Decorated enhanced Teichmüller space

Katsuhiro Miguchi

Dept. of Mathematics, Grad School of Science, Osaka Univ.

Boston-Keio Workshop June 26, 2018

1 Contents

- Teichmüller space
- Enhanced Teichmüller space
- Decorated Teichmüller space
- Deco. Enha. Teichmüller space
- Main result

 \hat{S} : conn. cpt. ori. surf. which has genus $g\geq 0$,

- $c \geq 0$ boundary components,
- $p\geq 0$ internal points, and
- $s \geq 0$ boundary points.
- $P := \{\text{internal point}\},\$
- $V := \{ \text{internal and boundary point} \}$ $S := \hat{S} \setminus V$

Assume 4 - 4g - 2c - 2p - s < 0 and that each boundary has at least 1 boundary point.

3 Teichmüller space

 $\begin{array}{l} X: {\rm cplt finite area hyperbolic surf. which has} \\ {\rm cusps, closed geodesic boundaries, crowns.} \\ {\rm Marking } f:S \to X \setminus \{{\rm c.g.b.}\} {\rm \ ori-pre. \ homeo.} \end{array}$

$$(X_1, f_1) \sim (X_2, f_2) \Leftrightarrow$$

 $\exists \varphi : X_1 \to X_2 \text{ ori-pre. isom. } \varphi \circ f_1 \sim f_2$

Teichmüller sp. $\mathcal{T}(S) :=$ {marked hyp. surf. (without c.g.b.)}/ ~

4 Enhanced Teichmüller space

Enhancing $\varepsilon : \{ c.g.b. of X \} \rightarrow \{ \pm 1 \}$

 $(X_1, f_1, \varepsilon_1) \sim (X_2, f_2, \varepsilon_2) \Leftrightarrow$ $(X_1, f_1) \sim (X_2, f_2) \text{ and } \varepsilon_2 \circ \varphi = \varepsilon_1 \text{ on } \{\text{c.g.b.}\}$

Enhanced Teichmüller sp. $\mathcal{T}^x(S) := \{\text{enhanced marked hyp. surf.}\} / \sim$

5 Shearing coordinates

 Δ : triangulation of \hat{S}

Shearing of edge α Signed length of the gluing gap at α

Prop. $\mathcal{T}^x(S)$ is homeo. to $\mathbb{R}^{\operatorname{int} E(\Delta)}$ by measuring shearing of internal edges, where $\operatorname{int} E(\Delta)$ is the set of internal edges of Δ .

6 Decorated Teichmüller space

Decoration curve : horocycle at cusp and horocyclic arc at spike Decoration $D := \bigcup_{v \in V} \{ \text{decoration curve at } v \}$

$$(X_1, f_1, D_1) \sim (X_2, f_2, D_2) \Leftrightarrow$$

$$(X_1, f_1) \sim (X_2, f_2) \text{ and } \varphi(D_1) = D_2$$

Decorated Teichmüller sp. $\mathcal{T}^{a}(S) := \{ \text{decorated marked hyp. surf. without c.g.b.} \} / \sim$

7 λ -length coordinates

 $\lambda\mathchar`-length of \alpha$ Signed length along α between decoration curves

<u>Prop.</u> $\mathcal{T}^{a}(S)$ is homeo. to $\mathbb{R}^{E(\Delta)}$ by measuring λ -length of edges, where $E(\Delta)$ is the set of edges of Δ .

8 Deco. Enha. Teichmüller sp.

Decoration curve at c.g.b. : equidistant curve

$$\begin{split} &(X_1, f_1, \varepsilon_1, D_1) \sim (X_2, f_2, \varepsilon_2, D_2) \Leftrightarrow \\ &(X_1, f_1) \sim (X_2, f_2), \ \varepsilon_2 \circ \varphi = \varepsilon_1 \text{ on } \{\text{c.g.b.}\} \\ &\text{and } \varphi(D_1) = D_2 \end{split}$$

Decorated enhanced Teichmüller sp. $\mathcal{T}^{xa}(S) := \{ \text{deco. enha. marked hyp. surf.} \} / \sim$

9 Shearing, decoration coord.

Decoration parameter

d is $\mathbb{R}\text{-valued}$ parameter of boundary length :

• $d(r) = 0 \Leftrightarrow r$ is length of collar boundary, • $\frac{\mathrm{d}d}{\mathrm{d}r} = \frac{\mathrm{d}\lambda}{\mathrm{d}r}$.

Assume s > 0. <u>**Thm.**</u> $\mathcal{T}^{xa}(S)$ is homeo. to $\mathbb{R}^{int E(\Delta)} \times \mathbb{R}^V$ by measuring shearing of internal edges and decoration parameter at point of V.

10 λ , boundary length coord.

<u>**Thm.</u>** $\mathcal{T}^{xa}(S)$ is homeo. to $\mathbb{R}^{E(\Delta)} \times \mathbb{R}^{P}$ by measuring λ -length of edges and boundary length at points of P.</u>

Idea of proof

- Homeo. $\mathbb{R}^{\operatorname{int} E(\Delta)} \times \mathbb{R}^V \to \mathbb{R}^{E(\Delta)} \times \mathbb{R}^P$
- Calculation at special triangulation Δ_0
- Flip deformation from Δ_0 to Δ
- Extended Ptolemy equation

11 Future work

- Case of s = 0
- Extend the Poisson structure on $\mathcal{T}^x(S)$
- Extend the degenerate symplectic structure on $\mathcal{T}^a(S)$

Thank you for your attention !