Nanopteron-Stegoton Traveling Waves in Mass and Spring Dimer Fermi-Pasta-Ulam-Tsingou Lattices

Timothy E. Faver & J. Douglas Wright

Drexel University

Boston University/Keio University Workshop 2018 June 26, 2018

The dimer FPUT lattice

$$m_{1} \qquad m_{2} \qquad m_{1} \qquad m_{2} \qquad m_{1} \qquad m_{2} \qquad m_{3} \qquad m_{3} = mass \text{ of } j \text{ th particle} = \begin{cases} m_{1}, & j \text{ is odd} \\ m_{2}, & j \text{ is even} \end{cases}$$

 $F_j(r)$ = force exerted by *j*th spring when stretched a distance *r*

$$=arkappa_j r+eta_j r^2+\mathcal{O}(r^3)=egin{cases} F_1(r), & j ext{ is odd}\ F_2(r), & j ext{ is even} \end{cases}$$

 u_j = position of *j*th particle r_j = relative displacement = $u_{j+1} - u_j$

Newton's law: $m_j \ddot{u}_j = F_j (u_{j+1} - u_j) - F_{j-1} (u_j - u_{j-1})$

Mass and spring dimers

Mass dimer

 $m_j = egin{cases} w > 1, & j ext{ is odd} \ 1, & j ext{ is even} \end{cases}$

$$F_j(r) = F(r) = r + r^2$$

Spring dimer

• Fermi, Pasta, Ulam, & Tsingou (1955): numerical experiments suggest that the energy of finite monatomic lattices with *nonlinear* spring forces does not "thermalize" over long times but instead exhibits periodic "recurrence."

• Zabusky & Kruskal (1965+): the Korteweg-de Vries (KdV) equation

$$u_t + 6uu_x + u_{xxx} = 0$$

is a good *formal* "continuum limit" for monatomic FPUT.

• Friesecke & Wattis (1994): variational arguments establish that for certain wave speeds, the monatomic lattice has solitary wave solutions.

• Friesecke & Pego (1999): the monatomic lattice has solitary wave solutions for all speeds slightly greater than the lattice's "speed of sound."

• Schneider & Wayne (2000): solutions to certain KdV equations are good approximations to the solutions to the equations of motion for monatomic FPUT over long times.

• Gaison, Moskow, Wright, & Zhang (2014): solutions to certain KdV equations are good approximations to solutions of the equations of motion for **polymer** FPUT lattices over long times.

Theorem

Let $\varkappa > 1$ and $\beta \neq -\varkappa^3$. There is a lower threshold $c_{\varkappa} > 0$ (the "speed of sound") such that for wave speeds c slightly greater than c_{\varkappa} , there is a traveling wave solution for the spring dimer equations of motion (in terms of relative displacement) with wave speed c as

$$r_j(t) = \underbrace{\text{exponentially decaying term}}_{\varsigma_j(j - ct)} + \underbrace{\underbrace{\text{periodic term}}_{\phi_j(j - ct)}}_{\phi_j(j - ct)}$$

where

• ς_j is an exponentially decaying perturbation of a sech²-type profile for a KdV traveling wave equation;

•
$$\varsigma_j$$
 has amplitude $\sim \epsilon^2 := c^2 - c_{\varkappa}^2$ and wavelength $\sim 1/\epsilon$;

• ϕ_j is periodic with amplitude small beyond all orders of ϵ and frequency $\mathcal{O}(1)$ in ϵ .

 $\epsilon^\infty = {\rm small}$ beyond all orders of ϵ

 $\epsilon^\infty = {\sf small}$ beyond all orders of ϵ

Boyd (1998): the **nanopteron** is a "coherent structure which approximately satisfies the classical definition of a solitary wave" and which "asymptotes to a small amplitude oscillation" at infinity (nanopteron = dwarf-wing = core + ripple). Fix a time t. How do successive relative displacements, all at t, compare to each other?

Fix a time t. How do successive relative displacements, all at t, compare to each other?

Spring Dimer

The traveling wave problem

Set

$$r_j(t) = egin{cases} p_1(j-ct), & j ext{ is odd} \ p_2(j-ct), & j ext{ is even}. \end{cases}$$

Newton's law for the lattice becomes

$$c^2 \partial_x^2 \mathbf{p} + L_{\varkappa} \mathbf{p} + L_{\beta} \mathbf{p}^{\cdot 2} = 0, \qquad \mathbf{p}(x) = \begin{pmatrix} p_1(x) \\ p_2(x) \end{pmatrix},$$

where the operators L_{\varkappa} and L_{β} are Fourier multipliers constructed chiefly from shift operators.

An analysis of the eigenvalues of L_{\varkappa} produces $c_{\varkappa} > 0$ with the property that if

$$\mathbf{p}(x) = \epsilon^2 \boldsymbol{\theta}(\epsilon x), \qquad \boldsymbol{\theta}(X) = (\theta_1(X), \theta_2(X)),$$
$$c^2 = c_{\epsilon}^2 := c_{\varkappa}^2 + \epsilon^2,$$

then we can diagonalize L_{\varkappa} and make a "cancelation" in the p_1 equation to convert our system for the profiles **p** into

$$oldsymbol{\Theta}_\epsilon(oldsymbol{ heta}) = \underbrace{egin{bmatrix} 1 & 0 \ 0 & \mathcal{T}_\epsilon \end{bmatrix}}_{\mathcal{D}_\epsilon} oldsymbol{ heta} + \mathcal{Q}_\epsilon(oldsymbol{ heta}) = 0.$$

Here the operator $\mathcal{T}_{\epsilon} := \epsilon^2 c_{\epsilon}^2 \partial_X^2 + \lambda_+^{\epsilon}$ is singularly perturbed.

Naive perturbation

Taking $\epsilon = 0$ and defining the operator Θ_0 correctly, we find that for a certain sech²-type KdV traveling wave solution σ , we have

$$oldsymbol{\Theta}_0(oldsymbol{\sigma})=0, \qquad oldsymbol{\sigma}:=egin{pmatrix}\sigma\0\end{pmatrix}.$$

Can we solve $\boldsymbol{\Theta}_{\epsilon}(\boldsymbol{ heta})=$ 0 by perturbing from σ ? Try setting

$$\boldsymbol{ heta} = \boldsymbol{\sigma} + \boldsymbol{\xi},$$

where $\boldsymbol{\xi} = (\xi_1, \xi_2)$ is exponentially decaying.

We aim for a fixed point problem and find

$$oldsymbol{\Theta}_\epsilon(oldsymbol{\sigma}+oldsymbol{\xi})=0 \iff egin{cases} \xi_1=-\sigma-\mathcal{Q}_{1,\epsilon}(oldsymbol{\sigma}+oldsymbol{\xi})\ \mathcal{T}_\epsilon\xi_2=-\mathcal{Q}_{2,\epsilon}(oldsymbol{\sigma}+oldsymbol{\xi}). \end{cases}$$

We can suss out a unique number ω_ϵ with the property that

$$\widehat{\mathcal{T}_{\epsilon}f}(\omega_{\epsilon}) = 0$$

for any function f. This means that \mathcal{T}_{ϵ} cannot be surjective (and thus is not invertible).

And if we want to solve

$$\mathcal{T}_{\epsilon}\xi_2 = -\mathcal{Q}_{2,\epsilon}(\boldsymbol{\sigma} + \boldsymbol{\xi}),$$

this forces $\boldsymbol{\xi}$ to satisfy the additional *third* equation

$$\mathfrak{F}[\mathcal{Q}_{2,\epsilon}(\boldsymbol{\sigma}+\boldsymbol{\xi})](\omega_{\epsilon})=0.$$

Beale's ansatz

We resolve the problem of "two unknowns, three equations" by looking not for solitary waves but **nonlocal** solitary waves (nanopterons): instead of the ansatz

$$\theta = \sigma + \xi,$$

we let

$$\boldsymbol{ heta} = \boldsymbol{\sigma} + \boldsymbol{arphi}^{\mathsf{a}}_{\epsilon} + \boldsymbol{\eta},$$

where

• φ^a_ϵ is periodic with amplitude $\sim a$ and solves ${f \Theta}_\epsilon(arphi^a_\epsilon)=$ 0;

• $\eta = (\eta_1, \eta_2)$ is an exponentially decaying remainder.

Then our three variables are a, η_1 , and η_2 .

We take this ansatz from Beale's work on exact traveling wave solutions for gravity-capillary waves (see also Amick & Toland).

Theorem

There exist $\epsilon_{per} > 0$ and $a_{per} > 0$ such that for all $\epsilon \in (0, \epsilon_{per})$ and $a \in (-a_{per}, a_{per})$, there is $\varphi^a_{\epsilon} \in \mathcal{C}^{\infty}_{per} \times \mathcal{C}^{\infty}_{per}$ with $\Theta_{\epsilon}(\varphi^a_{\epsilon}) = 0$.

Proof. Bifurcation from a simple eigenvalue (Crandall-Rabinowitz-Zeidler).

We are solving

$$\mathbf{\Theta}_{\epsilon}(\boldsymbol{\sigma}+arphi^{a}_{\epsilon}+\boldsymbol{\eta})=0$$
 (*)

for $a\in\mathbb{R}$ and $oldsymbol{\eta}=(\eta_1,\eta_2)$ exponentially decaying, i.e.,

$$\eta_1, \eta_2 \in H^1_q := \left\{ f \in H^1 \mid \cosh(q \cdot) f \in H^1 \right\}.$$

Using the structure of our first perturbation attempt, we can successfully rewrite (*) as a fixed point problem of the form

$$\mathcal{N}_{\epsilon}(oldsymbol{\eta}, oldsymbol{a}) = (oldsymbol{\eta}, oldsymbol{a}).$$

Theorem

There exist $\epsilon_{\star} > 0$ and $q_{\star} > 0$ such that for all $\epsilon \in (0, \epsilon_{\star})$, there exists a unique $(\eta_{\epsilon}, a_{\epsilon}) \in \bigcap_{r=1}^{\infty} H_{q_{\star}}^r \times H_{q_{\star}}^r \times \mathbb{R}$ such that $\Theta_{\epsilon}(\sigma + \varphi_{\epsilon}^{a_{\epsilon}} + \eta_{\epsilon}) = 0$. Also, for all $r \in \mathbb{N}$, there is $C_r > 0$ such that $|a_{\epsilon}| \leq C_r \epsilon^r$ for all $\epsilon \in (0, \epsilon_{\star})$.

1. How small is small? We know $|a_{\epsilon}| \leq C_r \epsilon^r$ for all $r \in \mathbb{N}$. Do we have

$$a_{\epsilon} = Ce^{-p/\epsilon}$$
?

2. Is the ripple really there? Can we have $a_{\epsilon} = 0$?

3. The dreaded **general dimer**: what happens when masses **and** springs alternate?