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The dimer FPUT lattice

m1 m2 m1 m2

uj−1

rj−1
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mj = mass of jth particle =

{
m1, j is odd
m2, j is even

Fj(r) = force exerted by jth spring when stretched a distance r

= κj r + βj r
2 +O(r3) =

{
F1(r), j is odd
F2(r), j is even

uj = position of jth particle

rj = relative displacement = uj+1 − uj

Newton’s law: mj üj = Fj(uj+1 − uj)− Fj−1(uj − uj−1)
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Mass and spring dimers

Mass dimer

w 1 w 1

mj =

{
w > 1, j is odd
1, j is even

Fj(r) = F (r) = r + r2

Spring dimer

1 1 1 1

mj = 1 F2j(r) = r + r2

F2j+1(r) = κr + βr2

κ > 1
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Lattice origins

• Fermi, Pasta, Ulam, & Tsingou (1955): numerical experiments
suggest that the energy of finite monatomic lattices with nonlinear
spring forces does not “thermalize” over long times but instead
exhibits periodic “recurrence.”

• Zabusky & Kruskal (1965+): the Korteweg-de Vries (KdV)
equation

ut + 6uux + uxxx = 0

is a good formal “continuum limit” for monatomic FPUT.
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Contemporary lattice results

• Friesecke & Wattis (1994): variational arguments establish that
for certain wave speeds, the monatomic lattice has solitary wave
solutions.

• Friesecke & Pego (1999): the monatomic lattice has solitary
wave solutions for all speeds slightly greater than the lattice’s
“speed of sound.”

• Schneider & Wayne (2000): solutions to certain KdV equations
are good approximations to the solutions to the equations of
motion for monatomic FPUT over long times.

• Gaison, Moskow, Wright, & Zhang (2014): solutions to certain
KdV equations are good approximations to solutions of the
equations of motion for polymer FPUT lattices over long times.
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Main result for the spring dimer

Theorem

Let κ > 1 and β 6= −κ3. There is a lower threshold cκ > 0 (the
“speed of sound”) such that for wave speeds c slightly greater than
cκ, there is a traveling wave solution for the spring dimer equations
of motion (in terms of relative displacement) with wave speed c as

rj(t) = exponentially decaying term︸ ︷︷ ︸
ςj(j − ct)

+ periodic term︸ ︷︷ ︸
φj(j − ct)

.

where

• ςj is an exponentially decaying perturbation of a sech2-type
profile for a KdV traveling wave equation;

• ςj has amplitude ∼ ε2 := c2 − c2
κ and wavelength ∼ 1/ε;

• φj is periodic with amplitude small beyond all orders of ε and
frequency O(1) in ε.
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The nanopteron

the ripple

amplitude ∼ O(ε∞)

X

ςj(X ) + φj(X )

the core

amplitude ∼ O(ε2)

wavelength ∼ O(ε−1)
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The nanopteron

X

ςj(X ) + φj(X )

the core

amplitude ∼ O(ε2)

wavelength ∼ O(ε−1)

the ripple

amplitude ∼ O(ε∞)

ε∞ = small beyond all orders of ε
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The nanopteron

X

ςj(X ) + φj(X )

the core

amplitude ∼ O(ε2)

wavelength ∼ O(ε−1)

the ripple

amplitude ∼ O(ε∞)

ε∞ = small beyond all orders of ε

Boyd (1998): the nanopteron is a “coherent structure which approx-
imately satisfies the classical definition of a solitary wave” and which
“asymptotes to a small amplitude oscillation” at infinity (nanopteron
= dwarf-wing = core + ripple).

7/16



The stegoton

Fix a time t. How do successive relative displacements, all at t,
compare to each other?

Mass Dimer
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0
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·10−3

mass index j

r j
(t
)

rj(t) = Cw ε
2 sech2(ε(j − ct)) +O(ε3)
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The stegoton

Fix a time t. How do successive relative displacements, all at t,
compare to each other?

Spring Dimer

20 40 60 80 100 120 140 160
0
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·10−3

mass index j

r j
(t
)

rj(t) = κ((−1)j+1)/2ε2 sech2(ε(j − ct)) +O(ε3)
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The traveling wave problem

Set

rj(t) =

{
p1(j − ct), j is odd
p2(j − ct), j is even.

Newton’s law for the lattice becomes

c2∂2
xp + Lκp + Lβp.2 = 0, p(x) =

(
p1(x)
p2(x)

)
,

where the operators Lκ and Lβ are Fourier multipliers constructed
chiefly from shift operators.
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Changes of variables

An analysis of the eigenvalues of Lκ produces cκ > 0 with the
property that if

p(x) = ε2θ(εx), θ(X ) = (θ1(X ), θ2(X )),

c2 = c2
ε := c2

κ + ε2,

then we can diagonalize Lκ and make a “cancelation” in the p1
equation to convert our system for the profiles p into

Θε(θ) =

[
1 0
0 Tε

]
︸ ︷︷ ︸
Dε

θ +Qε(θ) = 0.

Here the operator Tε := ε2c2
ε ∂

2
X + λε+ is singularly perturbed.
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Naive perturbation

Taking ε = 0 and defining the operator Θ0 correctly, we find that
for a certain sech2-type KdV traveling wave solution σ, we have

Θ0(σ) = 0, σ :=

(
σ
0

)
.

Can we solve Θε(θ) = 0 by perturbing from σ? Try setting

θ = σ + ξ,

where ξ = (ξ1, ξ2) is exponentially decaying.

We aim for a fixed point problem and find

Θε(σ + ξ) = 0 ⇐⇒


ξ1 = −σ −Q1,ε(σ + ξ)

Tεξ2 = −Q2,ε(σ + ξ).
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The operator Tε

We can suss out a unique number ωε with the property that

T̂εf (ωε) = 0

for any function f . This means that Tε cannot be surjective (and
thus is not invertible).

And if we want to solve

Tεξ2 = −Q2,ε(σ + ξ),

this forces ξ to satisfy the additional third equation

F[Q2,ε(σ + ξ)](ωε) = 0.
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Beale’s ansatz

We resolve the problem of “two unknowns, three equations” by
looking not for solitary waves but nonlocal solitary waves
(nanopterons): instead of the ansatz

θ = σ + ξ,

we let
θ = σ +ϕa

ε + η,

where

• ϕa
ε is periodic with amplitude ∼ a and solves Θε(ϕ

a
ε) = 0;

• η = (η1, η2) is an exponentially decaying remainder.

Then our three variables are a, η1, and η2.

We take this ansatz from Beale’s work on exact traveling wave
solutions for gravity-capillary waves (see also Amick & Toland).
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Periodic solutions

Theorem
There exist εper > 0 and aper > 0 such that for all ε ∈ (0, εper) and
a ∈ (−aper, aper), there is ϕa

ε ∈ C∞per × C∞per with Θε(ϕ
a
ε) = 0.

Proof. Bifurcation from a simple eigenvalue (Crandall-
Rabinowitz-Zeidler).
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The nanopteron equations

We are solving
Θε(σ +ϕa

ε + η) = 0 (∗)

for a ∈ R and η = (η1, η2) exponentially decaying, i.e.,

η1, η2 ∈ H1
q :=

{
f ∈ H1 ∣∣ cosh(q·)f ∈ H1} .

Using the structure of our first perturbation attempt, we can
successfully rewrite (∗) as a fixed point problem of the form

Nε(η, a) = (η, a).

Theorem
There exist ε? > 0 and q? > 0 such that for all ε ∈ (0, ε?), there
exists a unique (ηε, aε) ∈ ∩∞r=1H

r
q? × H r

q? × R such that
Θε(σ +ϕaε

ε + ηε) = 0. Also, for all r ∈ N, there is Cr > 0 such
that |aε| ≤ Cr ε

r for all ε ∈ (0, ε?).
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Questions for future consideration

1. How small is small? We know |aε| ≤ Cr ε
r for all r ∈ N. Do we

have
aε = Ce−p/ε?

2. Is the ripple really there? Can we have aε = 0?

3. The dreaded general dimer: what happens when masses and
springs alternate?
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