On non-convergence of equilibrium measures at zero temperature limit

Mao Shinoda

Keio University

June 26, 2018

Joint work with J.-R. Chazottes

Zero temperature limit problem

• What happens when a system is cooling down ?

$$\mathcal{P}(\beta\phi) = \sup\{h_{\mu} + \beta \int \phi \ d\mu : \mu \in \mathcal{M}_{\sigma}\} \quad ext{where} \quad eta = rac{1}{ ext{temperature}}$$

letting temperature go to zero corresponds to $\beta \to \infty$

Setting

Setting Z^d action

- Zero temperature limit
- 2) Convergence and non-convergence
 - One-dimensional case
 - Multi-dimensional case
- 3 Basic properties of zero temperature limits
 - Maximizing measures
 - Maximal entropy measures
- Idea of the construction
 - Subshifts
 - Construction of an effective subshift
 - Imbedding into a SFT

\mathbb{Z}^d action

- Σ finite set (e.g. {*pink*, *blue*})
- $\Sigma^{\mathbb{Z}^d}$ where $d \geq 1$
- $d(x, y) = 2^{-N}$ where $N = \min\{\max\{n_i : i = 1, ..., d\} : x_n \neq y_n\}$

\mathbb{Z}^d action

- Σ finite set
- $\Sigma^{\mathbb{Z}^d}$ where d > 1• $d(x, y) = 2^{-N}$ where $N = \min\{\max\{n_i : i = 1, ..., d\} : x_n \neq y_n\}$
- $\Sigma^{\mathbb{Z}^d} \curvearrowright^{\sigma} \mathbb{Z}^d$ by translation, i.e. $\{\sigma^m(x)\}_n = x_{n+m}$ for all $n, m \in \mathbb{Z}^d, x \in \Sigma^{\mathbb{Z}^d}$

\mathbb{Z}^d action

Thermodynamic Formalism for \mathbb{Z}^d action

- \mathcal{M}_{σ} the set of σ -invariant Borel probability measures i.e. $\mu \in \mathcal{M}_{\sigma}$ if $\mu(\sigma^{-m}B) = \mu(B)$ for all $m \in \mathbb{Z}^d$ and Borel sets B.
- For a continuous function ϕ define its pressure $\mathcal{P}(\phi)$ by $\mathcal{P}(\phi) = \sup\{h_{\mu} + \int \phi \ d\mu : \mu \in \mathcal{M}_{\sigma}\}$
- $\mu \in \mathcal{M}_{\sigma}$ is an equilibrium measure for ϕ if $\mathcal{P}(\phi) = h_{\mu} + \int \phi \ d\mu$

Remarks:

- For a continuous function there always exists an equilibrium measure
- In the case of $d \ge 2$ the uniqueness is not always true even for locally constant functions

Zero temperature limit

- $\phi: \Sigma^{\mathbb{Z}^d} \to \mathbb{R}$ continuous function
- β inverse temperature parameter
- $\{\mu_{\beta}\}$ a sequence of equilibrium measures for $\beta\phi$

Problem 1

Does the limit $\lim_{\beta\to\infty}\mu_\beta$ exist?

Remark: We consider continuous parameter families, since there always exists a convergent subsequence by compactness of \mathcal{M}_σ

Regularity of constant functions

•
$$\Lambda_n = \{-n, -n+1, ..., n-1, n\}^d$$
 where $n \ge 0$.

 φ : Σ^{Z^d} → ℝ is locally constant if there exists n ≥ 0 such that φ(x) = φ(y) whenever x|_{Λ_n} = y|_{Λ_n}

Regularity of constant functions

- φ : Σ^{Z^d} → ℝ is locally constant if there exists n ≥ 0 such that φ(x) = φ(y) whenever x|_{Λn} = y|_{Λn}
- $\phi: \Sigma^{\mathbb{Z}^d} \to \mathbb{R}$ is Lipschitz continuous if there exists a constant L > 0 s.t. $|\phi(x) - \phi(y)| \le Ld(x, y)$
 - $d(x, y) = 2^{-N}$ where $N = \min\{\max\{n_i : i = 1, ..., d\} : x_n \neq y_n\}$

Settin,

- \mathbb{Z}^d action
- Zero temperature limit
- 2 Convergence and non-convergence
 - One-dimensional case
 - Multi-dimensional case

Basic properties of zero temperature limits

- Maximizing measures
- Maximal entropy measures

Idea of the construction

- Subshifts
- Construction of an effective subshift
- Imbedding into a SFT

In the case of d = 1

- For locally constant functions there always exists the limit. (Bremont, Leplaideur, Chazottes et. al)
- There exists a Lipschitz continuous function such that the limit does not exist. (Chazottes and Hochman, Coronel and Letelier)

Remark 2

There is a unique choice of the sequence of equilibrium measures.

In the case of $d \ge 2$

- $d \ge 3$: there exists a locally constant function such that the limit does not exists for all sequence of equilibrium measures. (Chazottes and Hochman)
- d ≥ 2: there exists a Lipschitz continuous function such that the limit does not exists for all sequence of equilibrium measures. (Coronel and Letelier)

Main Theorem

In dimension 2 there exists a locally constant function such that the limit does not exists for all sequence of equilibrium measures.

Setting

- \mathbb{Z}^d action
- Zero temperature limit
- 2 Convergence and non-convergence
 - One-dimensional case
 - Multi-dimensional case

Basic properties of zero temperature limits

- Maximizing measures
- Maximal entropy measures

Idea of the construction

- Subshifts
- Construction of an effective subshift
- Imbedding into a SFT

Maximizing measures

First criterion: maximizing measures

• Any accumulation points of $\{\mu_\beta\}$ are maximizing measures for $\phi,$

i.e.
$$\int \phi \ d\mu_{max} = \sup\{\int \phi \ d\nu : \nu \in \mathcal{M}_{\sigma}\}$$

$$rac{1}{eta} \sup \{ h_\mu + eta \int \phi \; d\mu : \mu \in \mathcal{M}_\sigma \} = rac{1}{eta} \left(h_{\mu_eta} + eta \int \phi \; d\mu_eta
ight)$$

This criterion implies that

the limit exists if there exists an unique maximizing measure for $\phi.$

• $X(\phi)$ the maximizing subshift

i.e. a subshift contains supports of all $\phi\text{-maximizing}$ measures.

Second criterion: maximal entropy measures

• If the limit exits, the entropy of the limit measure should be maximal among $\phi\text{-maximizing measures}$

i.e.
$$h_{\mu_{\infty}} = \sup\{h_{\nu} : \nu \in \mathcal{M}_{\sigma}(\phi)\}$$

This criterion implies that the limit exists if there exists an unique maximal entropy measure of $X(\phi)$.

Main Theorem

Main Theorem In dimension 2 there exists a locally constant function s.t. the limit does not exists for all sequence of equilibrium measures.

According to the criterions, we consider

- a subshift with more than two ergodic maximal entropy measures
- a function which is constant on the subshift

in order to get a non-convergence example.

Setting

- \mathbb{Z}^d action
- Zero temperature limit
- 2 Convergence and non-convergence
 - One-dimensional case
 - Multi-dimensional case
- 3 Basic properties of zero temperature limits
 - Maximizing measures
 - Maximal entropy measures

Idea of the construction

- Subshifts
- Construction of an effective subshift
- Imbedding into a SFT

- Σ alphabet set
- $X \subset \Sigma^{\mathbb{Z}^d}$ is a subshift if it is σ -invariant and closed
- *F* forbidden set $(\subset \cup_{n\geq 1} \Sigma^{\Lambda_n})$

$$X_F = \left\{ x \in \Sigma^{\mathbb{Z}^d} : \text{no pattern from } F \text{ appears in } x \right\}$$

- X_F is σ -invariant and closed
- X is a SFT if

there exists a finite set F s.t. $X = X_F$

• X is effective if

there exists a recursively enumerable set F s.t. $X = X_F$

Ideas of the constructions

- **1** Define an effective subshift $X \subset \Sigma^{\mathbb{Z}}$
- **2** Imbed X into a subshift of finite type (SFT) $Y' \subset {\mathcal{B}'}^{\mathbb{Z}^2}$
- Solution ϕ_F defined by the forbidden set F of Y' i.e.,

$$\phi_F(x) = \begin{cases} -1 & \text{if } x|_{\Lambda_F} \in F \\ 0 & \text{else} \end{cases}$$

where Λ_F is the "shape" of the forbidden patterns.

Ideas of the constructions

$$\phi_F(x) = \begin{cases} -1 & \text{if } x|_{\Lambda_F} \in F \\ 0 & \text{else} \end{cases}$$

Note that

• ϕ_F is locally constant

•
$$Y'$$
 is the maximizing subshift of ϕ_F
• $Y' = \left\{ y \in \mathcal{B}'^{\mathbb{Z}^2} : \text{no pattern from } F \text{ appears in } y \right\}$

Ideas of the constructions

- Define an effective subshift X ⊂ Σ^ℤ
 sequence of SFTs
- 2 Imbed X into a SFT $Y' \subset {\mathcal{B}'}^{\mathbb{Z}^2}$
 - simulation of a Turing Machine by a self-similar tile set
- Solution ϕ_F defined by the forbidden set F of Y' i.e.,

$$\phi_F(x) = \begin{cases} -1 & \text{if } x|_{\Lambda_F} \in F \\ 0 & \text{else} \end{cases}$$

where Λ_F is the "shape" of the forbidden patterns.

Construction of X

- $\Sigma = \{-1,0,+1\}$ alphabet set
- $\{F_k\}$ sequence of forbidden sets
- $X_k := X_{F_k}$ for all $k \ge 1$

$$\Sigma_{\pm}=\{0,\pm1\}$$

$$h(X_1) > h(X_2) > h(X_3) > \cdots$$

Ideas of the constructions

- Define an effective subshift X ⊂ Σ^ℤ
 sequence of SFTs
- 2 Imbed X into a SFT $Y' \subset {\mathcal{B}'}^{\mathbb{Z}^2}$
 - simulation of a Turing Machine by a self-similar tile set

Solution ϕ_F defined by the forbidden set F of Y' i.e.,

$$\phi_F(x) = \begin{cases} -1 & \text{if } x|_{\Lambda_F} \in F \\ 0 & \text{else} \end{cases}$$

where Λ_F is the "shape" of the forbidden patterns.

Imbedding into two-dimensional SFT

• For $x \in \Sigma^{\mathbb{Z}}$ denote by \overline{x} its vertical extension i.e.,

 $\overline{x}_{i,j} = x_i$ for all $i, j \in \mathbb{Z}$

Let
$$\overline{X} = \{\overline{x} : x \in X\}$$

Imbedding into two-dimensional SFT

Theorem 3 (B. Durand, A. Romashchenko and A. Shen (2012)) Let X be an effective subshift over Σ .

Then there exist an alphabet set $\mathcal{B} \subset \Sigma \times \mathcal{C}$, a map $r : \mathcal{B} \to \Sigma$ and a two-dimensional SFT Y over \mathcal{B} s.t. $r(Y) = \overline{X}$.

The program to check the forbidden strings of X is simulated on the computation layer

- X the effective subsfhit
- \overline{X} the vertical extension of X
- Y the two-dimensional SFT whose input layers are in \overline{X}
- Y' the two-dimensional SFT with a (finite) forbidden set F
- ϕ_F the locally constant function defined by F

the limit does not exists for all sequence of equilibrium measures of ϕ_{F} !

Further questions

Main Theorem

There exist an alphabet set \mathcal{B}' and a SFT Y' over \mathcal{B}' s.t.

the limit does not exists for all sequence of equilibrium measures of

the locally constant function ϕ_{F} defined by the forbidden set for Y'

- The size of our alphabet set is very large.
 - Can we reduce the number of alphabets?
 - Is there a critical size of alphabet sets for which every locally constant function converges?