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· Hopf Bifurcation at a = 1

· Canard Explosion at a = 1 +O(")
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Transition from attracting fixed point to attracting relaxation oscillation must be via sequence of  canard cycles
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Canards

Canard: solution that spends         slow time on a repelling manifold of  states 
(equilibria/limit cycles/n-torus) of  the fast subsystem
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" ẋ = f(x, y, ")
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Torus Canards
ẋ1 = f1(x1, x2, y) x1 . . . Fast

ẋ2 = f2(x1, x2, y) x2 . . . Fast

ẏ = " g(x1, x2, y) y . . . Slow

Discovery: Kramer, Traub & Kopell (2008), Phys. Rev. Lett. 101, 068103 

· Torus bifurcation for 0 < " ⌧ 1

· " = 0 subsystem has fold of limit cycles (aka SNPO)



Review of  limit cycle canards 

Cast of  characters: folded singularity & torus canards 

Main results for the forced van der Pol equation 

• low-frequency forcing 

• intermediate- and high-frequency forcing 

Impacts of  main results 

• general forced systems 

• transition between periodic spiking and bursting of  many different types 

• organization of  the SAO, LAO, and MMO 

• generic torus canards 

Conclusions

Outline



The Forced van der Pol Equation1-4
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ẏ = " (�x+ a+ b cos ✓)

˙

✓ = !

5. Guckenheimer, Hoffman & Weckesser (2003), SIAM J. Appl. Dyn. Syst. 2, 1-35 

6. Haiduc (2009) Nonlinearity 22, 213-237

Other types of forcing of the van der Pol equation5,6



The Forced van der Pol Equation
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Folded Saddle-Node (Type I) Bifurcation at a = 1± b for " = 0

Low-Frequency Forcing (               ): Folded Singularity Canards! = " !
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Torus Canards: Intermediate-Frequency Forcing
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Idea: geometric desingularization of  the SNPO curve
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Main Result1
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Why do we care? Reason 1

Toral & Classical Canards in Forced Planar Slow/Fast Systems
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Why do we care? Reason 2

Torus Canards & The Spiking/Bursting Transition
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Small-Amplitude, Large-Amplitude & Mixed-Mode Oscillations

The Curves of Maximal Canards Organize the Parameter Plane
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ẋ = y �
✓
x

3

3

� x

◆
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The World of Canards
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Theoretical Contribution 

• Averaging method for folded manifolds of  limit cycles 

• Topological classification of  torus canards 

Numerical Contribution 

• Twisted invariant manifolds of  limit cycles 

New Phenomena 

• Genericity: should occur in models and experiments 

• Neural: amplitude-modulated bursting  

• Dynamic: torus canard-induced mixed-mode oscillations

Generic Torus Canards

Vo (2016) arXiv:1606.02366



Conclusion

Forced van der Pol equation 

• Existence of  FSN I canards in the low-frequency regime (                 ) 

• Existence of  torus canards in the intermediate-frequency regime (                    ) and high-
frequency (                 ) regime 

• Direct connection of  primary strong canards to maximal torus canards 

• Primary and secondary canard curves organize parameter plane for SAO, LAO, and MMO 

Generalized to a class of  forced slow-fast systems, including fFHN 

Central role in neuroscience and electrical engineering: torus canards 
must arise between spiking (attracting limit cycles) and bursting (of  
many types) 

Generic torus canards (2 or more slow variables) and the new 
phenomenon of  amplitude-modulated bursting
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Stroboscopic Map
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ẋ = f(x, y1, y2) x . . . Fast

ẏ1 = " g1(x, y1, y2) y1 . . . Slow

ẏ2 = " g2(x, y1, y2) y2 . . . Slow
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Fig. 5 Folded saddle geometry and associated trajectories. The geometry of a generic folded saddle. The
folded saddle (purple) is denoted pfs, while the fold curve (black dashed) is denoted F . a Folded saddle
geometry according to the singular reduced problem. The folded singularity resembles an ordinary saddle
equilibrium with stable and unstable invariant manifolds (red). The trajectories (blue) follow these invari-
ant manifolds moving away from the stable manifold and toward the unstable. b Within the desingularized
reduced problem the dynamics on the repelling surface, Sr , are reversed due to the rescaling of time (desin-
gularization). Trajectories may pass through the folded saddle with non-zero velocity traveling either of
the invariant manifolds. These trajectories correspond to singular canards; the stable invariant manifold to
the true canard and the unstable invariant manifold to the faux canard. c Folded saddle geometry in 3D.
The true canard acts as a separatrix on the attracting surface, Sa . If a trajectory lands within the region
enclosed by the true and faux canards, then it is bound away from the fold curve. However, if the trajectory
lands within the region enclosed by the fold curve and true canard it travels toward the fold curve. Here,
the trajectory “jumps off” due to a blow up in finite time of the desingularized reduced problem, where
subsequent dynamics are dictated by the layer problem. The region within which trajectories necessarily
‘jump off’ the critical manifold is indicated (purple shaded)

S−
r , for a considerable amount of time. Here, we find two canard trajectories; the true

canard, ξt , and the faux canard, ξf . The faux canard is the particular solution tra-
jectory that lies initially on the repelling surface of the manifold, passes through the
folded singularity and onto the attracting surface of the manifold (cf. Figs. 5 and 6).
These canards correspond to the global invariant manifolds of the folded singular-
ity, i.e., ξt = Ws(pfs) and ξf = Wu(pfs). A diagram of the reduced problem, around
F−, is given for τs = 15 in Fig. 6. The basic structure of the reduced problem, under
variation of the parameter τs , is stretched further along the fold curve in the positive
s-direction for larger τs and contracts toward s = 0 for smaller τs values.

The folded saddle canard Ws(pfs) is a separatrix and effectively organizes the
solution trajectories of the reduced problem. Depending on which side of Ws(pfs) the
trajectory is initially, solution trajectories of (15) travel along Ws(pfs) and either meet
the fold curve for s > sfs or move toward, later traveling along, Ws(pfs). In the former
case, the trajectory is no longer accurately approximated by the reduced problem at
the fold due to a finite time blow up of system (15) and subsequent dynamics are
dictated by the layer problem. In the latter case, the solution trajectory terminates at
eq3, prevented by Ws(pfs) from approaching F−. Compare Figs. 5 and 6.
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Fig. 2 Rebound spiking with dynamic inhibition. The dimensionless modified propofol model is simu-
lated for four different values of τs , 7, 8, 21, and 22. a τs = 7, b τs = 8, c τs = 21, d τs = 22. Voltage
time-traces are shown within each panel, and the corresponding time-traces of s are shown below. Note
that there exists a range of τs values for which rebound spiking occurs, specifically for τs ∈ [8,21]

well with the experimental observation that only low doses of propofol are able to
create the state of paradoxical excitation [20].

Using a traditional approach, the spiking behavior is studied with a step proto-
col. Here, an applied current is switched on, kept at a constant level, then removed.
By holding Isyn constant, the dynamics in s are lost, thus rendering the step proto-
col system five-dimensional as opposed to the six-dimensional dynamic inhibition
system (1). This step protocol is usually able to reproduce spiking patterns, while
simplifying input dynamics, and thus give insight into the associated spiking behav-
ior. However, applying a step protocol to the present model, we find a single transition
from inactivity to isolated spiking as τs is increased. As τs is further increased a tran-
sition from single spiking to a doublet, and then to a triplet of spikes is observed
(Fig. 3). A maximum of three spikes is observed despite further increases in dura-
tion of inhibition. The step protocol is unable to reproduce a cessation of spiking
for increased synaptic inhibition. It thus becomes apparent that there is a necessary
dynamic mechanism required to yield a specific range of spiking under variation of
synaptic inhibition time-scale.

In the present study, our aim is to identify firing threshold manifolds of the propo-
fol model, both with dynamic and with static inhibition, thus explaining the spiking
behavior under variation of propofol dosage and duration of current step inhibition,
respectively. Key to this aim is the use of GSPT for which a detailed analysis of
time-scales is necessary. This time-scale analysis is presented in Sect. 3. Identifying
multiple time-scales in system (1) implies a splitting of solution trajectories of (1)
into segments of fast and slow dynamics. These fast and slow dynamics are captured
by lower dimensional subsystems, termed the layer and reduced problems, respec-
tively. GSPT uses these lower dimensional subsystems, studied in Sect. 4, to provide

Mitry, McCarthy, Kopell, & Wechselberger. (2013) J. Math. Neuro., 3:12

Folded Saddle Canards




