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Goal : Construction of a data-driven model (dynamical system) 
of a fluid flow 

Time-series of a macroscopic variable
(Energy function)

Statistical quantity
(Energy spectrum)

We have succeeded in constructing a closed form equation describing a macroscopic behavior 
of a fluid flow only from macroscopic data without prior knowledge of physical process.
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Outline of this talk

1. Introduction to a fluid flow

2. Motivation 

3. Reservoir computation

4. Partial-prediction of a microscopic variable

5. Full-prediction of a macroscopic variable (main topic)

6. Summary

1-1. Introduction to a fluid flow
• Fluid flow appears everywhere around us: from coffee cup to space.

Universality in turbulence

Energy spectrum for various types of fluid turbulence

Connie via flickr
Sekishita 2006

Large scale        Small scale

Energy cascade

Energy input

Energy dissipation
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1-2. Introduction to a fluid flow: high-dimensional chaos
• Fluid flow shows chaos in most cases.

➢Deterministic

➢Sensitivity for initial conditions

• Fluid flow shows a high-dimensional chaos in most cases.                      

➢Coexistence of different number of unstable directions 

➢Intermittent behavior especially in higher wavenumbers (smaller scale)

high-wavenumber
variable E(9)

time

1-4. Introduction to a fluid flow: Navier-Stokes equation
• Most fluid flow is known to be modeled by three dimensional 

incompressible Navier-Stokes equation:

v : velocity

π: pressure

ν: viscosity (more turbulent for smallerν) 

• Lots of difficulties in this equation:
➢ nonlinear
➢ nonlocal interactions 
➢ high-dimensional (especially for small ν)  

We do not even know the existence of a “global solution”. 

(One of the Millennium prize problems by Clay Mathematics Institute $1,000,000)
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1-5. Introduction to a fluid flow: Mean flow
• There are lots more open problems in the area of fluid mechanics 

such as the analytical derivation of mean flow velocity profile 
(=macroscopic quantity) of turbulence due to the “closure problem”, 
that is, it is impossible to get a closed form equation of a mean flow 
(=1st order quantity) without knowing a higher order quantity. 

[In order to write down the equation of the nth order quantity, we need 
the information of the n+1th order quantity for all n.] 

J. Peixinho & T. Mullin

2. Motivation and outline of our study
• Data-driven modeling of fluid flow : Based on the limited time-series data of a fluid flow, 

we would like to construct a model. Especially, we are interested in constructing a model 

for macroscopic variables.

• We employ reservoir computation technique, which is proved to be very powerful for

constructing models from data.  

Lu et al. (2017), Pathak et al. (2017, 2018): Lorenz & Kuramoto-Sivashinsky systems

• Training data as well as a reference data are generated from the direct numerical

simulation of the three dimensional incompressible Navier-Stokes equation with

periodic-boundary conditions.
➢ Fourier variables of velocity: microscopic
➢ Energy functions: macroscopic

• We would like to construct a data-driven model which can predict future behaviors of

both microscopic and macroscopic fluid variables without a prior knowledge of physical

process in relatively small computational costs. 
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3-1. Reservoir computation
• Machine-learning technique that uses a neural-network composed of 

simple nonlinear dynamical systems. 

• The framework was proposed as echo-state network (Jaeger 2001, 
2004) and liquid-state machine (Maass et al. 2002).

• Effort in training is concentrated on the determination of output layer.

Training phase (t<T)                                                                                                    Prediction phase (t>T)                   

3-2. Reservoir computation

M,M′ ≪ N
100 ~103 103~105

(M = M′ for full-prediction)
M′
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3-3. Reservoir computation: How to determine Wout and c ?

• Minimizing the quadratic form with respect to Wout and c:

regularization term to avoid overfitting

• Solution:                                                            (Lukosevivsius and Jaeger, 2009)

4-1. Partial-prediction of a microscopic variable:
Generation of learning data using direct numerical simulation of   
the Navier-Stokes equation

• We employ Fourier spectral method with N0=9 modes, meaning that the 
system is approximated by 2(2N0+1)3=13718 dimensional ODE.

• We focus on time-series data of 270 variables 

and predict another variable.
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4-2. Partial-prediction of a microscopic variable: 
Fourier variable of a velocity

error

Partial-prediction of a microscopic variable from a measurement u(t) of
dimension 270 is quite successful.

5-1. Full-prediction 

Training phase (t<T)                      Prediction phase (t>T)

For the full-prediction we do 
not have measurements u(t) 
for t>T, and use predicted 

value of ොs(t) for u(t). 
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5-2. Full-prediction of a macroscopic variable

Short-time average of the energy function will be used later

• By learning 9 time-series data of E(k,t) (k=1,…,9) for t≤T, we predict

E(k,t) (k=1,…,9) for t>T. We do not learn any data during the prediction time 
for t>T

5-3. Full-prediction of a macroscopic variable: Energy function
• Growth of error in prediction

•

•

•

•

Exponential 
growth of error 
due to a chaotic 

property

• When t<T+100, predicted time-series data 
obtained from our reservoir system almost 
coincides with that of a reference data obtained 
from the DNS of the Navier-Stokes equation. 

• The increase in the prediction error is due to the 
chaotic property of the fluid flow, which is 
inevitable. 
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5-4. Full-prediction of a macroscopic variable: 
Reproducing energy spectrum by the reservoir model

• The energy spectrum obtained from 
the full-prediction procedure of E(k,t) 
for t>T+100 (after the time-series 
prediction fails) coincides with that 
from a reference data obtained from 
the direct numerical simulation of the 
Navier-Stokes equation.

• This implies that the obtained reservoir 
system constructed without the 
knowledge of microscopic variables is 
equivalent to the dynamical system 
describing a macroscopic behavior of 
energy functions.

6-1. Summary
• We can predict time-series of both microscopic and macroscopic 

variables of fluid flow by machine-learning technique using reservoir 
computation without a prior knowledge of a physical process. 

• In order to generate a time-series data of a macroscopic variable of a 
fluid flow, we do not need to go back to the microscopic dynamics. 

We have especially succeeded in constructing a closed form equation of a  

fluid flow describing macroscopic behavior only from data.

• The method is shown to be especially useful in generating a 
macroscopic time-series data with small computational costs.
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6-2. Comparison about computational costs  

•
Training phase (t≤T)       

Training phase (t<T)                      Prediction phase (t>T)

Win WoutA

Fixed learningMicroscopic  ν = 0.05862
M=270, M′=2, N=6400
Δt=0.25  [1/10 times]

Macroscopic  ν = 0.058
M=M′=9,  N=3200

Δt=0.25  [1/80 times]

DNS of Navier-Stokes eqns
13718-dim ODE, 4stage-RK4, Δt=0.05

6-3. Remarks on the choice of parameters
• As N (≫M ) increases, the error tends to 

decrease. Especially for the full 
prediction, N should be significantly 
larger than M to get an accurate 
prediction.

• As T increases, the error tends to 
decrease, but N should also be 
increased for getting a better result. 

• If we choose measurements 
independently with each other, we can 
use smaller β(≥0). On the other hand, 
when we have a better set of 
measurements, smaller βis better.

• In order to obtain a “nonhomogeneous” 
behavior, the parameters D 1 and D 2
should be relatively small and avoid 
strong coupling among 𝑟. They should 
be proportional to N.
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