Variational proof of the existence of brake orbits in the planar 2-center problem

Yuika Kajihara

Kyoto University

June 28, 2018

n-center problem & brake orbits

• *n*-center problem :

$$\ddot{\boldsymbol{q}} = -\sum_{k=1}^{n} rac{m_k}{|\boldsymbol{q} - \boldsymbol{a}_k|^3} (\boldsymbol{q} - \boldsymbol{a}_k) \qquad (\boldsymbol{q} \in \mathbb{R}^d)$$

where $oldsymbol{a}_1,\ldots,oldsymbol{a}_n\in\mathbb{R}^d$ are constant vectors.

• $\boldsymbol{q}(t)$ is a brake orbit.

 $:\Leftrightarrow {}^{\exists}T_2 > {}^{\exists}T_1 > 0 \text{ such that } \dot{\boldsymbol{q}}(T_1) = \dot{\boldsymbol{q}}(T_2) = 0.$

(Excluding equilibrium points)

 In the potential systems, brake orbits are 2(T₂ - T₁)-periodic solutions.

Q. Do brake orbits exist in the planar 2-center problem?

Setting : $m_1 = 1, m_2 = m, a_1 = a = (1, 0), a_2 = -a = (-1, 0).$

 \rightarrow Variational methods

$$\begin{array}{l} \mathsf{Lagrangean}\colon L({\bm q},\dot{{\bm q}}) = \frac{1}{2}|\dot{{\bm q}}|^2 + \frac{1}{|{\bm q}-{\bm a}|} + \frac{m}{|{\bm q}+{\bm a}|}\\ \mathsf{Action functional}\colon \mathcal{A}({\bm q}) = \int_0^T L({\bm q},\dot{{\bm q}})dt \end{array}$$

Boundary conditions : $q(0) \in A := \{(x,0) \mid -1 \le x \le 1\}$, $q(T) \in \mathbb{R}^2$.

 $\mathcal{A}'(\boldsymbol{q}) = 0 \Longleftrightarrow \boldsymbol{q}$ is a solution of the planar 2-center problem.

Existence of minimizer

Facts :

- With standard arguments of the existence of a minimizer, there is a minimizer q^* of $\mathcal{A}(q)$ satisfying the boundary condition.
- If q^* has no collision, $\dot{q}^*(0) \perp A, \dot{q}^*(T) = 0$ and $\mathcal{A}'(q^*) = 0$ hold.

• If :

(Col) q^* is not a collision solution.

(Eq) q^* is not an equilibrium point.

Then we obtain a 4T-periodic brake orbit.

Shape of q^*

If q^* satisfies (Col) and (Eq), q^* is a part of a brake orbit, i.e. from t = 0 to t = T of 4T-periodic one.

Shape of the whole brake orbit

Under what condition q^* is not an equilibrium point

An equilibrium point :
$$oldsymbol{q}_{ ext{eq}}=(b,0)\,\left(b=rac{\sqrt{m}-1}{\sqrt{m}+1}
ight)$$
.

(The second variation)

$$\mathcal{A}''(\boldsymbol{q})(\boldsymbol{\delta}) = \lim_{h \to 0} \int (\boldsymbol{\delta}(t), \dot{\boldsymbol{\delta}}(t)) \nabla^2 L \big|_{(\boldsymbol{q}, \dot{\boldsymbol{q}}) = (\boldsymbol{q} + h\boldsymbol{\delta}, \dot{\boldsymbol{q}} + h\dot{\boldsymbol{\delta}})} (\boldsymbol{\delta}(t), \dot{\boldsymbol{\delta}}(t))^{\mathrm{T}} dt$$

$$\rightarrow \text{ If } T > \gamma = \frac{\sqrt{2}\pi m^{1/4}}{(1+\sqrt{m})^2}, \ ^{\exists} \boldsymbol{\delta} \text{ such that } \mathcal{A}''(\boldsymbol{q}_{\text{eq}})(\boldsymbol{\delta}) < 0.$$

 $\rightarrow T > \gamma \Rightarrow \pmb{q}^*$ is not an equilibrium point.

A minimizer in collision solutions

Let $q_{
m col}$ be a minimizer in collision solutions.

We estimate $\mathcal{A}(\boldsymbol{q}_{\mathrm{col}})$:

$$\mathcal{A}(\boldsymbol{q}_{\rm col}) = \int_0^T \frac{1}{2} |\dot{\boldsymbol{q}}_{\rm col}|^2 + \frac{1}{|\boldsymbol{q}_{\rm col} - \boldsymbol{a}|} dt + \int_0^T \frac{m}{|\boldsymbol{q}_{\rm col} + \boldsymbol{a}|} dt$$
$$\geq \frac{3}{2} \pi^{2/3} T^{1/3} + \int_0^T \frac{m}{|\boldsymbol{q}_{\rm col} + \boldsymbol{a}|} dt \qquad (1)$$

Estimate the action of collisions

We estimate the second term in (1) :

$$m_1 + m_2$$

$$\int_0^T \frac{m}{|\mathbf{q}_{col} + \mathbf{a}|} dt = \int_0^T \frac{m}{q_1(t) + 1} dt > \frac{m}{q_1(T) + 1} T$$
$$> \frac{\pi^{2/3}(1+m)^{-1/3}m}{2(1+\pi^{2/3}(1+m)^{-1/3}T^{-2/3})} T^{1/3}.$$

Hence

$$\mathcal{A}(\boldsymbol{q}_{\rm col}) > \frac{3}{2} \pi^{2/3} T^{1/3} + \frac{\pi^{2/3} (1+m)^{-1/3} m}{2(1+\pi^{2/3} (1+m)^{-1/3} T^{-2/3})} T^{1/3}.$$

Under what condition q^* has no collision

- Take a test path : ${\pmb q}_{\mathrm{test}}(t) = (b, ct^{2/3}) \quad (c \ge 0)$
- The action functional of $oldsymbol{q}_{ ext{test}}$:

$$\begin{aligned} \mathcal{A}(\boldsymbol{q}_{\text{test}}) &= \frac{2}{3}c^2 T^{1/3} \\ &+ \int_0^T \frac{1}{\sqrt{(1-b)^2 + c^2 t^{4/3}}} + \frac{m}{\sqrt{(1+b)^2 + c^2 t^{4/3}}} dt \end{aligned}$$

•
$$F(m,T,c)$$

:= $\frac{3}{2}\pi^{2/3}T^{1/3} + \frac{\pi^{2/3}(1+m)^{-1/3}m}{2(1+\pi^{2/3}(1+m)^{-1/3}T^{-2/3})}T^{1/3} - \mathcal{A}(\mathbf{q}_{\text{test}})$

$$F(m, T, c) \ge 0 \Rightarrow \mathcal{A}(\boldsymbol{q}_{col}) > \mathcal{A}(\boldsymbol{q}_{test}) \ge \mathcal{A}(\boldsymbol{q}^*)$$

 $\rightarrow F(m, T, c) \ge 0 \Rightarrow \boldsymbol{q}^*$ has no collision.

Main theorem

If $(m,T) \, \in \, D$, then there exists a brake orbit which has 4T-period ,

where
$$D := \{(m,T) \mid T > \gamma, F(m,T,c) \ge 0 \, (\exists c \ge 0) \}.$$

Draw the domain D with Matlab.

What kind of brake orbits are minimizers?

Red line : the x-component of the force is zero

Figure: $m_1 = m_2$

Figure: $m_1 < m_2$

Thank you for your attention!