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1 The three-body problem

Consider the planar three-body problem which is governed by the following

ODEs:

q̈1 = −m2
q1 − q2

|q1 − q2|3
−m3

q1 − q3
|q1 − q3|3

q̈2 = −m1
q2 − q1

|q2 − q1|3
−m3

q2 − q3
|q2 − q3|3

(1)

q̈3 = −m1
q3 − q1

|q3 − q1|3
−m2

q3 − q2
|q3 − q2|3

.

Here qk ∈ R3 and mk ≥ 0 for k = 1, 2, 3 represent positions and masses.

2



2 Sitnikov problem

The Sitnikov problem is a special case of the three-body problem defined

as following:

• m1 = m2 = 1 and m3 = 0;

• q1(t) and q2(t) move on the xy-plane and satisfy the Kepler prob-

lem q̈1 = − 1
4|q1|3 q1 (q1(t) = −q2(t) = (x(t), y(t), 0));

• q3(t) moves on z-axis:q3(t) = (0, 0, z(t)).

q3

q1

q2
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3 Planar Sitnikov problem

We consider the planar Sitnikov problem which is the limiting case of the

Sitnikov problem as the eccentricity of the Keplerian orbits goes to 1 :

• q1(t) and q2(t) move on the x-axis and satisfy the collinear Ke-

pler problem ẍ = −2−3x−2( q1(t) = −q2(t) = (x(t), 0) ) with

collisions at t ∈ Z(i. e. x(t) = 0(t ∈ Z))．
• q3 moves on y-axis:q3(t) = (0, y(t));

x−x

y
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4 Symbolic sequences

Define M by the set of bi-infinity sequences of −1, 1 such that the length

of any successive part of −1 or 1 is no less than 3,

i.e., M ⊂ {−1, 1}Z and

for a = {an}n∈Z ∈ {−1, 1}Z,
a ∈ M ⇐⇒ kj ≥ 3(∀j) where

a : . . . ,−1,−1, . . . ,−1︸ ︷︷ ︸
k−1

, 1, 1, . . . , 1︸ ︷︷ ︸
k0

,−1,−1, . . . ,−1︸ ︷︷ ︸
k1

, 1, 1, . . . , 1︸ ︷︷ ︸
k2

, . . .

Let e± ∈ M be two trivial sequences:

e+ = . . . , 1, 1, 1, . . . , e− = . . . ,−1,−1,−1, . . .
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5 Sets of functions
For a ∈ M and integers N1 < N2, define the sets of functions as follows:

ΩN1,N2
(a) = {y(t) ∈ H1([N1, N2],R) | an · y(n) > 0 (n = N1, . . . , N2)},

Ω(a) = {y(t) ∈ H1
loc(R,R) | an · y(n) > 0 (n ∈ Z)}.

-1 -1 -1 -1 +1 +1 +1 -1 -1 an

t
-4 -3 -2 -1 0 1 2 3 4

+1
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6 Main Results
Consider the planar Sitnikov problem.

Theorem 1. For any a ∈ M and integers N1 < N2, there is a

solution y(t) ∈ ΩN1,N2
(a) of the planar Sitnikov problem. Moreover

aN1
y(N1), aN2

y(N2) > 0 can be arbitrarily prescribed.

For N ∈ N, define the set of the periodic sequences: PN = {a ∈
M\{e±} | an = an+N (∀n)}.

Theorem 2. For any a ∈ PN , there is a N -periodic solution y(t) ∈ Ω(a)

of the planar Sitnikov problem.
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6 Main Results
Theorem 3. Take a = {an} ∈ M and b± = {b±n } ∈ PN . Assume that

there are I1 < I2 such that an = b−n for n < I1 and an = b+n for n > I2,

and that there is l ∈ Z such that at least one of the following satisfies

1. b+n = b−n+l for any n ∈ Z;
2. b+n = b−−n+l for any n ∈ Z;
3. b+n = −b−n+l for any n ∈ Z;
4. b+n = −b−−n+l for any n ∈ Z.

Then there are periodic orbits p±(t) ∈ Ω(b±) corresponding to b± and a

connecting orbit y(t) ∈ Ω(a) from p−(t) to p+(t).
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7 Proof (Existence of Minimizers)

The planar Sitnikov problem is equivalent to the variational problem with

respect to the action functional

AT1,T2(y) =

∫ T2

T1

1

2
ẏ2 +

1√
y2 + x(t)2

dt.

[Theorem 1] Fix any c, d > 0. There is a minimizer y∗ ∈ ΩN1,N2(a) of

AN1,N2 on

{y ∈ ΩN1,N2
(a) | y(N1) = aN1

c, y(N2) = aN2
d}.

[Theorem 2] There is a minimizer y∗ ∈ Ω0,N (a) of A0,N on

{y ∈ Ω0,N (a) | y(0) = y(N)}.
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6 Proof (Minimization)

[Theorem 3] Let
α± = inf

y∈Ω0,N (b±)
A0,N (y).

From the assumption, we get α+ = α− =: α.

For y ∈ Ω(a), define

B(y) =
∞∑

k=−∞

(
Ak,k+1(y)−

α

N

)
.

We can show the existence of a minimizer y∗ ∈ Ω(a) of B by using

Rabinowitz’s result(1994).

10



7 Proof (Elimination of collisions)

We prove that y∗ has no collision. Assume that a0 = −1 and y(0) = 0.

From Sundmann’s estimate, we get

x(t) = ct2/3 +O(t), y(t) = d±t
2/3 +O(t),

where c = 2−4/3 · 32/3, d± ∈ {−2−1 · 37/6, 0, 2−1 · 37/6}．
We make a modified curve with less value of the functional.

Define

δε =


−ε−1(t+ ε2)− ε (t ∈ [−2ε2,−ε2])

−ε (t ∈ [−ε2, ε2])

ε−1(t− ε2)− ε (t ∈ [ε2, 2ε2])

and estimate
A−1,1(y + δε)−A−1,1(y).
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7 Proof (Elimination of collisions)

We can estimate as follows:

A−1,1(y + δε)−A−1,1(y) = − 6

(c2 + d2+)
1/2

ε2/3 +O(ε).

It is difficult in the cases of

• d− = d+ = 2−1 · 37/6;
• d− = +2−1 · 37/6, d+ = 0;

• d− = 0, d+ = +2−1 · 37/6.
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7 Proof (Elimination of collisions)

We can eliminate collisions in the case of the following figures:

-1 -1 -1 -1 -1 -1 -1+1 -1+1+1+1+1

It is difficult to eliminate collisions in the case of the following figures:

-1 -1 -1+1 +1 +1 +1
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Thank you.
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