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Introduction

Consider the incompressible 2D Navier-Stokes Equation with periodic
boundaries on the domain Dδ := [0, 2πδ]× [0, 2π]

∂tu = ν∆u − (u · ∇)u−∇p.
∇ · u = 0

Recent numerical studies such as H.J.H. Clercx, D.C. Montgomery,
and Z. Yin (2002) [4] and F. Bouchet and E. Simonnet, (2008) have
shown certain families of functions to play a large role in the long
time evolution of solutions. We call these quasi-stationary, or
metastable solutions.
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2D Vorticity Equation

These quasi-stationary solutions are defined via the vorticity,

ω = (0, 0, 1) · (∇× u)

The 2D Vorticity equation is a scalar valued PDE, also on the domain
Dδ with periodic boundary conditions.

∂tω = ν∆ω − u · ∇ω, u =

(
∂y(−∆−1)
−∂x(−∆−1)

)
ω
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What is a metastable, or quasi-stationary solution?

Metastability can be thought of as a transient state a solution takes
before the asymptotic limit is reached. We say “quasi-stationary” as
these metastable states are rapidly attracting nearby solutions, just as
a stationary solution would.

What is the asymptotic limit of the vorticity?

1

2

d

dt
||w||2L2

=

∫
D

(wwt)dxdy

= ν

∫
D

(w∆w)dxdy − ν
∫
D

w(u · ∇w)dxdy

= −ν||∇w||2L2
− ν

∫
D

∇ · (w2u)dxdy

= −ν||∇w||2L2
− ν

∫
∂D

~n · (w2u)

= −ν||∇w||2L2
≤ −ν||w||2L2
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Bar and Dipole States

Consider functions of the form

ω(x, y) = e−
ν
δ2
t[a1 cos(

x

δ
) + a2 sin(

x

δ
)] + e−νt[a3 cos(y) + a4 sin(y)],

Certain members of this family have special names

Bar states, or unidirectional flow, have the form

ωbar(x, t) = e−
ν
δ2
t sin(x/δ), ωbar(y, t) = e−νt sin y

Dipole states have the form

ωdipole(x, y, t) = e−
ν
δ2
t sin(x/δ) + e−νt sin y

Remark: When δ = 1 both bars and dipoles are solutions but when
δ 6= 1 only bar states remain solutions
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Contour Plots

These functional forms have been shown numerically to be
quasi-stationary solutions to the 2D NS Vorticity equation
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Figure: x-bar,
ω = sin(x/δ)

Figure: y-bar,
ω = sin(y)

0 π 2 π
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π

2 π

Figure: Dipole,
sin(x/δ) + sin(y)

Bouchet and Simonnet (2008): selection of dominant
quasi-stationary depends on δ ≈ 1 [3]
Beck and Wayne (2012): Rapid convergence to bar [1] states.
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Bars and dipoles in Fourier Space

There is a natural connection between these states and the Fourier
modes of the vorticity.

ω(x, y, t) =
∑
~k 6=0

ω̂(k1, k2)(t)ei(k1x/δ+k2y)

We can measure how close the system is to a bar or dipole state via
the relative energy in the lowest Fourier Modes, ω̂(1, 0) and ω̂(0, 1).

Define R(t) :=
|ω̂(1, 0)|2

|ω̂(0, 1)|2
, and Z(t) :=

|ω̂(1, 0)|2

|ω̂(1, 0)|2 + |ω̂(0, 1)|2
.

x-bar: R(t)→∞⇔ Z(t)→ 1

y-bar: R(t)→ 0⇔ Z(t)→ 0

dipole: R(t)→ r = O(1)⇔ Z(t)→ z ≈ 1/2
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In Fourier Space, we now have an infinite dimensional system of
ODE’s for the Fourier Modes given by

˙̂ω~k = − ν

δ2
|~k|2δω̂~k − δ

∑
~l

〈~k⊥,~l〉
|~l|2δ

ω̂~k−~lω̂~l

= − ν

δ2
|~k|2δω̂~k −

δ

2

∑
~j+~l=~k

〈~j⊥,~l〉

(
1

|~l|2δ
− 1

|~j|2δ

)
ω̂~jω̂~l,

where

ω̂~k = ω̂(k1, k2), |~k|2δ = k2
1 + δ2k2

2,
~k⊥ = (k2,−k1)
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Projection onto finite dimensional inertial manifold

Interested in the relative energy in the low modes. Project onto the
lowest 8 Fourier modes.

ω1 := ω̂(1, 0), ω2 := ω̂(−1, 0),

ω3 := ω̂(0, 1), ω4 := ω̂(0,−1),

ω5 := ω̂(1, 1), ω6 := ω̂(−1, 1),

ω7 := ω̂(1,−1), ω8 := ω̂(−1,−1).

The variables ω1,2,3,4 correspond to the low modes, while ω5,6,7,8

represent the role of all the high modes. Note the following complex
conjugacy relationship.

ω1 = ω̄2, ω3 = ω̄4, ω5 = ω̄8, ω7 = ω̄8.
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ω̇1 = − ν

δ2
ω1 +

1

δ(1 + δ2)
[ω3ω7 − ω̄3ω5]

+
3δ6

2ν(4 + δ2)(1 + δ2)2
ω1(|ω5|2 + |ω7|2)

ω̇3 = −νω3 +
δ3

(1 + δ2)
[ω̄1ω5 − ω1ω̄7]

+
3δ2

2ν(1 + 4δ2)(1 + δ2)2
ω3(|ω5|2 + |ω7|2)

ω̇5 = −ν 1 + δ2

δ2
ω5 −

δ2 − 1

δ
ω1ω3 −

δ6(3 + δ2)

2ν(4 + δ2)(1 + δ2)
ω5|ω1|2

− 1 + 3δ2

2νδ2(1 + 4δ2)(1 + δ2)
ω5|ω3|2

ω̇7 = −ν 1 + δ2

δ2
ω7 +

δ2 − 1

δ
ω1ω̄3 −

δ6(3 + δ2)

2ν(4 + δ2)(1 + δ2)
ω7|ω1|2

− 1 + 3δ2

2νδ2(1 + 4δ2)(1 + δ2)
ω7|ω3|2
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Low modes:

ω̇1 = − ν

δ2
ω1 +

1

δ(1 + δ2)
[ω3ω7 − ω̄3ω5]

+
3δ6

2ν(4 + δ2)(1 + δ2)2
ω1(|ω5|2 + |ω7|2)

High modes:

ω̇5 = −ν 1 + δ2

δ2
ω5 −

δ2 − 1

δ
ω1ω3 −

δ6(3 + δ2)

2ν(4 + δ2)(1 + δ2)
ω5|ω1|2

− 1 + 3δ2

2νδ2(1 + 4δ2)(1 + δ2)
ω5|ω3|2
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δ = 1 (Symmetric Domain)

In the symmetric case, our system simplifies a bit.

ω̇1 = −νω1 +
1

2
[ω3ω7 − ω̄3ω5] +

3

40ν
ω1(|ω5|2 + |ω7|2)

ω̇3 = −νω3 +
1

2
[ω̄1ω5 − ω1ω̄7] +

3

40ν
ω3(|ω5|2 + |ω7|2)

ω̇5 = −2νω5 −
1

5ν
ω5(|ω1|2 + |ω3|2)

ω̇7 = −2νω7 −
1

5ν
ω7(|ω1|2 + |ω3|2)
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Time scale separation

Lemma

Define A(t) := |ω1(t)|2 + |ω3(t)|2 and B(t) := |ω5(t)|2 + |ω7(t)|2.
Let t0 = 1/ν, δ = 1, and denote the initial data by A(0) = A0 and
B(0) = B0. We have

A(t) +B(t) ≤ (A0 +B0)e−2νt for all t ≥ 0.

Moreover, for all 0 ≤ t ≤ t0, A(t) ≥ A0e
−2 and B(t) ≤ B0e

− 2A0
5νe2

t.

Finally, for all t ≥ t0, B(t) ≤ B0e
− 2A0

5ν2e2 .
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Time scale separation

Proof.

The dynamics of A and B are governed by

Ȧ = −2νA+
3

20ν
AB

Ḃ = −4νB − 2

5ν
AB

The first claim follows from the fact that, since A and B are both
nonnegative,

d

dt
(A+B) = −2ν(A+B)− 2νB − 1

4ν
AB ≤ −2ν(A+B).

Furthermore Ȧ ≥ −2νA⇒ A(t) ≥ A0e
−2νt ⇒ A(t) ≥ A0e

−2 for all
0 ≤ t ≤ t0. We then see that for all 0 ≤ t ≤ t0

Ḃ ≤ −
(

4ν +
2A0

5νe2

)
B ≤ − 2A0

5νe2
B,
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Main Deterministic Results Beck, C., Spiliopoulos
(2017) [2]

The main results for the deterministic system can be summarized by
the following:

Theorem 1. For δ = 1, both bar and dipole states exist as
quasi-stationary states

Theorem 2. For values of δ close to 1, if δ < 1, y-bar states are
the dominant quasi-stationary state (And for δ > 1, x-bar states
dominate).

The selection of metastable state depends on the relative size of the
sides of the torus.
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Viewing the problem as a perturbation

One approach is to view 2DNS on the asymmetric domain (δ 6= 1) as
a perturbation of the symmetric domain (δ = 1)

Let δ = 1 + ε0ε

Taylor expand, scale ω’s, ν, and time appropriately (ν = εαν0,
t = εβτ, ωi = εγiΩi) to reveal a slow fast system.

d

dτ
Ω1 = −ν0Ω1 + h.o.t.

d

dτ
Ω3 = −ν0Ω3 + h.o.t.

d

dτ
Ω5 = −ε−1 1

5ν0
Ω5(|Ω1|2 + |Ω3|2) + h.o.t.

d

dτ
Ω7 = −ε−1 1

5ν0
Ω7(|Ω1|2 + |Ω3|2) + h.o.t.

16 / 24



Selection of
dominant

quasi-stationary
states in 2D

Navier-Stokes on
the symmetric
and asymmetric

torus

Dynamics away from the slow manifold

Assuming expansions of Ωi(s) for i = 1, 3, 5, 7 to be of the form
Ωi(s) = Ωi0(s) + εΩi1(s) + O(ε2) away from the slow manifold, we
find

Ω10 = Ω10(0)

Ω30 = Ω30(0)

Ω50 = Ω50(0)e−
|Ω10(0)|2+|Ω30(0)|2

5ν0
s

Ω70 = Ω70(0)e−
|Ω10(0)|2+|Ω30(0)|2

5ν0
s.

. Here s is the fast time variable s = τ/ε
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Dynamics on the slow manifold

Again assume solutions take the form
Ωi(τ) = Ωi0(τ) + εΩi1(τ) + O(ε2). Then the dynamics on the slow
manifold up to and including O(ε) are given by

Ω̄1(τ) := Ω10(0)e−ν0τ

+ ε
(
Ω11(0)e−ν0τ + ν0ε0τe

−ν0τ [2Ω10(0) +K]
)

Ω̄3(τ) := Ω30(0)e−ν0τ

+ ε
(
Ω31(0)e−ν0τ − ν0ε0Kτe

−ν0τ
)
.
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Lemma

Let 0 < ε� 1. Consider the approximations to |Ω1|2 and |Ω3|2 up to
O(ε). There exists positive times τ+ and τ−, for which, when ε0 = 1,

lim
τ→τ+

|Ω̄1|2(τ)
|Ω̄3|2(τ)

=∞, indicating evolution to an x-bar state, and, when

ε0 = −1, lim
τ→τ−

|Ω1|2(τ)
|Ω1|2(τ) = 0, indicating evolution to a y-bar state.

The critical times τ+ and τ− are O(1/ε) as ε→ 0.
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Stochastic Forcing

∂tω = ν∆ω − u · ∇ω +
√

2ν∂tη.

The noise, ηt, is a space time white noise of the form

η(t, x, y) =
∑

k=(k1,k2)∈Z2

σke
i(k1x/δ+k2y)Wk(t)

where W (t) = (Wk(t))k are i.i.d Weiner Processes.

Numerical studies have shown that in the presence of stochastic
forcing, the asymptotic limit is not reached. Instead, the system may
transition among the 3 quasi-stationary states.
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Simulations

The figures below show the evolution of Zt = |ω̂(1,0)|2
|ω̂(1,0)|2+|ω̂(0,1)|2 when

forcing is present in only the lowest modes ω~k for ~k = (±1, 0) or
~k = (0,±1)

Figure: Transitions between y-bar
and dipole for δ < 1

Figure: Transitions between x-bar
and dipole for δ > 1
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Homogenization

With the stochastic forcing included, our finite dimensional model
(after similar scaling) becomes

ω′i = bεi(ω1,3,5,7; ν, σ1,3,5,7) + Σεii(ω1,3,5,7; ν, σ1,3,5,7)W ′i (τ).

Where the drift bε is essentially the same as the vector field in the
deterministic setting and diffusion matrix Σε is given by

Σε =


σ1

√
2ν0 0 0 0

0 σ3

√
2ν0 0 0

0 0 ε−1σ5

√
2ν0 0

0 0 0 ε−1σ7

√
2ν0
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We can use the backward Kolmogorov equation to view this
stochastic problem from a PDE point of view.

∂uε

∂τ
= Luε = bε · ∇uε +

1

2
(Σε)2 : ∇∇uε

If we use u(τ = 0) =
ω2

1

ω2
1+ω2

3
then u(t) = E| ω2

1

ω2
1+ω2

3
| as they evolve

governed by the dynamics of the SDE. As in the deterministic case,
we assume the solution u takes the form

u = u0 + εu1 + ε2u2 + . . .

We can plug this expansion into the backward Kolmogorov equation
and match powers of ε to come up with PDE’s for the individual u′is.
Existence of an invariant measure allows averaging of the fast
variables. Our numerical simulations have shown what one would
expect, namely the preference of an x bar state for ε0 = 1 and a
preference for a y bar state for ε0 = −1
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