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smooth realization problem

A classical problem in smooth dynamics known as the smooth
realization problem asks whether there is a diffeomorphism f of a
compact smooth manifold M which has a prescribed collection of
ergodic properties with respect to a natural invariant measure µ
such as the Riemannian volume.
A more interesting but substantially more difficult version of the
smooth realization problem is to construct a volume preserving
diffeomorphism f with prescribed ergodic properties on any given
smooth manifold M.



Some results in smooth realization problem

I Anosov and Katok (1970) constructed an example of a
volume preserving ergodic C∞ map.

I Katok (1979) gave an example of area preserving C∞

diffeomorphism with non-zero Lyapunov exponents on any
surface which is Bernoulli.

I Brin, Feldman, and Katok (1981) have later extended this
result by constructing a volume preserving C∞

diffeomorphism, which is Bernoulli, on any Riemannian
manifold of dimension ≥ 5. In their example the map has all
but one non-zero Lyapunov exponents.

I Finally, Dolgopyat and Pesin (2002) provided an example of a
volume preserving C∞ Bernoulli diffeomorphism with non-zero
Lyapunov exponents on any Riemannian manifold of
dimension ≥ 2.



Question: Does a compact manifold admit a volume preserving
diffeomorphism with non-zero Lyapunov exponents that enjoys
other important statistical properties such as exponential or
polynomial decay of correlations, the Central Limit Theorem, and
the Large Deviations property?
In polynomial case, the answer is positive on every connected
compact surface.



Preliminaries
Let X be a measurable space and T : X → X a measurable
invertible transformation preserving a measure µ. We recall some
definitions.
Decay of correlations. Let H1 and H2 be two classes of
observables on X . For h1 ∈ H1 and h2 ∈ H2 define the correlation
function

Corn(h1, h2) :=

∫
h1(T n(x))h2(x) dµ−

∫
h1(x) dµ

∫
h2(x) dµ.

We say that T has polynomial decay of correlations with respect to
classes H1 and H2 if there exist γ′ > 0, C ′ > 0 such that for any
h1 ∈ H1, h2 ∈ H2, and any n > 0,

|Corn(h1, h2)| ≤ C ′n−γ
′

Moreover, if
|Corn(h1, h2)| ≥ Cn−γ ,

for γ, C > 0 then the map T admits a polynomial lower bound for
correlations.



Preliminaries

The Central Limits Theorem. We say that T satisfies the
Central Limit Theorem (CLT) for a class H of observables on X if
there exists σ > 0 such that for any h ∈ H with

∫
h = 0 the sum

1√
n

n−1∑
i=0

h(f i (x))

converges in law to a normal distribution N(0, σ).



Preliminaries

The Large Deviation property. We say that T has the
Polynomial Large Deviation property with respect to a class H of
observables on X if for any δ > 0, ε > 0, and any h ∈ H there
exists C = C (δ, ε, h) > 0 such that for all n

µ
(∣∣∣1

n

n−1∑
i=0

h(f i (x))−
∫

h
∣∣∣ > ε

)
< Cn−β,

where β > 0 is a constant independent of δ, ε, and h.



Main result

Let M be a smooth compact connected surface and m the area.
Without loss of generality we assume that m(M) = 1. Let
H1 := L∞(M,m) and let H2 := Cα(M) be the class of all Hölder
continuous functions on M.
Consider a nested sequence of subsets {Mj} that exhaust M that
is M1 ⊂ M2 ⊂ . . . ⊂ M and

⋃
j≥1 Mj = M. Given such a sequence,

for i = 1, 2, let Gi = Gi ({Mj}) be the class of observables hi ⊂ Hi

for which there is k = k(hi ) such that supp(hi ) ⊂ Mk .
Given 0 < α < 1

6 and 0 < µ < 1, denote by

γ =
1

2α
+

1− µ
2

, γ′ =
1

2α
+

1− µ
2α+2

. (1)

Observe that γ > 3 and γ′ > 3. Set κ = α
1−α .



Theorem 1
For any 0 < α < 1

6 there is an area preserving C 1+κ

diffeomorphism f of M satisfying:

1. f has the Bernoulli property;

2. f has non-zero Lyapunov exponents with respect to m;

3. f has polynomial decay of correlations with respect to the
classes H1 and H2 of observables and admits a polynomial
lower bound for correlations with respect to some sequence of
subsets {Mj} and the corresponding classes G1 and G2 of test
functions; more precisely,

3.1 if hi ∈ Hi , i = 1, 2 and
∫
h1 dm

∫
h2 dm 6= 0, then

|Corn(h1, h2)| ≤ C ′n−(γ′−3),

where C ′ = C ′(‖h1‖L∞ , ‖h2‖Cα);
3.2 if hi ∈ Gi , i = 1, 2 and 1

7 < α < 1
6 , then

Cn−(γ−2) ≤ Corn(h1, h2),

where C = C (‖h1‖L∞ , ‖h2‖Cα);



Main result
4.f satisfies the CLT for the class of observables h ∈ H2,

∫
h = 0

with σ = σ(h) given by

σ2 = −
∫

h2dm + 2
∞∑
n=0

∫
h · h ◦ f ndm,

where σ > 0 if and only if h is not cohomologous to zero, i.e.
h ◦ f 6= g ◦ f − g for any g ;
5. f has the Polynomial Large Deviation property with respect to
the class H2 of observables with the constant C of the form
C = C (‖h‖Cα)ε−2(γ′−3−δ) and β = γ′ − 3− δ for some sufficiently
small δ > 0. In addition, for an open and dense subset of
observables in H2 and sufficiently small ε > 0

1

nγ′−3+δ
< m(|1

n

n−1∑
i=0

h(f i (x))−
∫

h| > ε)

for infinitely many n′s.



An example on 2− torus
Consider the automorphism of the two-dimensional torus
T2 = R2/Z2 given by the matrix A := ( 5 8

8 13 ). It has four fixed
points x1 = (0, 0), x2 = ( 1

2 , 0), x3 = (0, 1
2 ), and x4 = ( 1

2 ,
1
2 ). For

i = 1, 2, 3, 4 consider the disk D i
r = {(s1, s2) : s1

2 + s2
2 ≤ r2} of

radius r centered at xi and set Dr =
⋃4

i=1 D
i
r . Here (s1, s2) is the

coordinate system obtained from the eigendirections of A and
originated at xi . Let λ > 1 be the largest eigenvalue of A. There
are r1 > r0 such that

D i
r0
⊂ intA(D i

r1
) ∩ intA−1(D i

r1
) (2)

and the disks D i
r1

are pairwise disjoint. Fix i and consider the
system of differential equations in D i

r1

ds1

dt
= s1 log λ,

ds2

dt
= −s2 log λ. (3)

Observe that A|D i
r0

is the time-1 map of the local flow generated

by this system.



slow-down

We choose a number 0 < α < 1 and a function ψ : [0, 1] 7→ [0, 1]
satisfying:

(K1) ψ is of class C∞ everywhere but at the origin;

(K2) ψ(u) = 1 for u ≥ r0 and some 0 < r0 < 1;

(K3) ψ′(u) > 0 for 0 < u < r0;

(K4) ψ(u) = (u/r0)α for 0 ≤ u ≤ r0
2 .

Using the function ψ, we slow down trajectories of the flow by
perturbing the system (3) in D i

r0
as follows

ds1

dt
= s1ψ(s1

2 + s2
2) log λ

ds2

dt
=− s2ψ(s1

2 + s2
2) log λ.

(4)



slow-down

This system of differential equations generates a local flow. Denote
by g i the time-1 map of this flow. The choices of ψ, r0 and r1 (see
(2)) guarantee that the domain of g i contains D i

r0
. Furthermore,

g i is of class C∞ in D i
r0
\ {xi} and it coincides with A in some

neighborhood of the boundary ∂D i
r0

. Therefore, the map

G (x) =

{
A(x) if x ∈ T2 \ Dr0 ,

g i (x) if x ∈ D i
r0

(5)

defines a homeomorphism of the torus T2, which is a C∞

diffeomorphism everywhere except at the fixed points xi .



slow-down

Since 0 < α < 1, we have that∫ 1

0

du

ψ(u)
<∞.

This implies that the map G preserves the probability measure
dν = κ−1

0 κ dm where m is the area and the density κ is a positive
C∞ function that is infinite at xi and is defined by

κ(s1, s2) :=

{
(ψ(s1

2 + s2
2))−1 if (s1, s2) ∈ D i

r0
,

1 in T2 \ Dr0



slow-down

We further perturb the map G by a coordinate change φ in T2 to
obtain an area-preserving map. To achieve this, define a map φ in
D i
r0

by the formula

φ(s1, s2) :=
1√

κ0(s1
2 + s2

2)

(∫ s1
2+s2

2

0

du

ψ(u)

)1/2

(s1, s2) (6)

and set φ = Id in T2 \Dr0 . Clearly, φ is a homeomorphism and is a
C∞ diffeomorphism outside the points x1, x2, x3, x4. One can show
that φ transfers the measure ν into the area and that the map
fT2 = φ ◦ G ◦ φ−1 is a homeomorphism and is a C∞

diffeomorphism outside the points x1, x2, x3, x4. It is called a slow
down map.



Properties of the slow-down map

The following proposition describes some basic properties of this
map.

Proposition

The map fT2 has the following properties:

1. It is topologically conjugated to A via a homeomorphism H.

2. It is ergodic with respect to the area m.

3. fT2 is of class of smoothness C 2+κ where κ = α
1−α .



Theorem 2
The map fT2 has the properties stated in Theorem 1.



Proof steps

The proof consists of the following steps.

I Represent the map fT2 as Young’s diffeomorphism and tower.

I Estimate the tail of the return time function.

I Use general result by Gouëzel to obtain estimates for
correlation function and the CLT.

I Use Melbourne and Nicol’s results to obtain polynomial large
deviation estimate.



Tower representation for a slow-down map

Let Λ = ∪iΛi and F : Λ→ Λ is given by F (x) = f τi (x) where
x ∈ Λi and τi is the return time of Λi to Λ. We define the Young
tower with the base Λ by setting:
Ŷ = {(x , k) ∈ Λ× N : 0 ≤ k < τ(x)} and the tower map
f̂ : Ŷ → Ŷ defined by

f̂ (x , k) =

{
(x , k + 1) if k < τ(x)− 1

(Fx , 0) if k = τ(x)− 1.

Define the f̂− probability invariant measure
m̂ = m × counting/(

∫
Λ τ).



Gouëzel’s Theorem

Assume (Ŷ , m̂, f̂ ) is the Young tower with gcd{τi} = 1 and
m̂(τ > n) = O( 1

nβ
), β > 1. Assume in addition that for some

C > 0 and 0 < ρ < 1.

∣∣JacF (x)

JacF (y)
− 1
∣∣ < Cρs(Fx ,Fy)

Then for ĥ1 ∈ L∞(Ŷ ), ĥ2 ∈ Lip(Ŷ ), supported inside k−th level
of the tower for some k , one has

Cor(ĥ1◦f̂ n, ĥ2) =
∞∑

n>N

m({x |τ(x) > N})
∫
Ŷ
ĥ1 dm̂

∫
Ŷ
ĥ2 dm̂+O(Rβ(n))

(7)
where Rβ(n) = 1

nβ
if β > 2; Rβ(n) = log n

n2 if β = 2 and

Rβ(n) = 1
n2β−2 if 1 < β < 2.



Tail estimate

C
1

nγ−1
≤ m({x : τ(x) > n}) ≤ C ′

1

nγ′−1



Extension to any surface

Proposition (Katok, 1979)

There exists a map ζ : T2 → S2 satisfying:

1. ζ is a double branched covering, is one-to-one on each branch,
and C∞ everywhere except at the points xi , i = 1, 2, 3, 4
where it branches;

2. ζ ◦ I = ζ where I : T2 → T2 is the involution map given by
I (t1, t2) = (1− t1, 1− t2);

3. ζ preserves area, i.e., ζ∗m = mS2 where mS2 is the area in S2;

4. there exists a local coordinate system in a neighborhood of
each point ζ(xi ), i = 1, 2, 3, 4 in which

ζ(s1, s2) =

(
s1

2 − s2
2√

s1
2 + s2

2
,

2s1s2√
s1

2 + s2
2

)

in each disk D i
r0

.

It is easy to see that the map fS2 := ζ ◦ fT2 ◦ ζ−1 preserves area.



The sphere can be unfolded into the unit disk D2 and the map fS2

can be carried over to an area-preserving map fD2 of the disk. To
see this set pi = ζ(xi ), i = 1, 2, 3, 4. In a small neighborhood of
the point p4 we define a map η by

η(τ1, τ2) =

τ1

√
1− τ2

1 − τ2
2√

τ2
1 + τ2

2

,
τ2

√
1− τ2

1 − τ2
2√

τ2
1 + τ2

2

 .

One can extend η to an area preserving C∞ diffeomorphism (still
denoted by η) between S2 \ {p4} and the unit disk D2. The map

fD2 := η ◦ fS2 ◦ η−1 (8)

is a of D2 that preserves area mD2 and is identity on the boundary.

Proposition

The maps fS2 and fD2 are of class of smoothness C 2+2κ, where
κ = α

1−α .



Proposition (Katok 1979)

Given a compact surface M, there exists a continuous map
τ : D2 → M such that:

1. the restriction τ |intD2 is a diffeomorphic embedding;

2. τ(D2) = M;

3. τ preserves area; more precisely, τ∗mD2 = mM where mM is
the area in M. Moreover, mM(M \ τ(intD2)) = 0;

Proposition

The map fM := η ◦ fD2 ◦ η−1 is a C 1+κ area preserving
diffeomorphism of the surface.



Thank you!
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