi ,j) + αω1(ri ,j , α)

Current work is attempting to prove stability by determining the
existence of an exponentially stable integral manifold for the radial
components, and then work only with the phase components to
obtain algebraic decay back to equilibrium
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Related Work

The leading order dynamics on the integral manifold are governed by
the flow

θ̇i ,j =
∑
i ′,j ′

sin(θi ′,j ′ − θi ,j), (3)

which is an infinite-dimensional Kuramoto-style system of coupled
oscillators

Linearizing (3) about a steady-state {θ̄i ,j}(i ,j)∈Z2 results in the linear
operator acting on the sequences x = {xi ,j} by

[Lx ]i ,j =
∑
i ′,j ′

cos(θ̄i ′,j ′ − θ̄i ,j)(xi ′,j ′ − xi ,j)

Natural underlying graph theoretic meaning
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Graph Structure of the Rotating Wave
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Thank you all for listening!

Questions?

1 J. Bramburger. Rotating wave solutions to lattice dynamical systems
I: The anti-continuum limit, J. Dyn. Differ. Equ., at press.

2 J. Bramburger. Rotating wave solutions to lattice dynamical systems
II: Persistence results, J. Dyn. Differ. Equ., at press.

3 J. Bramburger. Stability of infinite systems of coupled oscillators via
random walks on weighted graphs, T. Am. Math. Soc., at press.
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