

m

Toral & Classical Canards

Forced van der Pol & Paradigm Neuroscience Models

June 28, 2018

Theodore Vo & Tasso Kaper Department of Mathematics and Statistics Boston University

Outline

- Review of limit cycle canards
- * Cast of characters: folded singularity & torus canards
- * Main results for the forced van der Pol equation
 - low-frequency forcing
 - intermediate- and high-frequency forcing
- * Impacts of main results
 - general forced systems
 - transition between periodic spiking and bursting of many different types
 - organization of the SAO, LAO, and MMO
 - generic torus canards
- * Conclusions

Canard Cycles in the van der Pol Equation

$$\dot{x} = y - \left(\frac{x^3}{3} - x\right)$$
$$\dot{y} = \varepsilon \left(-x + a\right)$$

Benoit, Callot, Diener and Diener (1981), Collectanea Mathematicae **31–32**, 37–119 Diener (1984), Math. Intell. **6**, 38–49

- Hopf Bifurcation at a = 1
- Canard Explosion at $a = 1 + \mathcal{O}(\varepsilon)$

Canard Cycles in the van der Pol Equation

$$\dot{x} = y - \left(\frac{x^3}{3} - x\right)$$
$$\dot{y} = \varepsilon \left(-x + a\right)$$

Transition from attracting fixed point to attracting relaxation oscillation must be via sequence of canard cycles

Canard Cycles in the van der Pol Equation

$$\dot{x} = y - \left(\frac{x^3}{3} - x\right)$$
$$\dot{y} = \varepsilon \left(-x + a\right)$$

Outline

- Review of limit cycle canards
- * Cast of characters: folded singularity & torus canards
- * Main results for the forced van der Pol equation
 - low-frequency forcing
 - intermediate- and high-frequency forcing
- * Impacts of main results
 - general forced systems
 - transition between periodic spiking and bursting of many different types
 - organization of the SAO, LAO, and MMO
 - generic torus canards
- * Conclusions

Canards

Canard: solution that spends O(1) slow time on a repelling manifold of states (equilibria/limit cycles/*n*-torus) of the fast subsystem

Canards

Folded Singularity Canards^{1,2}

1. Szmolyan & Wechselberger (2001) J. Differential Equ. 177, 419-453

2. Wechselberger (2005) SIAM J. Appl. Dyn. Syst. 4, 101-139

1. Szmolyan & Wechselberger (2001) J. Differential Equ. 177, 419-453

2. Wechselberger (2005) SIAM J. Appl. Dyn. Syst. 4, 101-139

Folded Saddle-Node Canards

Vo & Wechselberger (2015) SIAM J. Math. Anal. 47, 3235-3283

Torus Canards

$$\dot{x}_1 = f_1(x_1, x_2, y) \qquad \qquad x_1 \dots \text{ FAST}$$

$$\dot{x}_2 = f_2(x_1, x_2, y) \qquad \qquad x_2 \dots \text{ FAST}$$

$$\dot{y} = \varepsilon g(x_1, x_2, y) \qquad \qquad y \dots \text{ SLOW}$$

Discovery: Kramer, Traub & Kopell (2008), Phys. Rev. Lett. 101, 068103

- Torus bifurcation for $0 < \varepsilon \ll 1$
- + $\varepsilon=0$ subsystem has fold of limit cycles (aka SNPO)

Outline

- Review of limit cycle canards
- * Cast of characters: folded singularity & torus canards
- * Main results for the forced van der Pol equation
 - low-frequency forcing
 - intermediate- and high-frequency forcing
- * Impacts of main results
 - general forced systems
 - transition between periodic spiking and bursting of many different types
 - organization of the SAO, LAO, and MMO
 - generic torus canards
- * Conclusions

The Forced van der Pol Equation¹⁻⁴

$$\dot{x} = y - \left(\frac{x^3}{3} - x\right)$$
$$\dot{y} = \varepsilon \left(-x + a + b\cos\theta\right)$$
$$\dot{\theta} = \omega$$

- 1. van der Pol (1920), Radio Rev. 1, 701–710, 754–762
- 2. van der Pol (1927), Lond. Edinb. Dublin Phil. Mag. J. Sci. Seri. 7, 3, 65-80
- 3. Cartwright & Littlewood (1945), J. Lond. Math. Soc. 20, 180-189
- 4. Burke, Desroches, Granados, Kaper, Krupa & Vo (2016), J. Nonlinear Sci. 26, 405-451

Other types of forcing of the van der Pol equation^{5,6}

- 5. Guckenheimer, Hoffman & Weckesser (2003), SIAM J. Appl. Dyn. Syst. 2, 1-35
- 6. Haiduc (2009) Nonlinearity 22, 213-237

The Forced van der Pol Equation

$$\dot{x} = y - \left(\frac{x^3}{3} - x\right)$$
$$\dot{y} = \varepsilon \left(-x + a + b\cos\theta\right)$$
$$\dot{\theta} = \omega$$

Low-Frequency Forcing ($\omega = \varepsilon \overline{\omega}$): Fold Curve

Low-Frequency Forcing ($\omega = \varepsilon \overline{\omega}$): Folded Singularities

FOLDED SINGULARITIES :
$$(x, y, \theta) = \left(1, -\frac{2}{3}, \pm \cos^{-1}\left(\frac{1-a}{b}\right)\right)$$

 $\theta_S = \cos^{-1}\left(\frac{1-a}{b}\right) \dots \text{ FOLDED NODE} \qquad \theta_S = -\cos^{-1}\left(\frac{1-a}{b}\right) \dots \text{ FOLDED SADDLE}$

Low-Frequency Forcing ($\omega = \varepsilon \overline{\omega}$): Folded Singularity Canards

Folded Saddle-Node (Type I) Bifurcation at $a = 1 \pm b$ for $\varepsilon = 0$

Idea: geometric desingularization of the FSN point

Low-Frequency Forcing ($\omega = \varepsilon \overline{\omega}$): Folded Singularity Canards

Geometric desingularization of the FSN I

Blow-up: $x = 1 + \sqrt{\varepsilon} u_2$ $y = -\frac{2}{3} + \varepsilon v_2$ $\theta = \varepsilon^{1/4} \theta_2$ $a = 1 \pm b + \varepsilon \alpha_2$ $b = \sqrt{\varepsilon} \beta_2$ $t = \frac{1}{\sqrt{\varepsilon}} t_2$

Low-Frequency Forcing ($\omega = \varepsilon \overline{\omega}$): Folded Singularity Canards

Geometric desingularization of the FSN I

Blow-up: $x = 1 + \sqrt{\varepsilon} u_2$ $y = -\frac{2}{3} + \varepsilon v_2$ $\theta = \varepsilon^{1/4} \theta_2$ $a = 1 \pm b + \varepsilon \alpha_2$ $b = \sqrt{\varepsilon} \beta_2$ $t = \frac{1}{\sqrt{\varepsilon}} t_2$

$$\dot{u}_{2} = v_{2} - u_{2}^{2} - \frac{1}{3}\sqrt{\varepsilon} u_{2}^{3}$$
$$\dot{v}_{2} = -u_{2} + \sqrt{\varepsilon} \alpha_{2} + \beta_{2} \underbrace{\left(\cos(\sqrt{\varepsilon}\overline{\omega}t_{2})\cos(\varepsilon^{1/4}\theta_{2,0}) - 1\right)}_{\mathcal{O}(\sqrt{\varepsilon})} - \beta_{2} \underbrace{\sin(\sqrt{\varepsilon}\overline{\omega}t_{2})\sin(\varepsilon^{1/4}\theta_{2,0})}_{\mathcal{O}(\varepsilon^{3/4})}$$

$$\mathcal{D} = d_1 \sqrt{\varepsilon} + d_2 \,\varepsilon^{3/4} + \dots = 0$$

$$d_{1} = \int_{-\infty}^{\infty} \nabla H|_{\Gamma} \cdot \begin{pmatrix} -\frac{1}{3}u_{\Gamma}^{2} \\ \alpha_{2} + \frac{\beta_{2}}{\sqrt{\varepsilon}} \left(\cos(\sqrt{\varepsilon}\overline{\omega}t_{2})\cos(\varepsilon^{1/4}\theta_{2,0}) - 1 \right) \end{pmatrix}$$
$$d_{2} = \int_{-\infty}^{\infty} \nabla H|_{\Gamma} \cdot \begin{pmatrix} 0 \\ -\frac{\beta_{2}}{\varepsilon^{3/4}}\sin(\sqrt{\varepsilon}\overline{\omega}t_{2})\sin(\varepsilon^{1/4}\theta_{2,0}) \end{pmatrix} dt_{2}$$

$$a = 1 - \frac{\varepsilon}{8} \pm b \exp\left(-\frac{\omega^2}{2\varepsilon}\right)$$

Torus Canards: Intermediate-Frequency Forcing

Idea: geometric desingularization of the SNPO curve

Main Result¹

1. Burke, Desroches, Granados, Kaper, Krupa & Vo (2016), J. Nonlinear Sci. 26, 405–451

Main Result¹

Curves of folds of maximal canards in the (ω, a) plane as obtained from the analytic formula (red curves) and 2-parameter numerical continuation (blue curves) for $\varepsilon = 0.01$ and (a) b = 0.01; (b) b = 0.02; (c) b = 0.035; and, (d) b = 0.1. For $b = O(\varepsilon)$ (a-c), there is good agreement between theoretical (red) and numerical (blue) results over the entire range of forcing frequencies, including for both the primary maximal canards which exist for $\omega = O(\varepsilon)$ and the maximal torus canards which exist for $\omega = O(\varepsilon)$ and the maximal torus canards which exist for $\omega = O(1)$. Note that the scales in **a**-**c** are the same. For $b = O(\sqrt{\varepsilon})$ (**d**, in which the vertical scale is different), we find that the numerical continuation terminates when ω is no longer $O(\varepsilon)$.

1. Burke, Desroches, Granados, Kaper, Krupa & Vo (2016), J. Nonlinear Sci. 26, 405–451

Outline

- Review of limit cycle canards
- * Cast of characters: folded singularity & torus canards
- * Main results for the forced van der Pol equation
 - low-frequency forcing
 - intermediate- and high-frequency forcing
- * Impacts of main results
 - general forced systems
 - transition between periodic spiking and bursting of many different types
 - organization of the SAO, LAO, and MMO
 - generic torus canards
- * Conclusions

Toral & Classical Canards in Forced Planar Slow/Fast Systems

Wang, Vo & Kaper (2016) arXiv:1607.02205

Torus Canards & The Spiking/Bursting Transition

Attractors of Morris-Lecar with (slow) feedback current control, \boldsymbol{y}

Why do we care? Reason 3

Small-Amplitude, Large-Amplitude & Mixed-Mode Oscillations The Curves of Maximal Canards Organize the Parameter Plane


```
Why do we care? Reason 3 (continued)
```

Small-Amplitude, Large-Amplitude & Mixed-Mode Oscillations The Curves of Maximal Canards Organize the Parameter Plane

 $\omega = \mathcal{O}(\varepsilon) \dots 1\text{-Fast/2-Slow} \qquad \omega = \mathcal{O}(\sqrt{\varepsilon}) \dots 3\text{-Timescales} \qquad \omega = \mathcal{O}(1) \dots 2\text{-Fast/1-Slow}$

Why do we care? Reason 4

The World of Canards

2D + SNPO

Generic Torus Canards

* Theoretical Contribution

- Averaging method for folded manifolds of limit cycles
- Topological classification of torus canards

* Numerical Contribution

• Twisted invariant manifolds of limit cycles

* New Phenomena

- Genericity: should occur in models and experiments
- Neural: amplitude-modulated bursting
- Dynamic: torus canard-induced mixed-mode oscillations

Conclusion

* Forced van der Pol equation

- Existence of FSN I canards in the low-frequency regime ($\omega = \mathcal{O}(\varepsilon)$)
- Existence of torus canards in the intermediate-frequency regime ($\omega = O(\sqrt{\varepsilon})$) and high-frequency ($\omega = O(1)$) regime
- Direct connection of primary strong canards to maximal torus canards
- Primary and secondary canard curves organize parameter plane for SAO, LAO, and MMO
- * Generalized to a class of forced slow-fast systems, including fFHN
- Central role in neuroscience and electrical engineering: torus canards must arise between spiking (attracting limit cycles) and bursting (of many types)
- Generic torus canards (2 or more slow variables) and the new phenomenon of amplitude-modulated bursting

Torus Bifurcation

Forced van der Pol

$$\dot{x} = y - \left(\frac{x^3}{3} - x\right)$$
$$\dot{y} = \varepsilon \left(-x + a + b\cos\theta\right)$$
$$\dot{\theta} = \omega$$

x

Folded Saddle Canards

Mitry, McCarthy, Kopell, & Wechselberger. (2013) J. Math. Neuro., 3:12