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The dimer FPUT lattice

: -1 i fj+1 :
uj— uj Ujt1 Uj42

my, Jis odd

mj; = mass of jth particle = { -
my, jis even
Fi(r) = force exerted by jth spring when stretched a distance r

Fi(r), Jis odd

= wjr + Bir* + O(r?) { .
Fa(r), Jis even

uj = position of jth particle

r; = relative displacement = uj 1 — u;

Newton's law: mji; = Fj(uj+1 — uj) — Fj—1(uj — uj—1)
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Mass and spring dimers

Mass dimer
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w>1 jisodd
mj:{ . j(r) = F(r)=r+ 1
1, J 1s even
Spring dimer

mj =1 NV Rj(r)=r+r?
TG Fojralr) = s+ pr?

x>1
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Lattice origins

e Fermi, Pasta, Ulam, & Tsingou (1955): numerical experiments
suggest that the energy of finite monatomic lattices with nonlinear
spring forces does not “thermalize” over long times but instead
exhibits periodic “recurrence.”

AT T AATIA

e Zabusky & Kruskal (1965+): the Korteweg-de Vries (KdV)
equation

Ur + Ouly + Uy =0

is a good formal “continuum limit" for monatomic FPUT.
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Contemporary lattice results

e Friesecke & Wattis (1994): variational arguments establish that
for certain wave speeds, the monatomic lattice has solitary wave
solutions.

e Friesecke & Pego (1999): the monatomic lattice has solitary
wave solutions for all speeds slightly greater than the lattice’s
“speed of sound.”

e Schneider & Wayne (2000): solutions to certain KdV equations
are good approximations to the solutions to the equations of
motion for monatomic FPUT over long times.

e Gaison, Moskow, Wright, & Zhang (2014): solutions to certain
KdV equations are good approximations to solutions of the
equations of motion for polymer FPUT lattices over long times.

5/16



Main result for the spring dimer

Let 3¢ > 1 and 3 # —33. There is a lower threshold c,, > 0 (the

“speed of sound”) such that for wave speeds c slightly greater than
C,., there is a traveling wave solution for the spring dimer equations
of motion (in terms of relative displacement) with wave speed ¢ as

rj(t) = exponentially decaying term + periodic term .

G — ct) 6;(j — ct)

where

e ¢; is an exponentially decaying perturbation of a sech?-type
profile for a KdV traveling wave equation;

e ¢; has amplitude ~ € :=c%2— C,Z{ and wavelength ~ 1/¢;

e ¢; is periodic with amplitude small beyond all orders of ¢ and
frequency O(1) in e.

o
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The nanopteron

i (X) + ¢5(X)

the core

amplitude ~ O(€?)

AN

><\r

4 wavelength ~ O(e™1)
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The nanopteron

() + (%)
amplitude ~ O(e‘x’){ :

the core

amplitude ~ O(€?)

AN

><\r

4 wavelength ~ O(e™1)

€>° = small beyond all orders of ¢
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The nanopteron

i (X) + ¢;(X)
amplitude ~ (9(500){

the core

amplitude ~ O(€?)

AN

><\r

4 wavelength ~ O(e™1)

€>° = small beyond all orders of ¢

Boyd (1998): the nanopteron is a “coherent structure which approx-
imately satisfies the classical definition of a solitary wave” and which
“asymptotes to a small amplitude oscillation” at infinity (nanopteron
= dwarf-wing = core + ripple).
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Fix a time t. How do successive relative displacements, all at ¢,
compare to each other?

Mass Dimer
1073

1 1 1
80 100 20
mass index j

1
140

ri(t) = Cue? sech?(e(j — ct)) + O(€3)

8/16



=2

ri(

Fix a time t. How do successive relative displacements, all at ¢,
compare to each other?

Spring Dimer
1073

40

1 1 1
60 100 20
mass index j

L
140

ri(t) = A2 sech?(e(j — ct)) + O(3)
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The traveling wave problem

Set

pi(j — ct), Jis odd
n(t)=9 "~ .
p2(j — ct), jis even.

Newton's law for the lattice becomes
242 2 Pl(X)>
c“Op+ Lip+ Lgp© =0, x) = :
p p+ Lgp p(x) (D (x)

where the operators L, and Lg are Fourier multipliers constructed
chiefly from shift operators.
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Changes of variables

An analysis of the eigenvalues of L,, produces c,, > 0 with the
property that if

p(x) = 0(ex),  8(X) = (61(X),02(X)),
c? = cf = C}%—i—EZ,

then we can diagonalize L,, and make a “cancelation” in the p;
equation to convert our system for the profiles p into

0.(0) = [(1) H 0+ 0.(0)=0.

D

Here the operator T, := €2c20% + AS is singularly perturbed.
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Naive perturbation

Taking ¢ = 0 and defining the operator @¢ correctly, we find that
for a certain sech®-type KdV traveling wave solution o, we have

Q(0) =0, o:= <g> .

Can we solve ©.(6) = 0 by perturbing from o7 Try setting
0=0c+¢
where €& = (£1,&2) is exponentially decaying.

We aim for a fixed point problem and find

§1=-0—- Q1 (o +§)
0.0 +€) =0 <

Telo = —Qae(0 + £).
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The operator 7,

We can suss out a unique number w, with the property that
Tef(we) =0

for any function f. This means that 7 cannot be surjective (and
thus is not invertible).

And if we want to solve

7;52 = _Q2,e(a + 5)’

this forces £ to satisfy the additional third equation

g[Q2,e(o' + 5)](“}6) =0.
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Beale's ansatz

We resolve the problem of “two unknowns, three equations” by
looking not for solitary waves but nonlocal solitary waves
(nanopterons): instead of the ansatz

6=0+¢

we let
0 =0+l +m,

where

e 72 is periodic with amplitude ~ a and solves @.(¢?) = 0;

e 11 = (11,772) is an exponentially decaying remainder.

Then our three variables are a, 71, and .

We take this ansatz from Beale's work on exact traveling wave

solutions for gravity-capillary waves (see also Amick & Toland).
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Periodic solutions

There exist €per > 0 and aper > 0 such that for all € € (0, €per) and
a € (—aper, aper), there is p2 € €33, x €32, with O(p?) = 0.

Proof. Bifurcation from a simple eigenvalue (Crandall-
Rabinowitz-Zeidler).
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The nanopteron equations

We are solving
O (o +¢l+n)=0 (*)

for a € R and i = (11, 72) exponentially decaying, i.e.,
m,m2 € Hy :=={f € H' | cosh(q:)f € H'}.

Using the structure of our first perturbation attempt, we can
successfully rewrite (x) as a fixed point problem of the form

Ne(n,a) = (n,a).

There exist ¢, > 0 and g, > 0 such that for all € € (0,¢,), there
exists a unique (0., a.) € NP2 Hy X Hj X R such that

O (o + ¢ +m,.) =0. Also, for all r € N, there is C, > 0 such
that |a.| < Ce" for all € € (0, ¢,).
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Questions for future consideration

1. How small is small? We know |a.| < C,€e" for all r € N. Do we

have
a. = Ce P/?

2. Is the ripple really there? Can we have a. = 07

3. The dreaded general dimer: what happens when masses and
springs alternate?
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