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What Do I Do?

I study topological structures of bifurcation diagrams for singularly
perturbed complex rational maps.

I am mainly interested in Sierpinski holes and Mandelbrot sets.
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Sierpinski Carpet Fractal
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Mandelbrot Set
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Arcs and Spirals

We will find a Sierpinski Mandelbrot arc.
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Arcs and Spirals

We will find a Sierpinski Mandelbrot spiral.
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Arcs and Spirals

We will find infinitely many Sierpinski Mandelbrot spirals.
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Arcs and Spirals

We will find a Sierpinski Mandelbrot hydra.
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Iterated Functions

Consider the function F (z) = z2, z ∈ C.

What happens to an initial z after many, many iterations?

Points on the circle stay.

Points inside → origin.

Points outside →∞.
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Drawing the Dynamical Plane

Initial z that grow large quickly are colored in red or orange.

Initial z that do not are colored black.

The yellow is not really yellow. If one zooms in, one sees that the
yellow is red/orange or black.

Altogether, this the dynamical plane for the quadratic map. The
dynamical plane is a Riemann sphere - the complex plane plus a point
at infinity.
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Julia and Fatou

The Julia set of F , denoted J (F ), has several equivalent definitions , but
think of it like this:

J (F ) is the set of values for which a small perturbation can result in
drastic changes in the orbit of that value.

For F (z) = z2, the Julia set is S1.

Take a point on the circle. For any neighborhood of that point, some
z in that nbd go to 0, some stay on the circle, and some go to ∞.
Then J (F ) is the set of chaotic behavior, as opposed to

the Fatou Set, or F(F ). This is the complement of J (F ).
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A Bifurcation

We add a small parameter λ:

Fλ(z) = z2 + λ, z , λ ∈ C

and decrease λ along the negative real axis.
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The Parameter Plane

We see that changing λ can qualitatively change the Julia set.

λ can take any value in C.

The parameter plane is the set of λ ∈ C for Fλ(z). For each specific
λ, we look at Fmany

λ (0). If 0 escapes quickly enough, we color that λ
red/orange. If it does not, we color that λ black.
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J (Fλ) Depends on λ
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A Singular Perturbation

We introduce a pole:

Fλ(z) = z2 + λ/z z , λ ∈ C

How do we draw this parameter plane?

For Fλ = z2 + λ, we looked at 0 because 0 is the critical point.

A critical point cλ is a value of z for which F ′λ(z) = 0,

There are 3 critical points for Fλ = z2 + λ/z , but they all have the
same behavior due to symmetry in the dynamical plane.

Critical values are the next iterates of critical points.
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A New Parameter Plane

Fλ(z) = z2 + λ/z z , λ ∈ C

Following the same algorithm used to draw the Mandelbrot set:
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The Basin and Trap Door

For large enough z , each iterate will be larger. Bλ is the immediate
basin of attraction of ∞.

For small enough z , the next iterate lands in the basin. If the
preimage of Bλ surrounding the origin is disjoint from Bλ, we call this
region the trap door (Tλ).
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Sierpinski Holes

J (F ) is homeomorphic to a Sierpinski carpet fractal for λ in a
Sierpinski hole.
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Sierpinski Carpet Fractal
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Higher n, d

If we further increase n and d :

Fλ(z) = z3 + λ/z3 z , λ ∈ C
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The McMullen Domain

J (F ) is a Cantor set of simple closed curves.
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Recap

In the parameter plane, we can have:

black for the Mandelbrot set,

reddish-orange for the McMullen domain, Sierpinski holes, and Cantor
set locus, and

yellow is actually either black or not-black - zoom in.
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A Typical Dynamical Plane

Fλ(z) = z2 + λ/z3 z , λ ∈ C

There exist 5 critical points, critical values, and prepoles.

We can classify all of the regions in the parameter plane.

E. Chang (Boston University) A Sierpinski Mandelbrot Spiral June 25, 2018



A Typical Dynamical Plane

Fλ(z) = z2 + λ/z3 z , λ ∈ C

There exist 5 critical points, critical values, and prepoles.

We can classify all of the regions in the parameter plane.

E. Chang (Boston University) A Sierpinski Mandelbrot Spiral June 25, 2018



The Cantor Set Locus

cλ lies in Bλ.
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The McMullen Domain

cλ enters Tλ after 1 iteration.
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A Sierpinski Hole

cλ enters Tλ after 2 iterations.
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A Mandelbrot Set

cλ does not escape and is instead trapped in some periodic orbit.
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A Sierpinski Hole with Higher Escape Time

For λ in the next Sierpinski hole to the left:

cλ enters Tλ at iteration 3.

What about escape time of the next Sierpinski hole?
Anything besides Sierpinski holes?
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Many Mandelbrot Sets

There is the clearly visible principal Mandelbrot set.

Also two baby Mandelbrot sets.

Six more baby Mandelbrot sets.
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Zooming In

There is a Mandelbrot between the Sierpinski holes of cλ escape time
2 and 3.
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Further Along R−

Looks like another Mandelbrot set between the next pair of Sierpinski
holes.
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Claim

There are infinitely many Sierpinski holes along the negative real axis
of the parameter plane.
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Claim

Between each of the infinitely many pairs of Sierpinski holes is a
Mandelbrot set.

This set of infinitely many alternating Sierpinski holes and Mandelbrot
sets along the negative real axis in the parameter plane is a Sierpinski
Mandelbrot arc.
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The Big Idea

We see this pattern of alternating sets in the parameter plane that
looks like it goes on forever.

We want to prove that it does.

λ determines the dynamical plane. We fix λ and construct some set
in the dynamical plane.

We prove some properties about those sets.

We restrict λ to some subset of the entire parameter plane, and prove
that the dynamical properties hold even if we move λ around.

Then these dynamical constructs prove the existence of structures in
that subset of the parameter plane.
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Dynamical Constructs =⇒ Parameter Structures

The dynamical constructs are two wedges joined by a circle. The
parameter structures are Sierpinski holes and Mandelbrot sets.

We need a preimage of the prepole. That (plus one other condition )
=⇒ a Sierpinski hole.

We need to find a set in the dynamical plane that maps 2-1 over
another set. That (plus some other conditions ) =⇒ Fλ is a
polynomial-like map of degree 2 on those sets. As shown by Douady
and Hubbard, that proves the existence of a homeomorphic copy of
the Mandelbrot set.
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Dynamical Sets

The left image is the dynamical plane for n = 2, d = 3 and λ in a
Sierpinski hole on the negative real axis.

This λ is in the subset of the parameter plane ( details ).
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The Left Wedge Lλ

Let the left wedge, or Lλ, be the closed set as shown.

There is one critical point cλ0 in the interior of Lλ.

E. Chang (Boston University) A Sierpinski Mandelbrot Spiral June 25, 2018



The Left Wedge Lλ

Let the left wedge, or Lλ, be the closed set as shown.
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The Right Wedge Rλ

Let Rλ be the symmetric right wedge.

There is one prepole pλ2 in the interior of Rλ.

The critical point in Lλ maps to the critical value in Rλ.
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The (Subset of the) Trapdoor TA

Let TA be the closed subset of the trapdoor containing 0 such that
Lλ ∪ TA ∪ Rλ are connected, and they only intersect along
boundaries.

This union of the wedges and TA will be referred to as the bowtie.
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Proposition

Proposition

For each λ in that annular region:

1. Fλ maps Rλ in 1-1 fashion onto a region that contains the interiors of
Lλ ∪ TA ∪ Rλ

2. Fλ maps Lλ 2-1 over a region that contains the interior of Rλ

3. As λ winds once around the boundary of the the annular region, the
critical value Fλ(cλ0 ) winds once around the boundary of Rλ.
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Rλ Contains the Bowtie

For λ on R−, the image of Rλ is disjoint from the bowtie.

This remains true as we rotate λ to the edges of the λ region.
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Lλ Contains Rλ

For λ on R−, the image of Lλ is disjoint from Rλ.

This remains true as we rotate λ to the edges of the λ region.
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Lλ Contains Rλ

For λ on R−, the image of Lλ is disjoint from Rλ.

This remains true as we rotate λ to the edges of the λ region.
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Drawing a Picture

We can “put a bowtie” on the dynamical plane.
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Bowties in bowties

This is the preimage of the bowtie inside Rλ.

That includes the preimage of Rλ. Inside that is the preimage of the
preimage of the bowtie.
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Zooming In
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Zooming In

E. Chang (Boston University) A Sierpinski Mandelbrot Spiral June 25, 2018



The Dynamical 0TL Arc

This is a stylized representation of the 0TL arc in the dynamical
plane.

With the wedges shown.
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The Dynamical 0TL Arc

This is a stylized representation of the 0TL arc in the dynamical
plane. With the wedges shown.
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Dynamical TL Arc =⇒ Parameter SM Arc

There is an arc of infinitely many alternating preimages of Lλ and TA
in Rλ in the dynamical plane.

Each preimage of Lλ in the dynamical plane proves the existence of a
Mandelbrot set in the parameter plane.

Each preimage of TA in the dynamical plane proves the existence of a
Sierpinski hole in the parameter plane.
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Outline

1 Introduction

2 A Sierpinski Mandelbrot Arc

3 A Different Sierpinski Mandelbrot Arc

4 A Sierpinski Mandelbrot Spiral
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n = 4, d = 3

The arc is still there.
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Loptie

The techniques still work, and we can do more.

We call the original right wedge Rλ
0 and the new upper right wedge

Rλ
1 .

We will refer to Lλ ∪ TA ∪ Rλ
0 ∪ Rλ

1 as the “lopsided bowtie.”

Rλ
0 still contains a preimage of the lopsided bowtie. Rλ

1 also contains
a preimage, but rotated.
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Labeling
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Scale is a Problem

For this stylized Rλ
0 , we label the preimages of the left wedge:
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Scale is a Problem

For this stylized Rλ
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Looking for the Fixed Point in Rλ
1
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Sequences of all 1′s
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Arc of all 1′s
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Two Arcs

There exists a 0TL arc in Rλ
0 for the rational map for (4, 3)

with the
arc beginning on the boundary of Tλ and accumulating at the fixed
point on the boundary of Bλ.

There exists a different 1TL arc in Rλ
1 for the rational map for (4, 3)

such that the arc grows from both the boundary in Tλ and the
boundary in Bλ, and accumulates at the fixed point in the interior of
Rλ

1 .
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The Dynamical 1TL Arc

This is a stylized representation of the 1TL arc in the dynamical
plane.

With the wedges shown.
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Outline

1 Introduction

2 A Sierpinski Mandelbrot Arc

3 A Different Sierpinski Mandelbrot Arc

4 A Sierpinski Mandelbrot Spiral

E. Chang (Boston University) A Sierpinski Mandelbrot Spiral June 25, 2018



Infinitely many 0TL arcs
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Infinitely Many 0TL Arcs Intersecting the 1TL Arc
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A Continuous Path for λ
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The 1TL Spiral
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Stylized 1TL Spiral
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The 01 SM Spiral
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Mathematically Rigorous Statement

Theorem

There exists a 01 SM arc below the negative real axis in the parameter
plane that consists of infinitely many Mandelbrot sets Mk and infinitely
many Sierpinski holes Ek both with k ≥ 3. k denotes the base period of
Mk and the escape time of Ek .
Furthermore, there exists a 01 SM spiral in the parameter plane that
“spirals” from the Cantor set locus along infinitely many 0 type arcs while
passing through each Sierpinski hole in the 01 arc, and limits to λ such
that F 2

λ(cλ0 ) is the fixed point in Rλ
1 .
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Infinitely Many TL Spirals
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Infinitely Many TL spirals
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Infinitely Many SM Spirals
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Infinitely Many SM Spirals x6
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Future Directions

Generalize to (n, d) such that n ≥ 4 is even and d ≥ 3 is odd.

Similar arguments apply to general (n, d) with exceptions of types
(6, 3), (8, 3), (4, 7), (4, 9).

Alternative upper right wedge =⇒ alternative 2 arc =⇒ alternative
spiral for almost every exception.

Alternative spirals exist for almost every (n, d), not only exceptional
cases.
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Actual Future Directions

As (n, d) increase, there are more and more eligible choices of upper
right wedge.

There’s some idea of finding all the spirals that provably exist for
each specific (n, d).

There is probably some way to prove the existence of a SM spiral for
the (6, 3), (4, 7) cases.

We require n is even and d is odd, but there may be some way to
tweak the argument to look at the case n = d or n is odd, d is even.
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The End

Thank you!
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Outline

5 Details
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Equivalent Definitions of the Julia Set

J (F ) is the set of all points at which the family of iterates of F fails to be
a normal family in the sense of Montel.

Equivalently, J (F ) is the closure
of the set of repelling periodic points of F , and it is also the boundary of
the set of points whose orbits tend to ∞ under iteration of F . back
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λ Annulus

back
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TA proves a Sierpinski hole

We need a unique zλk that varies analytically with λ and for which
F k−1
λ (zλk ) = 0.

For that zλk , we need a disk D in the parameter plane for which a
critical value winds once around zλk as λ winds once around the
boundary of D.

Then there exists a unique λ for which vλ = zλk ,

and that λ is the center of a Sierpinski hole with critical point escape
time k .

back
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Polynomial-like Maps

We need a family of holomorphic maps Gµ that depends analytically
on the parameter µ lying in some open disk D, and two open sets Uµ

and Vµ such that:

Gµ maps Uµ 2-1 onto Vµ.

Uµ contains Vµ.

As µ winds once around the boundary of D, the critical value winds
once around the region Vµ−Uµ. For such a family of polynomial-like
maps, there exists a homeomorphic copy of the Mandelbrot set in D.

back
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