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Goal : Construction of a data-driven model (dynamical system)

of a fluid flow / \

Time-series of a macroscopic variable Statistical quantity
(Energy function) (Energy spectrum)
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We have succeeded in constructing a closed form equation describing a macroscopic behavior
of a fluid flow only from macroscopic data without prior knowledge of physical process.
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QOutline of this talk

Introduction to a fluid flow

Motivation

Reservoir computation

Partial-prediction of a microscopic variable
Full-prediction of a macroscopic variable (main topic)
. Summary
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1-1. Introduction to a fluid flow

* Fluid flow appears everywhere around us: from coffee cup to space.
Universality in turbulence

10°

Sekishita 2006
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Energy spectrum for various types of fluid turbulence
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1-7. Introduction to a fluid flow: high-dimensional chaos
 Fluid flow shows chaos in most cases.

»Deterministic

> Sensitivity for initial conditions

e Fluid flow shows a high-dimensional chaos in most cases.
»Coexistence of different number of unstable directions
> Intermittent behavior especially in higher wavenumbers (smaller scale)
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1-4. Introduction to a fluid flow: Navier-Stokes equation
« Most fluid flow is known to be modeled by three dimensional
incompressible Navier-Stokes equation:

v —vAv+ (v-Vvo4+Va=f V.-v=0
_ :'|f 0 = Vo with V - vg = 0,

v : velocity

T pressure
v : viscosity (more turbulent for smaller v )

 Lots of difficulties in this equation:
> nonlinear
» nonlocal interactions
> high-dimensional (especially for small v)

We do not even know the existence of a “global solution”.
(One of the Millennium prize problems by Clay Mathematics Institute $1,000,000)
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1-5. Introduction to a fluid flow: Mean flow

e There are lots more open problems in the area of fluid mechanics
such as the analytical derivation of mean flow velocity profile
(=macroscopic quantity) of turbulence due to the “closure problem”,
that is, it is impossible to get a closed form equation of a mean flow
(=1st order quantity) without knowing a higher order quantity.

[In order to write down the equation of the nth order quantity, we need
the information of the n+1th order quantity for all n.]

L TRe= 4000

J. Peixinho & T. Mullin

2. Motivation and outline of our study

« Data-driven modeling of fluid flow : Based on the limited time-series data of a fluid flow,
we would like to construct a model. Especially, we are interested in constructing a model

for macroscopic variables.

» We employ reservoir computation technique, which is proved to be very powerful for
constructing models from data.
Lu et al. (2017), Pathak et al. (2017, 2018): Lorenz & Kuramoto-Sivashinsky systems
» Training data as well as a reference data are generated from the direct numerical
simulation of the three dimensional incompressible Navier-Stokes equation with

periodic-boundary conditions.
> Fourier variables of velocity: microscopic
> Energy functions: macroscopic

« We would like to construct a data-driven model which can predict future behaviors of
both microscopic and macroscopic fluid variables without a prior knowledge of physical
process in relatively small computational costs.
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3-1. Reservoir computation

* Machine-learning technique that uses a neural-network composed of
simple nonlinear dynamical systems.

» The framework was proposed as echo-state network (Jaeger 2001,
2004) and liquid-state machine (Maass et al. 2002).

 Effort in training is concentrated on the determination of output layer.

FIKEd Training A * determined
WguL c win W;ut
—) -
L.l{t #— s(t+At) U(t) e— — S(t+ At)
mpUtﬂj tw output \I"{ tw‘
data reservoir data
vector

Training phase (t<T) Prediction phase (t>T)

3-2. Reservow comoutahon

I"-"lxed Training
Wt:lut C
u{t) — _h_,s(t+ At)
mput.-'hr( t]-_-'- output M,M" & N
data R o data 10 ~10% 103 ~10°
RM RN R M (M = M’ for full-prediction)
*r(t+ At) = (1 — a)r(t) + atanh(Ar(t) + W;,E(t))
A . 'W;,: sparse random matrix, whose maximal eigenvalue is controlled
: nonlinearity parameter (o = 0.3).

We determine Wout and ¢ s.t.

t" < T  Wour(t+ At) + ¢ ~ s(t + At).
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3-3. Reservoir computation: How to determine Wout and ¢ ?

* Minimizing the quadratic form with respect to Wout and c:
L

Z |.||:Wn||tr“ﬁr} + E:I o E'U"ﬁf}”j + -'Ii{Y‘TI{Wﬂnt W::::t”
=1
regularization term to avoid overfitting

* Solution: é(f) W:ut [f:] - (j* (Lukosevivsius and Jaeger, 2009)
W . = 6S6RT(JRORT + BI)~!

out
(b* = [Wmltr ]

where T ZJ. r(IAt)/L, 5 = ) ,_,s(lAt)/L, and 1

is the N x N 1{1{*11t1t} mdtru{. rfR (respectively, 4S) is

the matrix whose [-th column is r(lAt) — 7 (respectively.,

s(IAt) — 3).

4-1. Partial-prediction of a microscopic variable:

Generation of learning data using direct numerical simulation of
the Navier-Stokes equation

Ov—vAv+ (v-Vv+Vr=f, V.-v=0, T x (0,00)
rlr:u =gy with V-vp=0, ™

« We employ Fourier spectral method with No=9 modes, meaning that the
system is approximated by 2(2No+1)3=13718 dimensional ODE.

» We focus on time-series data of 270 variables

1 : —i( K-
iy = |-F[r-~.:](-‘*='}| = [2?r]3 AH E-'{:{J'..”r' \K-2) oy

and predict another variable.
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4-7. Partial-prediction of a microscopic variable:
Fourier variable of a velocity
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Partial-prediction of a microscopic varlable from a measurement u(t) of
dimension 270 is quite successful.

b-1. Full-prediction 0
A ' determined
r{t Win W;ut
Fixed Training — ~—
U(t) e— — §(t+ A1)
WDL'I C -*r{ t)
() — —p s(t+At) o
f
input\ —’ output '
data reservoir data Win

vector &
For the full-prediction we do \F{ tw
not have measurements u(t)
for t>T, and use predicted S
Training phase (t<T) value of §(t) for u(b. Prediction phase (t>T)
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H-7. Full-prediction of a macroscopic variable
The energy function (k. t) for wavenumber b € N is
defined by

Eo(k,t) / L\FM ? dr,
1y

¢=1
where Dy = {k € Z3|k — 0.5 < |k| < k + 0.5}
Short-time average of the energy function will be used later
E(k,t) = z:—ﬂi:‘i_‘n‘ Ey(k,s)/100

« By learning 9 time-series data of E(k,t) (k=1,---,9) for t<T, we predict
E(k,t) (k=1,---,9) for t>T. We do not learn any data during the prediction time
for t>T

H-3. Full-prediction of a macroscopic variable: Energy function
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il m‘l R  When t<T+100, predicted time-series data
- ! r!‘ﬁ J” obtained from our reservoir system almost
& o+ Ww er nF,‘-v coincides with that of a reference data obtained
1 i [ from the DNS of the Navier-Stokes equation.
» « Theincrease in the prediction error is due to the
chaotic property of the fluid flow, which is
20 50 100 150 200 250, inevitable.
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Hh-4. Full-prediction of a macroscopic variable:
Reproducing energy spectrum by the reservoir model

i , _____ «Theenergy spectrum obtained from
the full-prediction procedure of E(k,t)
for t>T+100 (after the time-series
prediction fails) coincides with that
from a reference data obtained from

10‘1 -

w2l the direct numerical simulation of the
g Navier-Stokes equation.
il

il

* This implies that the obtained reservoir
4 system constructed without the
10y 53l — knowledge of microscopic variables is
fesenolr ufput —=— equivalent to the dynamical system
10° describing a macroscopic behavior of
1 k 0 energy functions.
o-1. Summary

« We can predict time-series of both microscopic and macroscopic
variables of fluid flow by machine-learning technique using reservoir
computation without a prior knowledge of a physical process.

 In order to generate a time-series data of a macroscopic variable of a
fluid flow, we do not need to go back to the microscopic dynamics.

We have especially succeeded in constructing a closed form equation of a
fluid flow describing macroscopic behavior only from data.

* The method is shown to be especially useful in generating a
macroscopic time-series data with small computational costs.
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6-2. Comparison about computational costs| ,,PNS of Navier-Stokes eqns

13718-dim ODE, 4stage-RK4, At=0.05

r(t)

; f(t) Microscopic v = 0.05862 determined
Fixed ~T1) Training | M=270, M'=2, N=6400 W
At=0.25 [1/10 times] out

' Wout ¢

|-

determined
W::Ilut, (.':a‘t

Rl'n"l RH

At=0.25

—
Macroscopic v = 0.058 |u(t) s—— m—- S(t+ A t)

M=M'=

[1/80 times]

Training phase (t<T)

9, N=3200 t‘ri t) l

Prediction phase (t>T)

0-3. Remarks on the choice of parameters

« As N (»M) increases, the error tends to
decrease. Especially for the full
prediction, NV should be significantly
larger than M to get an accurate
prediction.

« As 7 increases, the error tends to
decrease, but /N should also be
increased for getting a better result.

 If we choose measurements
independently with each other, we can
use smaller B (=0). On the other hand,
when we have a better set of
measurements, smaller Sis better.

» In order to obtain a “nonhomogeneous”
behavior, the parameters D1 and D2
should be relatively small and avoid
strong coupling among r. They should
be proportional to N.

parameter { 'J;:l" [ -{15}"
T |transient time 1000 2500
T |learning time 10000 | 20000
M dimension of measurements 270 ]
P dimension of predicted variables 2 ]
N loumber of reservoir nodes | 6400] 3200
Dh | parameter of determining elements of A 60| 320
Do | parameter of determining elements of & | G0 i
v Iscale of input weights in A 0.1 ]
" | maximal eigenvalue of A I 10| 0.5]
a  scale of input weights in W, 0.4 0.3
"o | nonlinearity degree ol reservoir dynamics| 0.7 0.3
At | time step for reservoir dynamics 0.1 0.25
g |repularization punuuﬁﬁ 0| 0.0]

TABLE I Sets of parameters for the reservoir compu-
tations. The set (a) is used for the partial-prediction of mi-
croscopic Fourter variables, whereas the set (b) is for the full-
prediction of macroscopic variables of Energy function and
Energy spectrum,
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