Rigid Body Motion in a Special Lorentz Gas

Kai Koike

1) Graduate School of Science and Technology, Keio University 2) RIKEN Center for Advanced Intelligence Project

BU-Keio Workshop 2018 @Boston University, June 25-29

Introduction

\precsim Micro and macro dynamics are strongly connected

Kinetic theory of gases

Velocity distribution function: $f(x, \xi, t)$

$$\int_{\Delta x \times \Delta \xi} f \, dx d\xi$$

average number of molecules

Macroscopic quantities

Density
$$ho(x,t) = \int f(x,\xi,t) d\xi$$

Mean velocity $u(x,t) = \int \xi f(x,\xi,t) d\xi /
ho(x,t)$

- 1. Can we solve two different equations simultaneously?
- 2. What is the decay rate of V(t)?
- 3. Micro-macro connection?
- Previous results: I(f)=0
- Main result: an example of I(f)≠0

Special Lorentz gas [Tsuji & Aoki (2012)]

$$\partial_t f + \xi \cdot \nabla_x f = \nu_{\varepsilon}(|\xi|)(f_0 - f)$$

$$\begin{cases} \varepsilon + C^{-1} \frac{z^2}{z+\varepsilon} \le \nu_{\varepsilon}(z) \le \varepsilon + C \frac{z^2}{z+\varepsilon} \\ f_0(\xi) = \pi^{-3/2} \exp(-|\xi|^2) \end{cases}$$

Theorem [K., J. Stat. Phys. (2018)]

For the special Lorentz gas, the decay rate of V(t) is

- $\varepsilon > 0$: exponential $V(t) \approx e^{-\varepsilon t}$
- $\varepsilon = 0$: algebraic $V(t) \approx t^{-5}$

Mathematical Formulation

Kinetic equation

$$\partial_t f + \xi \cdot \nabla_x f = I(f)$$

I(f): interaction term

Newton's equation

$$\frac{dV(t)}{dt} = -F(t)$$

Mathematical Formulation

Boundary condition

$$f(x,\xi,t) = f(x,\xi'_{V(t)},t)$$
$$(\xi'_{V(t)} - V(t)\boldsymbol{e}_1) \cdot \boldsymbol{n} = -(\xi - V(t)\boldsymbol{e}_1) \cdot \boldsymbol{n}$$

Friction

$$F(t) = \int_{S} \int_{\xi} \xi_1(\xi - V(t)\boldsymbol{e}_1) \cdot \boldsymbol{n} f \, d\xi dS$$

Coupled in both ways

Previous Result

```
Free molecular flow: \partial_t f + \xi \cdot \nabla_x f = 0
```

```
Theorem [Caprino et. al., CMP (2007)]
For free molecular flow, V(t) decays algebraically as
• V(t) \approx t^{-(d+2)}
```

• $V(t) \approx t^{-(d+2)}$

d=2: Infinite rod

d=1: Infinite wall

Free molecular flow: $\partial_t f + \xi \cdot \nabla_x f = 0$

<u>Theorem</u> (Caprino et. al., 2007) For free molecular flow, V(t) decays algebraically as • $V(t) \approx t^{-(d+2)}$

•
$$F(t) = CV(t) \Rightarrow V(t) = V_0 e^{-Ct}$$

Why algebraic?

d=2: Infinite rod

Multiple collision of the molecules

Micro-scale: recollision

F(t) = CV(t)	$F(t) = \int \int \cdots f d\xi dS$
Markov	Non-Markov
Exponential	Algebraic
$V(t) \approx e^{-Ct}$	$V(t) \approx t^{-(d+2)}$

F(t) depends on V(s) (0<s<t)

Macro-scale: non-Markov

Main Result

- Scattering destroys information of the past
- Exponential decay?
- Numerical simulation [Tsuji & Aoki (2012)]

Analyzed a special Lorentz gas

Can we have a mathematical theory?

Interaction with obstacles (condensed phase)

$$\partial_t f + \xi \cdot \nabla_x f = \nu_{\varepsilon}(|\xi|)(f_0 - f)$$

$$\begin{cases} \varepsilon + C^{-1} \frac{z^2}{z + \varepsilon} \le \nu_{\varepsilon}(z) \le \varepsilon + C \frac{z^2}{z + \varepsilon} \\ f_0(\xi) = \pi^{-3/2} \exp(-|\xi|^2) \end{cases}$$

 $\boldsymbol{\varepsilon}$: obstacle's average speed

- Confirms the numerical simulation
 [Tsuji & Aoki (2012)]
- Decay rate is independent of d

Intuitive explanation?

Dependence on ε

$\varepsilon > 0$

Molecules are scattered most of the time

Almost Markov; exponential decay

$\varepsilon = 0$

Slow molecules are sometimes not scattered

Weakly non-Markov; inverse power decay

- Confirms the numerical simulation
 [Tsuji & Aoki (2012)]
- Decay rate is independent of d

Intuitive explanation?

Conclusion

Summary

- 1. Micro-macro dynamics are strongly connected recollision
- 2. Interaction destroys non-Markovness

Further question:

What about the Boltzmann equation? (Really hard question)

Visit my webpage for the paper and the slide: Google as "Kai Koike"