RILEY GROUPS AND CARUSO SEMIGROUPS

David Fried (with Sebastian Marotta and Rich Stankewitz)

For $\beta \in \mathbb{C}^*$ we study the Caruso semigroup S_β generated by the Mobius transformations

$$f_\beta(z) = \beta + \frac{1}{z}, \quad g_\beta(z) = -\beta + \frac{1}{z}$$

acting on the Riemann sphere $\hat{\mathbb{C}} = \mathbb{C} \cup \infty$.

Motivation: each random sequence with $Z_{n+1} = Z_{n-1} \pm \beta Z_n$ determines a semigroup orbit

$$r_{n+1} = \pm \beta + r_n,$$

where $r_n = Z_{n-1}/Z_n$.

Q: For what $\beta \in \mathbb{C}^* \setminus \{0\}$ does S_β have a thick attractor A_β? (thick means the basin of A_β is a neighborhood of A_β)

By our paper in ETDS 2012, β is equivalent to:

For what β are the Julia sets $J_\beta = J(S_\beta)$ and $J_\beta' = J(S_\beta')$ disjoint?

For such β, $A_\beta = J_\beta'$ is a thick attractor for S_β (and J_β is a thick attractor for S_β').

A_β exists for $|\beta| > 2$ since for such β

$$|Z| \geq 1 \Rightarrow |\pm \beta + \frac{1}{Z}| \geq k > 1,$$

where $k = |\beta|-1$.

Moreover, $\beta + D, -\beta + D$ are disjoint (where D is the unit disc) so A_β has a trivial symbolic dynamics: $A_\beta \cong \{0,1,3\}$

where f, g act respectively by i_z, i_z, where

$$i_z(z_0, z_1, ...) = (0, z_0, z_1, ...) \quad \text{and} \quad i_z(z_0, z_1, ...) = (1, z_0, z_1, ...)$$.
Using the theory of Riley groups we'll extend this result to an open annular region $\mathcal{A} \subset \mathbb{C}$ (the Koebe slice) and explore the remaining cases $\beta \in \mathcal{A} \setminus \mathcal{I}$ and $\beta \in \mathcal{E} \setminus \mathcal{I}$.

A Riley group is a Moebius group generated by 2 parabolic elements $z + a$ (fixing ∞) and $z/(bz + 1)$ (fixing 0), $a \neq 0 \pm b$.

Especially the group

$$P_\beta = \langle t_\beta, u_\beta \rangle,$$

P_β is closed related to the group G_β generated by S_β, namely the even-length words in t_β^\pm, u_β^\pm are the even-length words in f_β^\pm, g_β^\pm (for instance $f_\beta^2 = t_\beta u_\beta$, $f_\beta g_\beta = t_\beta u_\beta^{-1}$) so P_β, G_β are commensurable. As P_β is non-elementary, these groups have the same ordinary set Ω_β (defined as the largest invariant open set where P_β acts discretely).

When Ω_β is nonempty we get an orbifold $\Sigma_\beta = \Omega_\beta / P_\beta$.

$|\beta| > 2$, let L be the line $Re(\frac{z}{\beta}) = \frac{1}{2}$. The circles $\pm 1/L$ and the lines $\pm L$ bound a fundamental domain for Σ_β, which contains the unit circle S^1.

Drawing shows Σ_β has genus 0 and 4 punctures.

The slice \mathcal{A} is defined by: $\beta \in \mathcal{A}$ whenever t_β, u_β act freely on Ω_β so that Σ_β has genus 0 and 4 punctures.
One knows that \mathbb{S} is open in \mathbb{C}^* and homeomorphic to $S^1 \times \mathbb{R}$. Moreover $\mathbb{L} = \mathbb{S}$ is a Jordan curve (Okkoaka - Miyachi, 2008). We have a partial answer to Q.

Theorem: A_β exists for $\beta \in \mathbb{S}$ and does not exist for $\beta \notin \mathbb{S}$.

Sketch of Proof: For $|\beta| > 2$ define E_β as the geodesic in Σ_β (for the Poincaré metric) isotopic to S^1. For $\beta \in \mathbb{S}$ define the geodesic $E = E_\beta < \Sigma_\beta$ by continuation from $|\beta| > 2$.

One checks that E is a simple closed geodesic separating 0 from ∞, $f_\pm + i \mathbb{R} \subset E = -E = 1/E$, and the $p(E)$, $p \in P_\beta$, are disjoint.

Let $N = N_\beta$ be the closed neighborhood of ∞ bounded by E_β. E is disjoint from $E \pm \beta$ so $f_\beta(N)$, $g_\beta(N) = \beta + 1/N$, $-\beta + 1/N \subset \text{Int}(N)$.

This N is an S_β-block (as defined in our paper, op. cit.) so A_β exists. (Furthermore $\pm \beta + 1/N$ are disjoint so S_β has trivial symbolic dynamics.)

Note: another proof uses that the groups P_β, $\beta \in \mathbb{S}$, are quasi-conformally conjugate, which implies that all the $\Lambda_{A_\beta} \overset{\text{def}}{=} \Lambda(P_\beta) = \Lambda(G_\beta)$ are Cantor sets, likewise the S_β and $S'_\beta = A_\beta$ are Cantor sets.

The case $\beta \in \mathbb{S}$ uses certain cusps $c \in \mathbb{S}$ for which P_c has an additional parabolic (that is a parabolic element not conjugate to one of the parabolic generators). Such a cusp c is the endpoint of a pleating ray in \mathbb{L}, corresponding to a particular class of simple closed geodesics in Σ_β that degenerates...
as $\beta \to c$ along the ray (in the sense that the length of the geodesic approaches zero). This geodesic is characterized by a rational number modulo $2\pi/q$ in \mathbb{Q}/\mathbb{Z}, where the geodesic cuts E_p $q > 0$ times and winds p times (in an appropriate sense). Pleating rays were studied by Keen and Series and the corresponding cusp groups P_c were studied by Wright. Wright finds $2q$ discs in \hat{C} that are cyclically arranged and tangent in successive pairs, with 2 additional tangencies at 0 and at ∞. (For $p/q = 1/3$, this configuration is

![Diagram](image)

where the $2q = 6$ x's mark the successive tangencies.) For β near c on the pleating ray there are $2q$ slightly overlapping discs whose union contains E_p. With this in mind, we define $E_c = E_c^\perp / E_c$ and we define N_c as before. One checks that $J_c \subset N_c$ but $J_c \cap E_c$ is the finite set of x's. This set is also $J_c \cap E_c^\perp$. Hence P_c has no strong attractor. As the existence of a strong attractor is a stable property and as the cusps c are known to be dense in E, we see that A_3 does not exist for $BG \in \mathbb{C}$.

This theorem exploits the fact that the semigroups S_β, $\beta \in \mathcal{E}$, contains representatives for the simple closed geodesics of interest in $\Sigma_\mathcal{E}$.

While all the P_β, $\beta \in \mathcal{E}$, are alike there is a dichotomy for the P_β, $\beta \in \mathcal{E}$. All these P_β are discrete groups and free on the generators t_β, ρ_β but their limit sets vary drastically. For $\beta = c$ a cusp, Λ_c is a gasket (that is the ordinary set Ω_c is a union of disjoint discs, including the $2g$ discs considered by Wright) and P_c is geometrically finite. For β not a cusp, however, $\Lambda_\beta = \hat{\mathcal{C}}$ (so Ω_β is empty) and P_β is geometrically infinite. One expects a similar dichotomy for the semigroups S_β, namely that $J_\beta \cap J'_\beta$ is infinite when $\beta \in \mathcal{E}$ is not a cusp.

The P_β for $\beta \in \mathcal{E}$ vary wildly. Only countably many are discrete but these include many interesting examples associated to 2-bridge link complements. As far as we know, $J_\beta = \Lambda_\beta = J'_\beta$ for $\beta \in \mathcal{E}$. This is known when $[\text{id} \in S_\beta]$ (especially when S_β contains a torsion element). This condition on β may be denoted \mathcal{E}', in which case there are no A_β, $\beta \in \mathcal{E}'$.