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Abstract. Khinchin proved that the arithmetic mean of continued fraction
digits of Lebesgue almost every irrational number in (0, 1) diverges to infinity.
Hence, none of the classical limit theorems such as the weak and strong laws of
large numbers or central limit theorems hold. Nevertheless, we prove the exis-
tence of a large deviations rate function which estimates exponential probabilities
with which the arithmetic mean of digits stays away from infinity. This leads us
to a contradiction to the widely-shared view that the Large Deviation Principle
is a refinement of laws of large numbers: the former can be more universal than
the latter.

1. Introduction

Each irrational number x ∈ (0, 1) has the continued fraction expansion

x =
1

a1(x) +
1

a2(x) + · · ·

.

The statistics of the continued fraction digits a1, a2, . . . have been studied at least
since the time of Carl Friedrich Gauss. The following is a consequence of Khinchin’s
formula [21, Theorem 35] and Birkhoff’s ergodic theorem: Let ψ : N \ {0} → R be
a non-negative function for which there exist c > 0 and ρ > 0 such that for every
n ∈ N \ {0}, ψ(n) < cn1−ρ. Denote by λ the restriction of the Lebesgue measure
to (0, 1). Then

(1.1) lim
n→∞

1

n

n∑
k=1

ψ(ak) =
∞∑
n=1

ψ(n)

log 2
log

(
1 +

1

n(n+ 2)

)
λ-a.e.

Taking ψ(n) = log n yields

lim
n→∞

n
√
a1a2 · · · an = K λ-a.e.,

where K = 2.6854... is Khinchin’s constant. In particular,

lim inf
n→∞

an
n

= 0 λ-a.e.
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Since
∑∞

n=1 n
1

n(n+1)
= ∞, (1.1) is not valid for ψ(n) = n. Khinchin [21] noted

that for λ-almost every x ∈ (0, 1) the inequality an(x) > n log n holds for infinitely
many n ∈ N as a consequence of Borel-Bernstein’s theorem [1, 2, 3], and thus

lim sup
n→∞

an
n

= ∞ λ-a.e.

and Sn/n does not converge λ-a.e. where Sn = a1 + a2 + · · ·+ an. In fact,

(1.2) lim
n→∞

Sn

n
= ∞ λ-a.e.

Hence, none of the classical limit theorems in probability, such as the weak and
strong laws of large numbers and central limit theorems hold for the sum. Philipp
[26] strengthened (1.2) by showing that, for a sequence θ(n) of positive numbers
for which θ(n)/n is non-decreasing,

lim
n→∞

Sn

θ(n)
= 0 or lim sup

n→∞

Sn

θ(n)
= ∞ λ-a.e.,

according as the series
∑∞

n=1 1/θ(n) converges or not. This intricacy of the sto-
chastic property of the sum is due to the occurrence of rate but exceptionally large
digits. Diamond and Vaaler [8] showed that if the largest digit in a1 + · · · + an
is trimmed then the strong law of large numbers holds with norming constants
n log n. Philipp [26] showed that the sum satisfies a central limit theorem if a few
of the largest digits are trimmed. Distributional limit theorems for the sum were
obtained in [13, 14]. Kesseböhmer and Slassi [18, 19] introduced stopping times
and established several limit theorems on fluctuations of the sum.
In view of the results of Khinchin and Philipp, much attention has been given

to determining the Hausdorff dimension of exceptional sets{
x ∈ (0, 1) : lim

n→∞

Sn(x)

θ(n)
= α

}
,

where α ∈ R is a constant. See e.g., [5, 10, 15] with θ(n) = n and [23, 31, 32]
with θ(n) growing faster than n. From the viewpoint of large deviations, it is also
relevant to consider the following set{

x ∈ (0, 1) :
Sn(x)

n
≤ α

}
,

where α ∈ R is a constant. (1.2) implies that, for every α ∈ R the Lebesgue mea-
sure of this set goes to 0 as n → ∞. In this paper we show that this convergence
is exponential. More precisely, we establish the (level-1) Large Deviation Princi-
ple (LDP for short), i.e., show the existence of a rate function which estimates
exponential probabilities with which Sn/n stays away from ∞.

Main Theorem. Let ψ : N\{0} → R satisfy lim inf
n→∞

ψ(n) = ∞ and
∫
ψ(a1(x))dx =

∞. There exists α− ∈ R such that the following holds:
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- for every α ∈ R the limit

J(α) := − lim
n→∞

1

n
log λ

{
x ∈ (0, 1) :

1

n

n∑
k=1

ψ(ak(x)) ≤ α

}
exists and is finite if and only if α ≥ α−. The function α ∈ [α−,∞) 7→
J(α) is lower semi-continuous, strictly positive, convex, strictly monotone
decreasing and J(α) → 0 as α→ ∞;

- for every α ∈ R,

lim
n→∞

1

n
log λ

{
x ∈ (0, 1) :

1

n

n∑
k=1

ψ(ak(x)) ≥ α

}
= 0.

Under the assumption of the Main Theorem the strong law of large numbers does
not hold, namely lim

n→∞
1
n

∑n
k=1 ψ(ak) = ∞ λ-a.e. This leads us to a contradiction

to the widely-shared view that the LDP is a refinement of laws of large numbers:
the former can be more universal than the latter. Notice that Donsker-Varadhan’s
formulation [9] of the LDP does not a priori assume laws of large numbers.
The continued fractions are generated by iterating the Gauss map T : (0, 1] →

(0, 1] given by T (x) = 1/x−⌊1/x⌋ (mod 1). This map leaves invariant and ergodic
the Borel probability measure dµT = 1

log 2
dx
1+x

that is absolutely continuous with

respect to λ. The dynamics of T is modeled by a topological Markov shift on a
countably infinite number of alphabets. The proof of the Main Theorem is based on
Theorem 1.1 below, on this symbolic dynamical system and associated arithmetic
functions which are allowed to be unbounded.
We introduce our settings and terms in more precise terms. Denote by X the

set of all one-sided infinite sequences over N endowed with the product topology
of the discrete topology on N, namely

X = {x = (x0, x1, . . .) : xi ∈ N, i ∈ N}.
Denote the left shift σ : X → X by (σ(x))i = xi+1, i ∈ N. The continued frac-
tion expansion is generated by iterating T , namely in the expansion (1), ai(x) =
⌊1/T i−1(x)⌋ and thus ai(x) = k if and only if T i−1(x) ∈ ( 1

k+1
, 1
k
]. Following orbits

of T over the infinite Markov partition {( 1
k+1

, 1
k
]}∞k=1 of (0, 1] one can model T by

the left shift σ. The conjugacy between T and σ induces a one-to-one correspon-
dence between T -invariant Borel probability measures and σ-invariant ones which
preserves entropy and integrals of functions. To simplify notation, up to this con-
jugacy we identify measures invariant by the two systems and functions in the two
spaces. In particular, this means that we allow expressions like

∫
log |DT |dµ for a

σ-invariant measure µ.
Denote by M the space of Borel probability measures on X endowed with the

weak*-topology. As X becomes a (non-compact) Polish space, the weak*-topology
is metrizable and M becomes a Polish space. Denote by M(σ) the subspace of
M consisting of σ-invariant ones. Write ϕ = − log |DT | and set

Mϕ(σ) =

{
µ ∈ M(σ) :

∫
ϕdµ > −∞

}
.
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Figure 1. The graph of the function J in the Main Theorem.

Denote by Me
ϕ(σ) the set of elements of Mϕ(σ) which are ergodic. For each

µ ∈ M(σ) denote by h(µ) the (Kolmogorov-Sinăı) entropy of µ with respect to
σ, and define the Lyapunov exponent χ(µ) of µ by χ(µ) = −

∫
ϕdµ. Note that

χ(µ) ∈ [
√
5+1
2
,∞]. If µ ∈ Mϕ(σ) then h(µ) < ∞ holds (see e.g. [24, Theorem

1.4]). For each µ ∈ Mϕ(σ) write F (µ) = h(µ) − χ(µ) and call it the (minus
of the) free energy. It is known that F ≤ 0 and F (µ) = 0 holds if and only if
µ = µT , see [25, 30]. For a function φ : (0, 1) → R and an integer n ≥ 1 write
Snφ =

∑n−1
i=0 φ◦T i. Given ψ : N\{0} → R, for each integer n ≥ 1 denote by λn the

distribution of 1
n
Sn(ψ ◦ a1) with respect to λ. Note that Sn(ψ ◦ a1) =

∑n
k=1 ψ(ak).

Put

α− = inf

{∫
ψ ◦ a1dµ : µ ∈ Mϕ(σ)

}
and α+ = sup

{∫
ψ ◦ a1dµ : µ ∈ Mϕ(σ)

}
.

The infimum and the supremum are taken over all µ ∈ Mϕ(σ) for which
∫
ψ◦a1dµ

is well-defined, including ±∞.

Theorem 1.1. (Level-1 Large Deviation Principle). Let ψ : N \ {0} → R. The
function I : R → [0,∞] defined by

I(α) = lim
ϵ→0

inf

{
−F (µ) : µ ∈ Mϕ(σ),

∣∣∣∣∫ ψ ◦ a1dµ− α

∣∣∣∣ < ϵ

}
is convex, lower semi-continuous and satisfies the following:

- (lower bound) for every open set U ⊂ R,

lim inf
n→∞

1

n
log λn(U) ≥ − inf I|U ;

- (upper bound) for every closed set C ⊂ R,

lim sup
n→∞

1

n
log λn(C) ≤ − inf I|C .

In addition, I(α) <∞ if and only if α− ≤ α ≤ α+.

The function I is called a rate function. Here and in what follows we follow
the convention inf ∅ = ∞, sup ∅ = −∞, log 0 = −∞. The novelty of Theorem 1.1
consists in the case where ψ is unbounded. Otherwise, the level-1 LDP was already
shown by Denker and Kabluchko [7, Theorem 3.3]. Our proof is a dynamical one



LDP FOR ARITHMETIC FUNCTIONS IN CONTINUED FRACTION EXPANSION 5

inspired by the work of Takahashi [29], and gives an expression of the rate function
in terms of free energies of invariant measures which is not apparent in [7]. This
expression is essential for the proof of the Main Theorem.
Taking ψ(n) = log n in Theorem 1.1 yields the LDP for the Khinchin exponent.

A close inspection of the proof of Theorem 1.1 shows that the arithmetic function
ψ◦a1 may be replaced by another φ : X → R for which supw∈Ek supx,y∈[w] Skφ(x)−
Skφ(y) is uniformly bounded in k. In particular, the LDP holds for the Lyapunov
exponent of the Gauss map. The Khinchin and Lyapunov spectra of the Gauss
map were determined in [11, 17, 27]. See also [12, 22].
The rest of this paper consists of two sections. In Sect.2 we finish the proof of

the Main Theorem assuming the conclusion of Theorem 1.1. From Theorem 1.1 it
follows that J(α) = I(α), and the biggest difficulty is to show I(α) > 0 for every
α > α−. We show that if α > α− and I(α) = 0, then one would be able to find
a convergent sequence to µT in Mϕ(σ) along which the (minus of the) free energy
converges 0, which turns out to be absurd. One key assumption in deriving this
contradiction is that ψ blows up at infinity. In Sect.3 we prove Theorem 1.1.

2. On the proof of the Main Theorem

In this section we start with a few preliminary lemmas on sequences of measures
in Mϕ(σ). Building on them and Theorem 1.1 we finish the proof of the Main
Theorem.

2.1. Tightness. As X is non-compact, M is not weak*-compact. Hence the con-
vergence of a sequence of probability measures is an issue. In order to establish
the convergence we show the following tightness result.

Lemma 2.1. Let ψ : N\{0} → R satisfy lim inf
n→∞

ψ(n) = ∞. Let {νn} be a sequence

in M(σ) such that supn

∫
ψ ◦ a1dνn <∞. Then {νn} is tight.

Proof. We modify the argument in the proof of [16, Lemma 2]. For an integer

M ≥ 1 put XM =
∪M−1

i=0 [i]. Fix M0 ≥ 0 such that infn≥M0 ψ(n) > 0 holds.
From the assumption in Lemma 2.1 there exists a constant c > 0 such that
infn≥M ψ(n) supn νn(X

c
M) < c holds for every M ≥ n0, namely

(2.1) sup
n
νn(X

c
M) <

c

infn≥M ψ(n)
for every M ≥M0.

Let ϵ > 0. We construct an increasing sequence of positive integers {mi}i≥0 such
that the compact set

A = {x ∈ X : 0 ≤ xi ≤ mi for every i ≥ 0}
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satisfies νn(A) > 1− ϵ for every n. Let πi : X → N be the projection onto the i-th
coordinate. We have

νn(A) = νn

(
X ∩

(
∞∪
i=0

{x ∈ X : xi > mi}

)c)

= 1−
∞∑
i=0

νn ({x ∈ X : xi > mi})

= 1−
∞∑
i=0

νn(π
−1
i (Xc

mi+1))

= 1−
∞∑
i=0

νn(X
c
mi+1)

≥ 1−
∞∑
i=0

sup
n
νn(X

c
mi+1),

the last equality from the shift invariance of νn. Therefore, in order to show the
tightness of {νn} it is enough to find {mi} such that

sup
n
νn(X

c
mi+1) <

ϵ

2i+1
for every i ≥ 0.

This is possible by (2.1) and the assumption lim inf
n→∞

ψ(n) = ∞. □

2.2. Finiteness of Lyapunov exponent. Having established the convergence
of a sequence in Mϕ(σ) by Lemma 2.1, the next task is to show that the limit
point belongs to Mϕ(σ). We will show this combining the next two lemmas. For
a function φ : X → R define

var1(φ) = sup
k≥0

sup
x,y∈[k]

φ(x)− φ(y).

Lemma 2.2. Let φ : X → R be a continuous function satisfying inf φ > −∞,
supφ = ∞ and var1(φ) <∞. Let {νn} be a sequence in M such that νn → ν∞ in
the weak*-topology as n→ ∞. If

∫
φdν∞ = ∞ then

∫
φdνn → ∞ as n→ ∞.

Proof. Since supφ = ∞ and var1(φ) <∞ it is possible to choose k0 ≥ 0 such that
inf{φ(x) : x0 ≥ k0} > 0. For each k ≥ k0 define φk : X → R by φk(x) = φ if
x0 ≤ k − 1 and φk(x) = 0 if x0 ≥ k. Since φk ≤ φk+1 and φk → φ pointwise as
k → ∞, the monotone convergence theorem gives

∫
φkdν∞ →

∫
φdν∞ = ∞. For

each L > 0 fix k ≥ k0 such that
∫
φkdν∞ ≥ L. Since φk is bounded continuous,

the weak*-convergence gives
∫
φkdνn →

∫
φkdν∞ as n→ ∞ and hence there exists

n0 ≥ 0 such that
∫
φkdνn ≥ L/2 for every n ≥ n0. Moreover,

∫
φdνn ≥

∫
φkdνn ≥

L/2 holds since φ ≥ φk. It follows that
∫
φdνn → ∞ as n→ ∞. □

Lemma 2.3. Let {νn} be a sequence in Mϕ(σ) such that F (νn) converges to a
finite number as n→ ∞. Then

sup
n
χ(νn) <∞.
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Proof. For each α ≥
√
5+1
2

put

b(α) = sup

{
h(µ)

χ(µ)
: µ ∈ M(σ), χ(µ) = α

}
.

This number coincides with the Hausdorff dimension of the set of points having α
as its Lyapunov exponent, see [27]. If the desired upper bound is false, then taking
a subsequence if necessary we may assume χ(νn) → ∞ as n → ∞. Since F (νn)
converges, h(νn)/χ(νn) → 1 and so lim

α→∞
b(α) = 1. This yields a contradiction to

[17, Theorem 1.3] which asserts lim sup
α→∞

b(α) < 1. □

2.3. Identification of the convergence point. Having shown that the conver-
gence point belongs to Mϕ(σ), we next show that this point is µT . To this end, we
would like to use an upper semi-continuity argument. Unfortunately, neither the
entropy or the (minus of the) free energy is upper semi-continuous at every mea-
sure which has finite entropy. However, entropy divided by Lyapunov exponent is
upper semi-continuous by [10, lemma 6.5], and this suffices for our purpose.

Lemma 2.4. Let {νn} be a sequence in Mϕ(σ) such that F (νn) → 0 as n → ∞.
If {νn} converges in the weak*-topology to a measure ν∞ ∈ Mϕ(σ), then ν∞ = µT .

Proof. Since infn χ(νn) > 0 and F (νn) → 0,

0 = lim
n→∞

h(νn)

χ(νn)
− 1.

By [10, Lemma 6.5],

0 = lim
n→∞

h(νn)

χ(νn)
− 1 ≤ h(ν∞)

χ(ν∞)
− 1.

Since χ(ν∞) <∞, F (ν∞) ≥ 0 holds. The variational principle yields ν∞ = µT . □

Proof of the Main Theorem. Theorem 1.1 implies J(α) = I(α) for every α ∈ R.
All that remains to show is I(α) > 0 for every α > α− and I(α) ↘ 0 as α→ ∞.

Proof of I(α) > 0 for every α > α−. The assumption lim inf
n→∞

ψ(n) = ∞ implies

α+ = ∞. Hence, for every α > α− there exists a sequence {µn} in Mϕ(σ) such
that ψ ◦ a1 ∈ L1(µn) for every n and

∫
ψ ◦ a1dµn → α. To conclude I(α) > 0 it is

enough to show that the sequence {F (µn)}n does not accumulate on 0. Suppose
this is false. Then taking a subsequence if necessary we may assume F (µn) → 0
as n→ ∞. Since lim inf

n→∞
ψ(n) = ∞ and

∫
ψ ◦ a1dµn → α, {µn} is tight by Lemma

2.1. By Prohorov’s theorem there exists a limit point, say µ∞ ∈ M. Since M(σ)
is weak*-closed, µ∞ ∈ M(σ) holds.
If χ(µ∞) = ∞ then χ(µn) → ∞ by Lemma 2.2. This yields a contradiction

to Lemma 2.3 and thus χ(µ∞) < ∞. From Lemma 2.4, µ∞ = µT holds. Since∫
ψ ◦ a1dµT = ∞ from the assumption in the Main Theorem, Lemma 2.2 gives∫
ψ ◦ a1dµn → ∞ and a contradiction arises. Therefore we conclude I(α) > 0.
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Proof of I(α) ↘ 0 as α → ∞. The upper bound in Theorem 1.1 with C = [1,∞)
implies inf I|[1,∞) = 0. Hence one must have I(α) → 0 as α → ∞. The strict
monotonicity of I follows from this and the convexity of I. □

3. Level-1 LDP for arithmetic function

In this section we prove Theorem 1.1. The convexity and the lower semi-
continuity of I are straightforward from the definition. We show the lower and
upper bounds, and then the last assertion on I.
A word of length n is an n-string of elements of N. For two words u = a0 · · · am−1,

v = b0 · · · bn−1 denote by uv the concatenated word a0 · · · am−1b0 · · · bn−1 of length
m + n. This notation extends in the obvious way to concatenations of arbitrary
finite number of words. Denote by En the set of words of length n. For each
w = a0 · · · an−1 ∈ En define a cylinder set of length n by

[w] = [a0, . . . , an−1] = {x ∈ X : xi = ai for every i ∈ {0, 1, . . . , n− 1}}.
There exist constants c0 > 0, c1 > 0 such that for every integer n ≥ 1, every
w ∈ En and every x ∈ [w],

(3.1) c0 ≤
λ[w]

eSnϕ(x)
≤ c1.

3.1. Lower bound. A proof of the lower bound in Theorem 1.1 is based on the
next result.

Proposition 3.1. Let ψ : N \ {0} → R. For every open interval J and every
µ ∈ Me

ϕ(σ) for which
∫
ψ ◦ a1dµ ∈ J,

lim inf
n→∞

1

n
log λn(J) ≥ F (µ).

Proof of the lower bound in Theorem 1.1. Let G ⊂ R be an arbitrary open set.
Since open intervals with rational endpoints form a countable base of topology of
R, Proposition 3.1 implies that for every µ ∈ Me

ϕ(σ) with ψ ◦ a1 ∈ L1(µ) and∫
ψ ◦ a1dµ ∈ G,

lim inf
n→∞

1

n
log λn(G) ≥ F (µ).

This yields

lim inf
n→∞

1

n
log λn(G) ≥ sup

{
F (µ) : µ ∈ Me

ϕ(σ),

∫
ψ ◦ a1dµ ∈ G

}
.

For a non-ergodic µ ∈ Mϕ(σ) with ψ ◦a1 ∈ L1(µ), by [15, Lemma 3.2] there exists
a sequence {µn} in Me

ϕ(σ) such that ψ◦a1 ∈ L1(µn) for every n and h(µn) → h(µ),∫
ϕdµn →

∫
ϕdµ,

∫
ψ ◦a1dµn →

∫
ψ ◦a1dµ as n→ ∞. Hence the above inequality

continues to hold even if Me
ϕ(σ) is replaced by Mϕ(σ). Using the lemma below

yields the desired lower bound in Theorem 1.1.

Lemma 3.2. For every set A ⊂ R,

inf

{
−F (µ) : µ ∈ Mϕ(σ),

∫
ψ ◦ a1dµ ∈ A

}
≥ inf I|A,
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and the equality holds if A is an open set.

Proof. The definition of I in Theorem 1.1 immediately yields

inf

{
−F (µ) : µ ∈ Mϕ(σ),

∫
ψ ◦ a1dµ = α

}
≥ I(α)

for every α ∈ R. Hence the desired inequality holds. If A is a non-empty open set,
then for each α ∈ A choosing ϵ > 0 such that (α− ϵ, α + ϵ) ⊂ A we have

I(α) ≥ inf

{
−F (µ) : µ ∈ Mϕ(σ),

∣∣∣∣∫ ψ ◦ a1dµ− α

∣∣∣∣ < ϵ

}
≥ inf

{
−F (µ) : µ ∈ Mϕ(σ),

∫
ψ ◦ a1dµ ∈ A

}
.

Taking the infimum over all α ∈ A yields the reverse inequality. □
For a proof of Proposition 3.1 we need the next lemma which permits us to

approximate an ergodic measure with a finite collection of cylinder sets in a par-
ticular sense. Although this type of result is known in full generality (see e.g.
[10, Proposition 3.1]), for completeness we include a proof adapted to our specific
context.

Lemma 3.3. Let µ ∈ Me
ϕ(σ) and assume ψ ◦ a1 ∈ L1(µ). For every ϵ > 0 there

exist an integer k > 1 and a finite set F k ⊂ Ek such that

(3.2)

∣∣∣∣1k log#F k − h(µ)

∣∣∣∣ < ϵ,

and the following holds for every w ∈ F k;

(3.3) sup
[w]

∣∣∣∣1kSkϕ−
∫
ϕdµ

∣∣∣∣ < ϵ;

(3.4) sup
[w]

∣∣∣∣1kSk(ψ ◦ a1)−
∫
ψ ◦ a1dµ

∣∣∣∣ < ϵ.

Proof. Put A = {[i] : i ∈ N}. Denote by h(µ,A ) the entropy of µ with respect to
σ and the countably infinite partition A . Since h(µ) < ∞ and A is a generator,
−
∑

i∈N µ[i] log µ[i] <∞ and h(µ,A ) = h(µ) hold.

Let ϵ > 0. For each integer k > 1 denote by Bk the set of B ∈
∨k−1

i=0 σ
−iA such

that

(3.5) e−(h(µ)+
ϵ
2)k < µ(B) < e−(h(µ)−

ϵ
2)k,

and the following holds for some x ∈ B:

(3.6)

∣∣∣∣1kSkϕ(x)−
∫
ϕdµ

∣∣∣∣ < ϵ

2
;

(3.7)

∣∣∣∣1kSk(ψ ◦ a1)(x)−
∫
ψ ◦ a1dµ

∣∣∣∣ < ϵ.
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From Shannon-McMillan-Breiman’s Theorem and Birkhoff’s Ergodic Theorem,
µ(
∪

B∈Bk
B) → 1 as k → ∞. (3.5) implies

1

2
e(h(µ)−

ϵ
2)k ≤ #Bk ≤ e(h(µ)+

ϵ
2)k.

Set F k = {w ∈ Ek : [w] ∈ Bk}. For k large enough, we obtain (3.2).
Since T satisfies Rényi’s condition and T 2 is uniformly expanding [6, Chapter

4], supw∈Ek supx,y∈[w] Skϕ(x) − Skϕ(y) is uniformly bounded in k. From this and
(3.6) we obtain (3.3) for k large enough. Since ψ ◦ a1 depends only on the first
coordinate, Sk(ψ ◦a1)(x) = Sk(ψ ◦a1)(y) holds for all x, y ∈ [w] and every w ∈ Bk.
From this and (3.7) we obtain (3.4). □

Proof of Proposition 3.1. Since J is open it is possible to choose ϵ > 0 such that
(
∫
ψ ◦a1dµ−2ϵ,

∫
ψ ◦a1dµ+2ϵ) ⊂ J. For this ϵ fix an integer k > 1 and a finite set

F k ⊂ Ek for which the conclusions of Lemma 3.3 hold. For each l ∈ {1, . . . , k− 1}
denote by P l the set of w ∈ El for which there exists w ∈ Ek−l such that w∗w ∈ F k.
Put P 0 = ∅.
Let n ≥ k be an integer and write n = mk + l0 where m, l0 are integers with

m ≥ 1 and 0 ≤ l0 < k. Denote by Gn the subset of En which consists of words of
the form w1w2 · · ·wmw∗ with w1, . . . , wm ∈ F k and w∗ ∈ P l0 . Lemma 3.3 gives

(3.8) #Gn ≥ (#F k)m > e(h(µ)−ϵ)km.

If l0 = 0 then by Lemma 3.3 the following holds for every w ∈ Gn:

(3.9) inf Snϕ|[w] ≥
(∫

ϕdµ− ϵ

)
n and

∣∣∣∣ 1nSn(ψ ◦ a1)(x)−
∫
ψ ◦ a1dµ

∣∣∣∣ < ϵ.

For the rest of this paragraph we show that in the case l0 ̸= 0 the two inequalities in
(3.9) continue to hold with ϵ replaced by 2ϵ and sufficiently large n. Since var1(ϕ) <
∞ and F k is a finite set, Slϕ|∪

ω∈Pl [ω] is bounded for every l ∈ {1, . . . , k − 1}. For
n large enough and every w ∈ Gn we have

inf Snϕ|[w] ≥
(∫

ϕdµ− ϵ

)
mk + inf Sl0ϕ|∪w∈Pl0

[w]

≥
(∫

ϕdµ− 2ϵ

)
n.

Since ψ ◦ a1 depends only on the first coordinate and F k is a finite set, Sl(ψ ◦
a1)|∪

ω∈Pl [ω] is bounded for every l ∈ {1, . . . , k − 1}. For n large enough and every
w ∈ Gn we have

inf Sn(ψ ◦ a1)|[w] ≥
(∫

ψ ◦ a1dµ− ϵ

)
mk + inf Sl0(ψ ◦ a1)|∪

w∈Pl0
[w]

≥
(∫

ψ ◦ a1dµ− 2ϵ

)
n
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and

supSn(ψ ◦ a1)|[w] ≤
(∫

ψ ◦ a1dµ+ ϵ

)
mk + supSl0(ψ ◦ a1)|∪

w∈Pl0
[w]

≤
(∫

ψ ◦ a1dµ+ 2ϵ

)
n.

From (3.1) and the first inequality in (3.9),

(3.10) λ[w] ≥ c0e
inf Snϕ|[w] ≥ c0e

(
∫
ϕdµ−2ϵ)n for every w ∈ Gn.

By the second inequality in (3.9),{
x ∈ X :

1

n
Sn(ψ ◦ a1) ∈ J

}
⊃
∪

w∈Gn

[w].

From (3.8) and (3.10) we obtain

1

n
log λn(J) ≥

1

n
log λ

( ∪
w∈Gn

[w]

)

≥ 1

n
log

(
#Gn inf

w∈Gn
λ[w]

)
≥ F (µ)− 4ϵ+

1

n
log c0.

Letting n→ ∞ and then ϵ→ 0 yields the desired inequality. □

3.2. Upper bound. We now show the upper bound (1.1) for every closed set.

Proposition 3.4. Let ψ : N \ {0} → R. For every interval J ,

lim sup
n→∞

1

n
log λn(J) ≤ −infI|J .

If λn(J) ̸= 0 for infinitely many n, then inf I|J <∞.

Proof of the upper bound in Theorem 1.1. Let C ⊂ R be a closed set. First of all,
assume inf I|C <∞. Assume C is bounded. Let J1, J2, . . . , Jp be a finite collection
of intervals which altogether cover C. By Proposition 3.4,

lim sup
n→∞

1

n
log λn(C) ≤ lim sup

n→∞

1

n
log λn

(
p∪

i=1

Ji

)
≤ − inf

i∈{1,...,p}
inf I|Ji

= − inf I|∪p
i=1 Ji

.

Taking the infimum over all finite collections of intervals which altogether cover C,

(3.11) lim sup
n→∞

1

n
log λn(C) ≤ inf(− inf I|∪p

i=1 Ji
) ≤ − inf I|C ,

where the last inequality holds because I is lower semi-continuous, C is compact
and inf I|C is attained.
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Assume C is unbounded. If inf I|C is attained, then (3.11) remains to hold and
the lower semi-continuity of I yields the desired inequality. Assume inf I|C is not
attained. This implies that there is a sequence {xn}n in C such that |xn| → ∞ and
I(xn) → inf I|C as n → ∞. Without loss of generality we may assume xn → ∞.
Since I is convex, I(α) → inf I as α → ∞ and inf I = inf |C . Hence the desired
inequality holds.
Next, assume inf I|C = ∞. The last assertion of Theorem 1.1 proved at the end

of this paper gives C ⊂ (−∞, α−) ∪ (α+,∞). Take a subinterval J− (resp. J+)
of (−∞, α−) (resp. (α+,∞)) containing C ∩ (−∞, α−) (resp. C ∩ (α+,∞)). By
the last assertion of Proposition 3.4, λn(J

−) ̸= 0 only for finitely many n. Hence
λn(C∩(−∞, α−)) ̸= 0 only for finitely many n. In the same way, λn(C∩(α+,∞)) ̸=
0 only for finitely many n. The desired inequality holds trivially: −∞ ≤ −∞. □
For a proof of Proposition 3.4 we need the following result which can be proved

along the well-known line of the thermodynamic formalism [4, 28].

Lemma 3.5. Let J be an interval. Let n ≥ 1 be an integer and Dn a finite subset
of En such that 1

n
Sn(ψ ◦ a1)(x) ∈ J holds for every x ∈

∪
w∈Dn [w]. There exists a

measure µ ∈ M(σ) supported on a compact set such that

log
∑
w∈Dn

λ[w] ≤ F (µ)n+ log c1 and

∫
ψ ◦ a1dµ ∈ J.

Proof. Put σ̂ = σn and Λ =
∩∞

m=0 σ̂
−m
(∪

w∈Dn [w]
)
. Then Λ is a compact set and

σ̂|Λ : Λ → Λ is continuous. Put ϕ̂ = Snϕ and fix y0 ∈ Λ. There exists a constant

c > 0 such that
∑m−1

i=0 (ϕ̂(σ̂i(x))−ϕ̂(σ̂i(y))) ≤ c for everym ≥ 1, every x, y ∈ Λ such
that σ̂i(x), σ̂i(y) belong to the same element of Dn for every i ∈ {0, 1, . . . ,m− 1}.
By [4, Lemma 1.20],

sup
ν̂∈M(σ̂|Λ)

(
hσ̂|Λ(ν̂) +

∫
ϕ̂dν̂

)
= lim

m→∞

1

m
log

∑
x∈(σ̂|Λ)−m(y0)

e
∑m−1

i=0 ϕ̂(σ̂i(x)),

with M(σ̂|Λ) the space of σ̂|Λ-invariant Borel probability measures endowed with
the weak*-topology and hσ̂|Λ(ν̂) the entropy of ν̂ ∈ M(σ̂|Λ) with respect to σ̂|Λ.
By (3.1), eϕ̂(x) ≥ c−1

1 λ[w] holds for every x ∈ [w] and every w ∈ Dn. Hence∑
x∈(σ̂|Λ)−m(y0)

e
∑m−1

i=0 ϕ̂(σ̂i(x)) ≥

 inf
y′∈Λ

∑
x∈(σ̂|Λ)−1(y′)

eϕ̂(x)

m

≥

(
c−1
1

∑
w∈Dn

λ[w]

)m

.

Taking logs of both sides, dividing by m and plugging the result into the previous
inequality gives

lim
m→∞

1

m
log

∑
x∈(σ̂|Λ)−m(y0)

e
∑m−1

i=0 ϕ̂(σ̂i(x)) ≥ log

(∑
w∈Dn

λ[w]

)
− log c1.

Plugging this into the previous inequality yields

sup
ν̂∈M(σ̂|Λ)

(
hσ̂|Λ(ν̂) +

∫
ϕ̂dν̂

)
≥ log

(∑
w∈Dn

λ[w]

)
− log c1.
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Since M(σ̂|Λ) is compact and M(σ̂|Λ) ∋ ν̂ 7→ hσ̂|Λ(ν̂) +
∫
ϕ̂dν̂ is upper semi-

continuous, there exists a measure µ̂ ∈ M(σ̂|Λ) which attains this supremum. The
measure µ = 1

n

∑n−1
k=0(σ∗)

k(µ̂) is in M(σ) and satisfies the desired properties. □
Proof of Proposition 3.4. Let J be an interval and n0 ≥ 1 an integer in Lemma
3.5. Put

Hn =

{
w ∈ En : [w] ∩

{
x ∈ (0, 1) :

1

n
Sn(ψ ◦ a1) ∈ J

}
̸= ∅
}
.

If Hn ̸= ∅ for only finitely many n, then the desired inequality holds trivially:
∞ ≤ ∞. Assume Hn ̸= ∅ for infinitely many n. Fix such an n. Since Sn(ψ ◦ a1)
is constant on each cylinder set of length n, 1

n
Sn(ψ ◦ a1)(x) ∈ J holds for every

x ∈
∪

w∈Hn [w]. Choose a finite subset Hn′ of Hn such that

log
∑
w∈Hn

λ[w] ≤ log
∑

w∈Hn′

λ[w] + 1.

By Lemma 3.5 there exists µ ∈ M(σ) which is supported on a compact set and
satisfies

log
∑

w∈Hn′

λ[w] ≤ F (µ)n+ log c1 and

∫
ψ ◦ a1dµ ∈ J.

Since µ is supported on a compact set, µ ∈ Mϕ(σ) holds. Therefore

1

n
log λn(J) ≤ F (µ) +

1

n
(log c1 + 1)

≤ sup

{
F (µ) : µ ∈ Mϕ(σ),

∫
ψ ◦ a1dµ ∈ J

}
+

1

n
(log c1 + 1)

≤ − inf I|J +
1

n
(log c1 + 1).

The last inequality is by Lemma 3.2 and it implies the last assertion of Proposition
3.4. Letting n→ ∞ yields the desired inequality in Proposition 3.4. □
Proof of the last assertion of Theorem 1.1. Assume α− < α+. Clearly, I(α) < ∞
for every α ∈ (α−, α+). Let α < α−. If I(α) < ∞ then there would exist
µ ∈ Mϕ(σ) for which

∫
ψ ◦a1dµ < α, a contradiction. In the same way, I(α) = ∞

holds for every α > α+. The finiteness of I(α−), I(α+) follows from the lower
semi-continuity and the convexity of I. A slight modification of the argument
covers the case α− = α+. □
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[6] Cornfeld, I.P., Fomin, S.V., Sinăı, Y.G.: Ergodic Theory, Grundlehren der mathematischen
Wissenshaften 245, Springer (1982)
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