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A motivating example:
Light Sensitive RD-system

ClO2-1I-Malonic Acid (CDIMA)- gel
on top of well-stirred mixture
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Light suppresses Turing instability

Mask speed selects pattern and
mediates defects

Experimental model for growing

domains
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FIG. 1. Schematic of the experiment. A moving opaque mask
image creates a growing shadow domain where Turing patterns
can develop. In the illuminated domain the pattern is suppressed.



We'll consider the Swift-Hohenberg equation

[SH-"77], [Cross, Hohenberg "93|

u = —(1+ A)?u+ pou —u®, u:R™ = R,

u - order parameter, measures state of system
Mo -bifurcation /“onset parameter: ¥ = 0 stable/unstable for pp < 0

First developed for Rayleigh-Benard convection

Subsequently used as a ‘“normal form” model many phenomena:

other fluid systems, plant phyllotaxis, liquid crystals, crystallization, etc. ..
Some similar behavior to reaction-diffusion systems
Nice starting point because much is rigorously known:

Existence/stability of homogeneous patterns:

Fronts, slow-dynamics, localized patterns

Grain Boundaries Hexagons Zig-Zags Stripes




Swift-Hohenberg equation
ur = —(1 4+ A)?u+ pou —u’®, u:R™ = R,
Much known about system at onset ( < ;5 <« 1

Turing instability: insert ¢ = ref**+** into linear equation yields A = —(1 — |k|*)? + uo

Re{\}
Bifurcation of family of “roll”/stripe equilibrium
states in nonlinear equation

K up(21) = /Ao — K3 cos(Klz1) + O(lo — 5[*/?),

po 0 S
k=kI* =1, [k ~1

secondary
O | instability

unstable roll
convection ,

“ stable roll /
! convection /

Rotational invariance -> all orientations of stripes are solutions \
uy (k- z; k) T h
[CrossHohenbérg’QS] k|




Swift-Hohenberg equation

uy = —(1+ A)*u+ pou —u’, u:R* =R,

Swift-Hohenberg, t =0
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Quenched Swift-Hohenberg equation

w = —(1+A)u+ p(r —ctyu —u’,  p(€) = —posgn(€)
Inhomogeneity changes stability of trivial state for * —ct 20

Swift-Hohenberg, t = 0
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- Main question: How does the in-homogeneity control, or select, patterns?

Similar behavior to experimental RD system

Swift-Hohenberg

Light Sensing RD system
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Outline

t=500, c =25
87

- 1-D patterns .
- Spatial dynamics:

-1

Center manifold, invariant foliations, heteroclinic bifurcations, and
Melnikov integrals

- 2-D patterns and beyond:
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In this talk, we’ll focus on1-D patterns:
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1-D patterns in Swift-Hohenberg

uy = — (14 02)u + pu(r — ct)u — v’ (&) = posgn(—¢)
T tos 1
| °  1.03¢ 1
0 X1.02+ .
| . tor 1
‘ ' 0.99 - 1
< é 2.‘2 2.‘4 2.‘6 2.‘8 C“} | 3.‘2
50 CIEE 250 0 i Cinv
¢ > ciny : pattern selected by ¢ < Cinv : pattern wants to invade Interface has no effect on
unstable homogeneous state L.
faster than you're letting it pattern for ¢ > ciny

behind inhomogeneity.

Curves k(c) give mechanism and prescription for control in fabrication of materials



FGSt Speeds: |RG, Scheel; to appear]

up = —(1+ 02)*u + p(x — ct)u — u’

Study for speeds near detachment point € ~ Cinv = 44/ o

Look for small amplitude solutions with onset multiple scaling: Ho = 62, c=c¢ec,0<ex1

Thm: For € and 4 — ¢ > 0 sufficiently small, there exists a pattern forming front with wavenumber

~

k=1+69, 7=7(4—3&¢)
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Our approach: spatial dynamics

Study pattern-forming front solutions as heteroclinic orbits of a non-autonomous dynamical
system with spatial variable, & = X — cf as evolution variable.

Connect roll solution at £ = —o0 with trivial solution at & = 400

(center-manifold reduction): Use onset scaling to look for small, bounded solutions, -> use
center-manifold techniques to get leading order dynamics.

(Shooting): Overlay phase spaces £ 2 0 to find intersection of relevant invariant manifolds

(persistence/transverse unfolding): Invariant foliations to lift leading order dynamics to full
infinite-dimensional system



But first: the homogeneous equation

“Propagating fronts and the center-manifold theorem” |Eckmann, Wayne, "91[*:

ur = —(1 + ﬁg)Qu + e fiou — u’ Roll solutions:  up(kz; k)
Look for solutions of the form:
u(z,t) = Wi(x,z — ct), with W(z,&) = W(x + 27 /k, &) c=e k=1+¢ey
lim W(x,&) =0, lim W(x,§) = uy(kz; k)

£—00 E——0o0
Theorem: For ¢ > 419 > 0, and 0 < e K 1, and a family of wavenumbers k
in a neighborhood of 1, there exists a traveling front solution, connecting a roll
u,(kx; k) to the homogeneous (unstable!) equilibria u = 0.
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*See also [Haragus,Schneider '99, Doelman et. al 2003, Faye,Holzer 2015 |



Homogeneous equation

Fourier transform: Wi(x, &) = Z W, (g)e—i”kl” u, (k) = Z Sne—inkx

nel
Coupled system of ODEs:

[—(1+ (ikn + 0¢)*)® + €20 + Ea]lWa(§) = Y Wp(E)We(Wr(€)

ptgtr=n
: : : : 4
Write these higher order equations as first order systems in phase space &g = @%OZO(C

0e X, = Mp X, + Fr(X), X = (Xo)nez, Xp= Wy, 0:W,,0iW,,, 0:W,)"
(O 1 0 O\
0O 0 1 0

Mo=| o o o 1 |@ BX)=000 3 Xp0Xe0Xr0)"
\ A B C D) pratr=n

A=—(1-(kn)*)*+ €y, B=4ikn(1 - (kn)*)+¢, C=6(kn)* -2, D = dikn.

1
Look for bounded solutions (iné), near origin
Hence need to study spectrum of each M, for € ~ 0

—> Look for heteroclinic orbits between equilibria



Spectral information

Spectrum of linearization 1/9 O 1/2
€
about origin: 0 8 0<ex1 O(e’*) ( ) O(e'’?)
€= 5 e o0 o ©
°
C
o ® ®
spec(M) C iR o ° oo °
°
°

Int. many, 'double evals
n—=-1,1 Fourier subspaces

Center manifold theorem [EW,’91]: After symmetry reduction, there exists a two-dimensional invariant
manifold, tangent to the (’)(Q-eigenspace, with leading order dynamics:

da S E(_:L

d—g =vyay —3cy(ay +a)|ay +a_ P+ O(lay +a_|) 50 — @ZO:OCZL
da_

dii =v_a_—3c_(ay +a_)lar +a_|*+O(lay +a_|*)

(Te, h(Te, €))

\ / he :E. xR — By,
L

(e, €) — he(xe, €)




Dynamics on center manifold and fronts

After a normal-form transformation (x4, %_) — (p,q), and rescaling time ( = €&
we obtain the dynamics:

d

= p1+0(e), (pq)eC?

d¢ P,
dp 1

ic = 1 (~ied— e +34lal®) + O(e)

e Equilibrium Py corresponds to a periodic orbit.

e Phase-invariance of the system under rotations (¢,p) — €(¢,p) =—
el?P, also an equilibrium

e Can conclude one parameter family of heteroclinics in leading order system € = 0

e Use normal hyperbolicity to show persistence for O(e) pertubations (i.e.
full center-manifold dynamics)

D Py - roll solution



Backed to quenched system

uy = —(1 4 02)%u + 2 figsgn(—(x — ect)) — u’

Now ODE’s are non-autonomous:

[—(1+ (ikn + 0¢)*)? + ¢ + Eiosgn(O)]Wn(§) = Y W)W ()W, (€)

ptg+r=n
Perform the same analysis above for both £ 2 (

Obtain two center manifolds W¢(0),W;(0)

Eo = P ,C* W<(0)

—o— W;(0)
0 Po

Find orbit, in £ < 0-dynamics, connecting Py with stable
manifold of origin in ¢ > 0-dynamics

Think of W3(0) as boundary or target set to shoot W1 (P,) at.



Invariant manifolds and foliations

Center-manifolds only intersect trivially O e )
° . "nEs
Need to use hyperbolic dynamics normal to center manifolds .
VVISS(O)
W (0)

WO
“(0) W0

W,*(0)

oc(M

)

E/nE}
Normal dynamics “foliated” by strong stable/unstable fibers, use these to find intersections
SS SS uu Uuu j j
f’r — U "T-:r,wﬂ ‘Fl — U 'F.l,w (I)‘E(‘Fr/l,w) C ‘Fr/l,q)g(w)
weWe(0) weEWE(0)

Describe invariant manifolds by fibers

Wi (Po)) = Fi'gy, WE(0)=Fh, W)= | F,
weW s (0)



Find orbit, iné < 0 -dynamics connecting Py with W2(0)
stable manifold of origin in & > 0 -dynamics

W.>(0)

dq
- = + O )
W.e(0) g~ PO
d 1 5 e =
d_lg = 7 (4= p+34lgl*) +3(2ip +F9) + O(¢)
We(o)
..... Py corresponds to
................................ periodic pattern in
..................... . full dynamics
Py
] Wi (FPo)
T =p+0(e)
ic 7 |
dp ]_ . 2 ~ . ~
=1 (—q — ep + 3qlq]?) + 7 (2ip + Fq) + O(e)

“Project W2(0) onto W£(0) along strong unstable fibers W**”



In more detail:

W2 (0)
W™ (Po)

Wi (Po)

£ <0

We(0) W (Po) \

W.2(0)



Leading order system: overlay center manifolds

One finds, to leading order, dynamics governed by the following system:

dq 2
d
i~ 1 (=sen(=Q)q — &+ 3lal?) +4(2ip +4q) + O(e),

Real subspace p,q € R =0 €=0

c>4

p

W (0) W2 (0)



Melnikov integrals and transverse unfolding

Does the leading order intersection persist for ¥, € # 07

Intersection in real subsystem implies 1-D family of intersections, parameterized by
rotations, connecting VT/; (0) and P := {ePy : (p,q) — €%(p,q)}

dim W2 (0) N W% (P) =1 —=p non-transverse intersection

Look for Transverse unfolding: append the equation 4’ = (0, study extended manifolds in R x C?

Weat x0) = {(7,(p,q)) : 7 € I, (a,p) € WO)}, Wite(I x P)={(%,(p,q)) : 7 € I, (g,p) € Wf*(P)}

Showing non-vanishing of Melnikov integral, (with derivative in }7), implies transverse

intersection of WS cat (I x0)N Wl et (I xP)

Can conclude persistence of heteroclinic orbit, for €, perturbations



Write as a real system: ¢ = ¢ +1¢;,p = pr + 1p;

qr = Dr, — U: = F(€,U;¢,7) with U € R,
Br = — (€ + epr — 34, (¢ + @) — 29,

" 4 " " mr ’ v Heteroclinic for =20

Gi = P;
pi = =7 (1(€)gi + epi - 3¢i(¢7 +q7)) — 27vpr,

4 <., ~
. F o Wit (P)
W2 (0) —t— P
Y U.(0) \
0
2-D

Want to track how invariant manifolds split for 4 #£ 0,
Dimension counting implies intersection is non-generic: 2 + 2-1 =3 #4
dimg W5(0) = 2 dimg WeH(P) =2 dimg WM(P) N W3(0) =1

dimg [TVT/ﬁ(O) + TW;“(O)] —3 44




Want to study invariant manifolds near heteroclinic U,

Consider variations about heteroclinic orbit U =U, +V
Ve =AQV +G((,V;5¢,79),
G(C,V;6,7) = F(GULQ) +V;6,9) — F(CU(C);¢0) — A(Q)V.

Construct exponential dichotomies for linear system: V; = A(()V, i “(¢,s) for ¢, s >0,

) ) ) /(¢ s) for ¢,5 < 0
EY™(¢) :=Rg®Y™(¢,¢),  EY™(¢) = Ty-W/™(0), ¢ >0,

ETS/CH(C) = Rg@fs/cu(Q () ES/() = TU*(C)WlsS/Cu(Po), ¢ <0.

Can describe invariant manifolds as graphs over dichotomies, in a neighborhood of U, (():
W™ (Po) = {U*(0) + w1 + hi" (v, 7) | A" : Ef*(0) x R — E7(0)},
W (0) := {U*(0) + ve + By (vr, ) | B3 = E3(0) x R — EY(0)}.
. 5 5 . 1
dimgs £5(0) N Ef*(0) = 1, = | E2(0) + E{*(0)| = span{uo)

Define splitting distance: S(7,¢) = <1ﬁ0, ﬁfu — iL§>

R4

R4




Define splitting distance: S(7,¢) = <1;0, ﬁfu — ﬁ§>

R4
“Melnikov integral”

0 T Tcu/n. 1s/(N.
Can show 6—’75(07070) — <¢07 h] (070) o hr(070)>

Rél

~ 0 0
= (o [_ar@.o0cac- [ ar0.00,6ic) 7o

R4

— 00 00

using adjoint variational equation: ¢, = A(()*)




055 # 0 = Invariant manifolds split with non-zero “speed” in 7

Can conclude that invariant manifolds in extended system intersect transversely

d 3 5

iV = AV + GG Vied) W et X 0) ={(7, (p,q)) : 7 € I, (¢,p) € W(0)},
i~ —0 ch,gxt(l X P) — {(;yv (pa Q)) : 5/ < Ia (Q7p) < WZCU(P)}
ac’ =

Hence, under e, ¢ -perturbations one can find a 7 nearby with an intersection

Functional analytic view point:

0zS #0 = Implicit function thm: Solve S(¥,¢) = 0 for 4 near (0, ¢)




Conclude existence

Use foliations to lift intersection in full system |48 (O) N W (73) + O

W:(0) We(P)

Wi (0)

W (0)

Wluu( PO)

Existence of pattern forming front to PDE with wavenumber 1 + efy(é)
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A little bit about 2-D phenomenon

What orientations and wavenumbers of stripes are selected for each quenching speed?
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Oblique Stripes
u = —(14+ A)u+ p(r —ct)u —u’, (z,y) € Rt €R,
(&) = —posgn(§).

Homog. State u = 0 is stable unstable for =z —ct = 0

[RG, Scheel; to appear]

+ = o system possesses family of roll solutions u,(kz; ks ), up(0;ky) = up(0 + 275 ky)

Thm: Assume 1-D pattern exists with ¢ > 0 with wavenumber k;” and is “generic,” then there exists
slanted pattern nearby with transverse wavenumber k,~ 0 with

“Angle-selection” .

ko(ky) = K3 + dk;, + O(k))

Uty s ' 0.8
. o, 08 0.6
0.6 47 0.4
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> 0 0 ﬁ 0.2
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an 04 41 \ -0.4
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-0.8 8m - 0.8
0 0 50 00 -50 0 50
X X

o

87
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Parallel stripes Oblique stripes

up (ke 4 kyy; |K]),  |k]* = kZ + k;

Note: no onset condition required.



Functional analytic approach

Look for solutions u = u(ky(z — ct), kyy — wt) =: u(C,T)
0=—(1+ (ks0¢)* + (ky0:)*) *u+ u(QOu — u® + cue + wu, ((,7) ERXT

/Far-field decomposition
w=w(C 1)+ ug (¢, 7 KY) + x(Q)[up (¢ + 75 [K|) — up(C + 75 k)],

1111 :
[T

T

Insert into equation, obtain nonlinear operator, want to perturb from (w, kz, ky) = (0,k%,0)
Use exponential weights to recover Fredholm properties

Use preconditioning Fourier multiplier to regularized the singular limit &, - >0.



“Moduli” spaces - numerical continuation

What orientations and wavenumbers of stripes, parameterized by k= (k.,k,) can be selected
by a quenching interface for each speed c? _
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“Moduli” spaces - progress

Compares well with linear predictions (pulled

|RG,Scheel ’14, ’18] fronts) at ciuv(ky)

[RG,Scheel "14]

IRG, et. al. "16] i, S a——
|Beekie et. al. '17] oot = N

‘‘‘‘‘‘‘

|Weinburd, =
Scheel 717] 1 e ——

|[Morrissey, 0.8
Scheel ‘15| 55

%<
X
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0.2 —
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[Monteiro, Scheel, ’16,’17] 0.5

1.2
K 1.4 c

Rigorous results

Formal predictions or results in other systems



Other interesting topics

- Other systems: Reaction-Diffusion, Cahn-Hilliard, etc. ..
- Stability of these patterns
- Modulational equations/dynamics

- Other types of patterns: hexagons, zig-zags, non-planar interfaces

Reaction-Diffusion . Swift-Hohenberg, t = 15
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Summary

Growth /quenching mechanisms are an interesting way to mediate patterns in nature
Mathematics can help:

Dynamical systems theory (center-manifold, heteroclinic bifurcation theory, Melnikov
integrals) gives powerful tools to illuminate the underlying structure/mechanisms of
pattern formation in these models

There is much more to be done, using a variety of tools and approaches:
Rigorous theorems
Formal asymptotics

Numerical continuation



Thanks!

References:

Eckmann, J.P., Wayne, C.E., Propagating fronts and the center manaifold theorem, Comm.
Math. Phys., 1991

RG, Scheel, A. Pattern-forming fronts in a Swift-Hohenberg equation with directional
quenching — parallel and oblique stripes, J. Lon. Math. Soc., to appear.

RG would like to acknowledge the partial support of grant NSF-DMS-1603416



