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Introduction to Skyrme
Models



Motivation
▶ Low energy effective theory of hadrons - currently unknown

▶ Degrees of freedom of QCD:

▶ high energy: quarks and gluons
▶ low energy: hadrons

▶ One proposal: Skyrme model

▶ primary fields are mesons
▶ baryons (hadrons and nuclei) are realized as solitons
▶ realizes unbroken symmetries
▶ simplest case (two flavors): target space = SU(2) (isospin)

matrix U
▶ topological charge = baryon number



Generalised Skyrme Models

L0246 = L0 + L2 + L4 + L6

L2 = −λ2Tr (LµLµ) L4 = λ4Tr ([Lµ,Lν ]
2) L6 = −(24π2)2λ6BµBµ

where
▶ left-invariant current Lµ = U†∂µU

▶ L0 is a non-derivative part, i.e. a potential

▶ topological (baryon) currrent B = 1
24π2 ϵijk Tr (LiLjLk ) d3x.

▶ dimensionful coupling constants λ0, λ2, λ4, λ6

Note:
▶ Quadratic in first time derivatives .. standard hamiltonian

formulation
▶ Poincare Symmetries

▶ L6 = Square of the topological (baryon) current!



L024 – Simplest Version

E024 = λ2 E2 + λ4 E4 + λ0 E0 ,

where the constants are

λ2 =
1

24π2 , λ4 =
1

12π2 , λ0 =
1

12π2

usual Skyrme potential

E0 = Tr (1 − U)

Finite energy configuration:

U(x) → 12 for |x| → ∞

.. U : S3 7→ SU(2) ∼= S3 .. B ∈ Z = π3 (SU(2))

Note: Simplest models

▶ L2 + L0: excluded by Derrick’s scaling argument

▶ L4 + L0: excluded by dynamics: no topological solitons



Classical Skyrmion Solutions
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L024 – Hedgehogs
To make explicit the nonlinear pion theory, we write

U(x) = σ(x) 12+i π(x) ·τ and σ2 + π · π = 1 SU(2) constraint

sigma field pion field triplet
▶ Hedgehog Field:

σ = cos f (r) , π = sin f (r)x̂ ,

where f (0) = π, f (∞) = 0.
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L024 – Sucesses of the Model

▶ energy spectra (Manko, Manton &
Wood ’07)

▶ spin and isospin states (Krusch ’02)

▶ E2 Transitions (Haberichter, Lau &
Manton)

▶ Nucleon-nucleon scattering (Foster
& Krusch ’15, Foster & Manton ’15)

▶ States of Carbon-12 (Lau & Manton
’14)

▶ charge-4 subunits (Battye, Manton &
Sutcliffe ’07)

Figure : B = 12 triangle

Figure : B = 12 linear chain



L024 – Challenges of the Model

▶ Unphysical large nuclear binding
energies

▶ shell or crystal like densities

▶ Negative baryon densities (Foster &
Krusch ’13)

▶ Non BPS theory (Faddeev ’76)

▶ Non-linear energy-baryon charge
relation (Battye & Sutcliffe
’97,’02,’05,’06)

▶ Rigid-Body quantization of Skyrmion
solutions (Battye, Haberichter &
Krusch ’2014) Figure taken from D. Foster,

S. Krusch, J.Phys. A46 (2013)
265401.



L06 – BPS Skyrme Model

E06 = λ6 E6 + λ0 E0 ,

where common choices for the potential term are:

E0 = Tr (1 − U) or Ẽ0 = E2
0 .

Note:

▶ Derrick scaling .. E6 = E0 . . .

compatible with BPS

▶ BPS (Bogomolny) bound

▶ ∞ many exact solutions saturating
the BPS bound

▶ ∞ many symmetries

▶ Integrable: ∞ many conservation
laws

▶ perfect fluid type description!

Figure taken from C. Adam, C.
Naya, J. Sanchez-Guillen, and
A. Wereszczynski Phys. Rev.
Lett. 111, 232501.



L0246 – Near BPS Skyrme Model

E0246 = ϵ
(
λ2 E2 + λ4 E4 + λ0 E0

)
+ λ6 E6 + λ̃0 Ẽ0

where

▶ ϵ is a small parameter

▶ potential terms: E0 = Tr (1 − U) and Ẽ0 = E2
0 .

▶ constants:

λ2 =
1

24π2 , λ4 =
1

12π2 λ0 =
1

12π2 ,

λ6 = λ2π4 1
12π2 , λ̃0 =

µ2

12π2

▶ λ and µ2 will be fixed later!

Note: The model is capable of producing skyrmions with very low
binding energies. (Gillard, Harland & Speight ’15)



Our Project

Aim
We want to investigate the equation of state (EoS) in the general
Skyrme model with a special focus on near-BPS models.

Our Approach

▶ Find a defintion for average pressure and average chemical
potential

▶ Derive an asymptotic EoS

▶ Learn about subleading terms in the EoS by using properties of
generalised BPS Skyrme models

▶ Check numerically EoS for medium and large pressure
assuming charge-1 hedgehog configurations

▶ Compare EoS with with the Walecka model



Skyrme models & nuclear
matter equation of state

(EOS)



Average Pressure & Average Chemical Potential – I
▶ Thermodynamical Relations have to be fulfilled:(

∂E
∂V

)
B
= −P,

(
∂E
∂B

)
V
= µ̄

▶ We define the generalized step-function potential:

Θ̃(U) =

{
1 for U ̸= 1
0 for U = 1

▶ We define the locus set of the skyrmion U0(x⃗):

Ω = {x⃗ ∈ R3 | U∗
0 (Θ̃(U)) ≡ Θ̃(U0(x⃗)) = 1}

▶ Skyrme static energy functional

E(V ,P,B, µ̄) =
∫

d3x ε[U]+ P
(∫

d3x Θ̃(U(x⃗))− V
)
− µ̄

(∫
d3xB0 − B

)
,

▶ P : all possible solution must have volume V , i.e.∫
d3xΘ̃(U(x⃗)) =

∫
Ω

d3x = V .

▶ µ̄ : all possible solution must have charge B



Average Pressure & Average Chemical Potential – II
Check: P fulfills average pressure definition:

▶ Scaling transformations:

x i → eλx i = (1 + λ)x i , δλU = λx i∂iU .

▶ Energy functional under scaling transformation:

δλE = −λ
∫

Tiid3x + 3λ P
∫

d3x Θ̃(U(x⃗)) .

▶ Any solution of the Euler-Lagrange equations is a stationary
point ⇒ δλE = 0:

P =
1
3

∫
Ω

Tiid3x∫
Ω

d3x
.

Remarks:
▶ Compact domain Ω is not uniquely determined by P .
▶ Thermodynamical volume = geometrical volume of a topological

soliton. ⇒ ε̄ = E/V = 0 in the zero pressure limit!



Topological bounds
▶ Manton’s strain tensor formulation:

Djk = −1
2

tr (RjRk ) .

▶ Djk = symmetric, positive 3 × 3 matrix with EVs λ̃2
1, λ̃

2
2, λ̃

2
3.

▶ Use rescaled EVs λi = λ̃i/
3
√

2π2.

E4 = 3
∫
M

ΩM
1
3
(
λ2

1λ
2
2 + λ2

2λ
2
3 + λ2

1λ
2
3
)
≥ 3

∫
M

ΩM
(
λ4

1λ
4
2λ

4
3
) 1

3

= 3
∫
M

ΩM|B0|
4
3 ≥ 3

Vol
1
3
M

(∣∣∣∣∫
M

ΩMB0

∣∣∣∣) 4
3

=
3

Vol
1
3
M

|B|
4
3 .

E6 =

∫
M

ΩMλ2
1λ

2
2λ

2
3 =

∫
M

ΩM (B0)
2

≥ 1
VolM

(∫
M

ΩMB0

)2

=
1

VolM
|B|2 .



Asymptotic EoS – I
Topological bounds for the quartic and sextic terms:

E4 =
1

16

∫
d3x Tr [Li , Lj ]

2 ≥ 3(2π2)4/3 B4/3

V 1/3

E6 =

∫
d3x (ϵijk TrLiLjLk )

2 ≥ B2

V
.

Asymptotic static energy for any Skyrme model can be approximated:

E = λ2E2+λ4E4+λ
2π4E6+λ0E0 ≥ λ43(2π2)4/3 B4/3

V 1/3+π
4λ2 B2

V
≥ π4λ2 B2

V

Asymptotic formula for the energy:

E = π4λ2 B2

V
+ α

B4/3

V 1/3 + o(V−1/3) for V → 0

with

α ≥ 3(2π2)4/3λ4



Asymptotic EoS – II
▶ Average pressure

P = π4λ2ρ̄2
B +

α

3
ρ̄

4/3
B + o(ρ̄4/3

B )

▶ Average baryon chemical potential

µ̄ = 2π4λ2ρ̄B +
4α
3
ρ̄

1/3
B + o(ρ̄1/3

B )

where ρ̄B = B/V is the average baryon (particle) density.

▶ Average energy density

ε̄ = π4λ2ρ̄2
B + αρ̄

4/3
B + o(ρ̄4/3

B )

▶ Note: BPS Skyrme model asymptotic behaviour in the leading
approximation:

P = π4λ2ρ̄2
B , µ̄ = 2π4λ2ρ̄B , ε̄ = π4λ2ρ̄2

B

EOS:
ε̄ = P



Asymptotic EoS – The Main Findings
1. The sextic term gives the main contribution in the high pressure

limit. This means that this term should not be omitted as far as
dense nuclear matter is considered. The asymptotic equation of
state always has a universal (potential independent) form ε̄ = P.

2. The quartic, usual Skyrme term, gives a subleading contribution
which modifies the equation of state at moderate pressures. The
functional dependence is known, which is not the case for the
multiplicative constant α, for which we have derived a lower
bound.

3. The potential and the sigma model part give contributions which
are even subleading in comparison to the E4 contribution. On
the other hand, they may be significant close to nuclear
saturation density.



The BPS Fluid Toy Models – I

Aim
We want to learn how a specific number of derivatives can change
the equation of state

Skyrme (quartic) term

L4 = λ4Tr ([Lµ, Lν ]
2) −→ Lf

4 = λ4(BµBµ)
2/3

which now is represented by a “four derivative” term (in the sense that
under Derrick scaling xµ → Λxµ it scales like Λ−4)

▶ energy density & pressure:

ε = λ4ρ
4/3
B , P = ρB

∂ε

∂ρB
− ε =

1
3
λ4ρ

4/3
B ,

▶ EoS:

P =
1
3
ε



The BPS Fluid Toy Models – II

Sigma model term

L2 = −λ2Tr (LµLµ) −→ Lf
2 = −λ2(BµBµ)1/3

▶ energy density & pressure:

ε = λ2ρ
2/3
B , P = −λ2

3
ρ

2/3
B

▶ EoS: P = −1
3
ε.

Potential term

▶ energy density & pressure: ε = U , P = −U

▶ EoS: P = −ε



The BPS Fluid Toy Models – III
Energy density-baryon density relation which can be valid not only for
asymptotically high pressure but also in a medium pressure regime

ε̄ = π4λ2ρ̄2
B + αρ̄

4/3
B + β + β̃ ρ̄

2/3
B + O(1)

This leads, for the charge one sector, to the following energy-volume
formula

E = π4λ2 1
V

+ α
1

V 1/3 + βV + β̃ V 1/3 + O(1)



Numerical Results for
medium and large pressure

regime



Calibration

Adkins and Nappi (AN)
Adjust the parameters e,Fπ,mπ to fit the hadron masses: N,∆, π

[
Fπ

4eSky

]
= 12π2 × 5.58 MeV ,

[
2

eSkyFπ

]
= 0.755 fm

ℏ = 46.8 , eSky = 4.84, Fπ = 108 MeV , mπ = 138 MeV .



Check: field-theoretical P = thermodynamical P
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E4 – Profile function



E4 ▶ Energy integral

E4 = λ4E4 =
1

12π2 4π
∫ R

0
drr2

(
2

sin2 f
r2 f ′2 +

sin4 ξ

r4

)
.

▶ Scale transformation r → Λr :

E4[V ] =
1

V 1/3 E4[V = 1] ≡ α
1

V 1/3 ⇒ p =
α

3
1

V 4/3

▶ Numerics:

α = 1.853 or α = 924.4 MeV fm

▶ Analytic:
α = 3(2π2)4/3/(12π2) = 1.351

▶ Density-pressure equation of state:

ε̄ = 3p.

.. The bound is not saturated!



E4
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Figure : Energy and pressure of the B=1 skyrmion as a function of
the volume for E4 model



E04 – Profile function



E04
▶ Size of compact charge one skyrmion at equilibrium:

R = 2.07 or R = 1.563 fm,

This sets the maximum volume to Vmax = 15.9 fm3.

▶ Asymptotic energy formula

E = α
1

V 1/3 + β̃V 1/3 + βV + o(V )

with parameters

α04 = 924.6 MeV fm, β04 = 13.4 MeV fm−3, β̃04 = 0.

.. Mass of the equilibrium skyrmion: M04 = 580 MeV

.. 3.5% above the true mass



E04
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the volume for E04 model



E24 – Profile function



E24
▶ The equilibrium solution in the charge one sector is an infinitely

extended skyrmion.
▶ We find:

α24 = 924.1 MeV fm, β24 = 0, β̃24 = 311.5 MeV fm−1
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Figure : Energy and pressure of the B=1 skyrmion as a function of
the volume for E24 model



E024 – Profile function



E024 – Energy Density Profiles



E024
▶ Fitting parameters:

α024 = 924.1 MeV fm, β024 = −106.1 MeV fm−3,

β̃024 = 458.0 MeV fm−1

▶ Subtracting leading term from numerical energy gives effective
mass-volume formula

E024 = α
1

V 1/3 + γV 1/5 + o(V 1/5),

where γ = 346.1MeV fm−1/5.

.. strong mixing between the sigma model, potential and
quartic term

.. Note: α = 1.853 in Skyrme units (or α = 924.4 MeV)
Kutschera et. al.: αkut = 1.837
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E024
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E024 – EOS
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The BPS model – E06 Model – I
▶ Analytical Solution:

λ

2r2 sin2 ff ′ = −µ

√
Ẽ0 + P

12π2

µ2 .

▶ total energy E and volume V at a given pressure P:

E(P) =
2π

12π2λµ

∫ π

0
dξ sin2 f

8(1 − cos f )2 + P 12π2

µ2√
4(1 − cos f )2 + P 12π2

µ2

V (P) = 2π
λ

µ

∫ π

0
df sin2 f

1√
4(1 − cos f )2 + P 12π2

µ2

▶ mean-field equation of state

ε̄ = P + µ̃2

(
5
2

3F2[{ 1
2 ,

7
4 ,

9
4}, {

5
2 ,3},−

4µ̃2

P ]

3F2[{ 1
2 ,

3
4 ,

5
4}, {

3
2 ,2},−

4µ̃2

P ]

)
,

where pFq[{a1, .., ap}, {b1, ..,bq}, z] is a generalised
hypergeometric function, and µ̃2 = 1/3π2.



The BPS model – E06 Model – II

▶ Mean-field EOS in the asymptotic region

E = α̃
1
V

+ β∞V + o(V ),

where

α̃ =
1

12π2λ
2π4 =

π2

3
= 935.6 Mev fm3, β∞ =

5
6π2 = 64.8 MeV fm−3 .

▶ Numerical Mean-field EOS in the asymptotic region

α̃ = 938.2 MeV fm3 and β = 61.5Mev fm−3

.. in agreement with the analytical results within 0.3% and 5%
respectively.



E026 Model

▶ Fitting parameters:

α̃ϵ=0.01 = 938.4, α̃ϵ=0.1 = 939.0, α̃ϵ=1 = 940.6.

▶ Closer to the BPS limit, we also get the subleading (linear in the
volume) term:

βϵ=0.01 = 62.2 MeV fm−3,

with, however, a non-zero value for the off-set.

▶ It is also possible to fit β̃V 1/3 + βV curve. For ϵ = 0.1 and ϵ = 1
it leads to a negative value for β, which seems to indicate that
such a curve is rather not the right one.



E0246 Model – I

▶ New calibration: we fit the parameters of the BPS part of the
model to the mass of the helium nucleon mHe/4 = 931.75 MeV
and size of the nucleon rN = 1.25 fm.

▶ For the BPS Skyrme model we have

EBPS =
2

12π2 2π2λµ, R =

(
3π
2

)1/3(
λ

2µ

)1/3

.

Then, λ2 = 2317 Mev fm3, µ2 = 3372 MeV fm−3 in physical
units or λ2 = 8.14 and µ2 = 2.19 in the Skyrme units.

▶ fitting values of the leading term in the energy-mass relation

α̃ϵ=1 = 1929 MeV fm3, α̃ϵ=0.1 = 1908 MeV fm3,

α̃ϵ=0.01 = 1905 MeV fm3,

which can be compared with the theoretical value
α̃ = λ2π2

12 = 1905 MeV fm3.



E0246 Model – II

▶ the sextic term gives the leading behavior for the mass-volume
formula in the asymptotic regime.

▶ the subleading contribution, emerging from the quartic part of
the action, has the form αV−1/3, with the following fitting values:

αϵ=1 = 924.7 MeV fm, αϵ=0.1 = 92.7 MeV fm, αϵ=0.01 = 9.8 MeV fm,

.. satisfies the relation αϵ = ϵ αϵ=1.

.. test for our numerics.



E0246 – mass and pressure
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density for E0246 model



E0246 – mass and pressure
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Walecka Model &
Conclusions



Walecka Model
LW = LN + Lσ,ω + Lint ,

where

LN = ψ
(
iγµ∂µ − m + µγ0)ψ ,

Lσ,ω =
1
2
(∂µσ)

2 − 1
2

m2
σσ

2 − 1
4
ωµνω

µν +
1
2

m2
ωωµω

µ ,

Lint = gσψσψ + gωψγ
µωµψ ,

and ωµν = ∂µων − ∂νωµ.

Compute partition function Z =
∫
DψDψDσDω e

∫
LW in the limit

where the bosonic field are approximated by their condensate values
σ, ω0.

.. LW = ψ
(
iγµ∂µ − m∗ + µ∗γ0

)
ψ − 1

2 m2
σσ

2 + 1
2 m2

ωω
2
0

where
m∗ = m − gσσ , µ∗ = µ− gωω0



Walecka Model
▶ Pressure and energy density

P =
1
2

g2
ω

m2
ω

ρ̄2
B − 1

2
g2
σ

m2
σ

n2
s +

1
4π2

[(
2
3

k3
F − (m∗)2kF

)
E∗

F

+(m∗)4 ln
kF + E∗

F
m∗

]
,

ε̄ =
1
2

g2
ω

m2
ω

ρ̄2
B +

1
2

g2
σ

m2
σ

n2
s +

1
4π2

[(
2k3

F + (m∗)2kF
)

E∗
F

−(m∗)4 ln
kF + E∗

F
m∗

]
,

▶ Fermi energy and nucleon mass

E∗
F =

√
k2

F + (m∗)2, m∗ = m − g2
σ

m2
σ

ns.

▶ baryon and scalar densities at T = 0

ρ̄B =
2k3

F
3π2 , ns =

m∗

π2

[
kF E∗

F − (m∗)2 ln
kF + E∗

F
m∗

]
.



Walecka Model
▶ leading behaviour of the mean-field energy density

ε̄ =
1
2

g2
ω

m2
ω

ρ̄2
B +

3
4

(
3π2

2

)1/3

ρ̄
4/3
B +

1
2

m2
Nm2

σ

g2
σ

,

We observe:

1. The asymptotic formulae for the equations of state in the full
(i.e., containing the BPS part) Skyrme model and in the Walecka
model coincide.

2. Coincidence also between the first subleading terms, which
behave as ρ̄4/3

B .

3. Constant term

4. There are no further terms in the large density limit of the
Walecka model which could correspond to the term generated
by the sigma model part of the Skyrme model. Namely, a term
behaving as ρ̄a with 4/3 > a > 0.



Conclusions& Future Work

Conclusions

1. New insight into the MF-EoS in general Skyrme models

2. Relation between Skyrme and Walecka model

Future Work

1. What is the MF-EoS in the limit of infinite nuclear matter?

2. What is the energy minimizer for a given B on a given compact
manifold with a certain volume?

3. What happens for nonzero Temperature T > 0?



Want to learn more?

1. Follow us on Twitter:
https://twitter.com/
UniKentSkyrmion

2. Like us on FB:
https://www.facebook.
com/KentSkyrmions

3. Visit us on our webpage:
http://www.kent.ac.
uk/smsas/personal/
skyrmions/index.html

https://twitter.com/UniKentSkyrmion
https://twitter.com/UniKentSkyrmion
https://www.facebook.com/KentSkyrmions
https://www.facebook.com/KentSkyrmions
http://www.kent.ac.uk/smsas/personal/skyrmions/index.html
http://www.kent.ac.uk/smsas/personal/skyrmions/index.html
http://www.kent.ac.uk/smsas/personal/skyrmions/index.html
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