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Introduction

Selection of
dominant
quasi-stationary
states in 2D

Navier-Stokes on
w2 e Consider the incompressible 2D Navier-Stokes Equation with periodic
and asymmetric

torus boundaries on the domain D; := [0, 27d] x [0, 27]

du=vAu — (u-V)u-Vp.
V-u = 0

Recent numerical studies such as H.J.H. Clercx, D.C. Montgomery,
and Z. Yin (2002) [4] and F. Bouchet and E. Simonnet, (2008) have
shown certain families of functions to play a large role in the long
time evolution of solutions. We call these quasi-stationary, or

metastable solutions.



2D Vorticity Equation
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s These quasi-stationary solutions are defined via the vorticity,

w=1(0,0,1)-(V xu)

The 2D Vorticity equation is a scalar valued PDE, also on the domain
Ds with periodic boundary conditions.

Ow=vAw—u-Vw, u= ( 8(( AA13))



What is a metastable, or quasi-stationary solution?

Seicctionled Metastability can be thought of as a transient state a solution takes

dominant

isghsatbonay before the asymptotic limit is reached. We say “quasi-stationary” as

states in 2D

Al een these metastable states are rapidly attracting nearby solutions, just as

the symmetric

and asymmetric a stationary solution would.

torus

What is the asymptotic limit of the vorticity?

1d 9
5&”“’”@ = /D(wwt)dxdy

= V/ (wAw)dxdy—u/ w(u - Vw)dxdy
D D

—v||Vuwl|7, — V/D V - (w?u)drdy

Vw2, —1// - (w)
oD

—v||Vullz, < —vlwlli,



Bar and Dipole States
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the symmetric
v

REUE (2, y) = ¢ 57 ay cos(S) + agsin(S)] + e*ag cos(y) + assin(y)],

0 0

Certain members of this family have special names
m Bar states, or unidirectional flow, have the form

Whar (2, 1) = e Tt sin(z/8),  wWpar(y,t) =e "

siny
m Dipole states have the form

Wdipole (T, Y, t) = e 3zt sin(z/8) + e Vsiny

Remark: When 6 = 1 both bars and dipoles are solutions but when
0 # 1 only bar states remain solutions




Contour Plots

S i 1 i
Section of These functional forms have been shown numerically to be

dominant
oY quasi-stationary solutions to the 2D NS Vorticity equation
Navier-Stokes on
the symmetric
and asymmetric
torus

Figure: x-bar, Figure: y-bar, Figure: Dipole,
w = sin(z/d) w = sin(y) sin(z/9) + sin(y)

Bouchet and Simonnet (2008): selection of dominant
quasi-stationary depends on ¢ &~ 1 [3]
Beck and Wayne (2012): Rapid convergence to bar [1] states.
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Bars and dipoles in Fourier Space

Selection of

i There is a natural connection between these states and the Fourier

states in 2D modes of the Vol’tiCity.

Navier-Stokes on
the symmetric

and asymmetric .
torus w(a:’ y7 t) — Z C:)(kl, k,2)(t)el(klf/5+k’2y)
k40
We can measure how close the system is to a bar or dipole state via
the relative energy in the lowest Fourier Modes, @(1,0) and &(0, 1).

w(1,0)
&(0, )2’

and Z(t) := RN

Define R(t) :=

x-bar:  R(t) > 00 & Z(t) — 1
y-bar:  R(t) - 0< Z(t) =0
dipole: R(t) —»r=0(1)< Z() - 2~1/2
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tates in 2D . . . . . .
e |n Fourier Space, we now have an infinite dimensional system of
the symmetric

and asymmetric ODE,S fOr the FOurier MOdeS given by

torus

: Vo L0
Sl
V =9 1) 21 = 1 1 A
= —57|k|§wg ) i+, e W itk
Fi=F | ‘5 I1s
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Interested in the relative energy in the low modes. Project onto the

Projection onto finite dimensional inertial manifold

lowest 8 Fourier modes.

wp = w(1,0), wo = w(—1,0),
wg = w(0,1), wyq = w(0,—1),
ws = w(1,1), we = w(-1,1),
wr = w(1,-1), ws :=w(—1,-1).

The variables wy 2.3 4 correspond to the low modes, while ws 67 5
represent the role of all the high modes. Note the following complex

conjugacy relationship.

W] = W2, W3 =Wy, Ws=0Wug, Wr7=Uus.




Selection of
dominant . 14 _
quasi-stationary w) = ——w1 + 7[&)3“}7 - ‘UBWS}

o s+
+ oy 53;; sl o)
63
w3 = —vws + m[wlws — w1 7]
2
o0 +4§25)(1 gzl 4 lerl)
ws :—]/1+52w5— 62_1w1w3— 0°(3 + %) W5|UJ1|2
52 5 w4+ 62)(1 + 62)
1+ 362 5
~ Suer(+ 409)(1 1 09!
w7=—V1+52w7+ 62_1(«)1@3— 56(3+52) w7|w1|2
52 5 w4+ 62)(1 + 62)
14362 2
w7 |ws|

©2w62(1 + 462)(1 + 62)
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and ats;/:v;;netr\'c . 14 1 _
w1 = 7(572("}1 + m[wsw — W3ws]
346 2 2
* o ona el +lwrl)
High modes:
o ——V1+52w —52_1ww B 5%(3 + 42) wsleon 2
o 52 ° 5 Tt )1+ !

1+ 362 9
ws|ws|

© 2062(1 4 462)(1 + 62)
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d =1 (Symmetric Domain)
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and asymmetric In the symmetric case, our system simplifies a bit.

torus

1 B 3
—vwi +  [wawr — Waws) + —w1(|w5|2 + |w7|2)

w1 = 9 40v
w3 = —vwsz + E[Qw) —wi7] + iw (s [* + eor )
5 3+ 5l1ws 400 2P
1
Wy = — 20wy — 5&]5(|wl|2 + |UJ3|2)
1
wr = —2vwy — 50.)7(|w1|2 + |UJ3|2>
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Time scale separation
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Define A(t) := |w1(t)|*> + |ws(t)|* and B(t) := |ws(t)]? + w7 (¢)]2.
Let to = 1/v, 6 =1, and denote the initial data by A(0) = Ay and
B(0) = By. We have

A(t) + B(t) < (Ag + Bo)e 2"t forall  t>0.

Moreover, for all 0 < t < to, A(t) > Age~2 and B(t) < Boe et
Finally, for all t > to, B(t) < Bpe™ m_gf

13 /24



Time scale separation

Selection of

dominant Proof.

quasi-stationary
states in 2D

Mol  The dynamics of A and B are governed by

the symmetric

and asymmetric
torus

. 3
A = —QVA - 20_Z/AB
B = —4vB— 2 AB
5v

The first claim follows from the fact that, since A and B are both
nonnegative,

i(A +B)=—2v(A+B)—2vB — %AB < —2u(A+ B).
14

dt
Furthermore A > —2vA = A(t) > Age= 2 = A(t) > Age2 for all
0 <t <ty. We then see that for all 0 < ¢ < ¢y

: 24, 24,
B<—14 — |B<——8B
- ( v 5I/€2> - bve?
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Main Deterministic Results Beck, C., Spiliopoulos
(2017) [2]

Selection of
dominant
quasi-stationary
states in 2D
Navier-Stokes on
the symmetric
and asymmetric

torus The main results for the deterministic system can be summarized by
the following:

m Theorem 1. For § = 1, both bar and dipole states exist as
quasi-stationary states

m Theorem 2. For values of § close to 1, if § < 1, y-bar states are
the dominant quasi-stationary state (And for § > 1, x-bar states
dominate).

The selection of metastable state depends on the relative size of the
sides of the torus.

15 /24



Viewing the problem as a perturbation

Selection of

e One approach is to view 2DNS on the asymmetric domain (6 # 1) as

quasi-stationary

SEES 2D a perturbation of the symmetric domain (6 = 1)

Navier-Stokes on
the symmetric
and asymmetric

torus Let 6 = 1 + 6[)6

Taylor expand, scale w's, v, and time appropriately (v = vy,
t=éePrw; = ¢ ;) to reveal a slow fast system.

d
le = —Z/()Ql + h.o.t.
dr

d
793 = —1/093 + h.o.t.
dr

d 1
O = — L0 (]104? 042
b= 5. 5192117 + [Q3]7) + hoot

d 1
2= —e Q10 ]2 052 .o.t.
el € B (19 ]° + |Q23]7) + h.o.t
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Dynamics away from the slow manifold
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i ey Assuming expansions of Q;(s) for i = 1,3,5,7 to be of the form

and asymmetric

torus Qi(s) = Qio(s) + Q1 (s) + O(e?) away from the slow manifold, we
find

Qo = U
Qo = Qg

0
0

(=)

(0)
(0)
1210(0)] +|030<o>\2
Qs0 = Qs0(0)e
1210(0)] +|930(0)\2
Q7o = Qp(0)e

. Here s is the fast time variable s = 7/¢

17 /24



Dynamics on the slow manifold
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e Again assume solutions take the form
Qi(1) = Qio(7) + €Qi1 (1) + O(€?). Then the dynamics on the slow
manifold up to and including O(e) are given by

Q1 (1) := Qy0(0)e 07

+€ (911(0)671/(” + voegTe 0T [2Q10(0) + K])
Q3(7) 1= Q30(0)e 07

+ € (le(O)G_VOT — Voe()KTe_VDT) .

18 /24
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Let 0 < e < 1. Consider the approximations to |21|? and |Q3]? up to
O(e). There exists positive times 71 and 7_, for which, when €y = 1,

lim Igél (T; = oo, indicating evolution to an x-bar state, and, when

T—T4

€ =—1, lim BII E:g = 0, indicating evolution to a y-bar state.
T—T—

The critical times 7 and 7_ are O(1/€) as e — 0.

19/24



Stochastic Forcing
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the symmetric
and a;’ymmet:ﬂ'c atw = Z/AUJ —u- Vw + \/ﬁa{r]

torus

The noise, 7, is a space time white noise of the form

ntay)= Y opel MR
k=(k1,k2)E€Z2

where W (t) = (W (t))y, are i.i.d Weiner Processes.

Numerical studies have shown that in the presence of stochastic
forcing, the asymptotic limit is not reached. Instead, the system may
transition among the 3 quasi-stationary states.
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Simulations
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deire The figures below show the evolution of Z; =
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k= (0,+1)

d=0.85, nu= 0.001 sigma=(1, 1, 0, 0)

|
,\f“» \M | Ww

0 500 1000 1500 2000 2500 3000 3500 4000
time

NN |
Wy

Figure: Transitions between y-bar
and dipole for § < 1

0(L0)?
EIOP oo DE When

forcing is present in only the lowest modes w;; for k= (£1,0) or

= 0001 sigma=(t,1,0,0

f’ ! W
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°
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Figure: Transitions between x-bar
and dipole for § > 1
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Homogenization
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rp— With the stochastic forcing included, our finite dimensional model

and asymmetric

o (after similar scaling) becomes

wi = bi(wizs7v,01857) + Bi(wiss 7 v, 01357) Wi (7).

Where the drift b€ is essentially the same as the vector field in the
deterministic setting and diffusion matrix X¢ is given by

o3y 0 0 0
ne — 0 0—3\/% 0 0
- 0 0 e o/ 21 0

0 0 0 e tor/ 21y
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We can use the backward Kolmogorov equation to view this
stochastic problem from a PDE point of view.

ous 1
a% = Lu = b Vut + (597 VY
If we use u(1T =0) = i then u(t) = E| ot | as they evolve
- - w%erg - warwg Yy

governed by the dynamics of the SDE. As in the deterministic case,
we assume the solution u takes the form

u=u0+eu1+e2u2—|—...

We can plug this expansion into the backward Kolmogorov equation
and match powers of € to come up with PDE'’s for the individual w/s.
Existence of an invariant measure allows averaging of the fast
variables. Our numerical simulations have shown what one would
expect, namely the preference of an x bar state for ¢ = 1 and a
preference for a y bar state for ¢g = —1
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