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Introduction

Dynamical system:
A measurable transformation T on a measurable sp. (X, .%)
(iie., T7YF C 7).

(X,.Z,u, T): a measure preserving system

PEUAg wo T~ 1 =u (u: T-invariant meausre).

Birkhoff (1931)

(X, #,u, T): an ergodic probability preserving system,
Vf: X — R with [x fdu < oo,

n—00 n,

1 n—1 ]
Lim = ) foT%=) =/ fau u—a.e. T € X.
i=0 X

(T, w): ergodic

L (A =0 or u(AS) =0 if T-1A= A,
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Introduction
W: a (weakly) wandering set
e W(T-"WNT-"W) =0,
(resp. IH{niti>1 s.t. w(T"WNT™W) =0).
(T, u): conservative <d=ef) any wandering set, (W) = 0.

Hopf (1937)

(X, #,u, T): a conservative and ergodic o-finite measure
preserving system, Vf, g € L! with fx gdu # 0,

n—1
i 1=0 —

n—o0o0 n—1

X
Y ogoTiHz) [y I
1=0

u—a.e. x € X.

Target: an absolutely continuous (o-)finite invariant
measure with respect to some reference measure.
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Background

[Hajian, Kakutani 1964],[Sucheston 1964]
T: a nonsingular transformation on a prob. sp. (X, .%,m)
(i.,e., m(T—1A) =0 if m(A) = 0).
The followings are equivalent:
@ There exists an equivalent finite invariant measure;

o Liminfm o T "(A) >0 if m(A) > 0;

n—1
olelnf— Z mo T *(A) >0 if m(A) > 0;
=0
1n 1
° lesup— Y moT~"(A) > 0 if m(A) > 0;
n—oo 7’0

@ There exists no weakly wandering set of positive
m-measure.
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Background

[Dean, Sucheston 1966]
(X, #,m): a probability sp.
P: a positive linear op. over L'(m) with ||P]lop < 1.

The followings are equivalen:
@ There exists a strictly positive fo € L! s.t. Pfg = fo;

e inf | P"1xdm if m(A) > 0;

n>0JA
1n+j—1 _
@ Lim |sup = /le am 0 if m(A 0;
A, jsup s L Prixam) > (A) >

n—

1 =l -
@ Liminf = / P'l1xdm > 0 if m(A 0.
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Preliminaries

(X,.Z,m): a probability space,
L1: all real-valued integrable functions over (X, .#, m),
L*: all real-valued essentially bounded functions.

The Perron-Frobenius operator
T : X — X a measurable and nonsingular transformation.

The Perron-Frobenius operator corresponding to 7T:
P:Ll —» 1

/Pfd,m:/ fdm (FeLl A€ 7).

A T-1A

The Koopman operator : P* : L® — [ P*g=goT,

/Pf-gdm=/f-P*gdm (fEL', geL™).
X X
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Preliminaries

(X, #,m): a probability space.

Defnition (Markov operators)

A Llinear operator P: L' — L! is a Markov operator.
def

< Pf >0 and [|Pfll1 = |Ifll1 if F> 0.

Remark

@ The Perron-Frobenius operator corresponding to a
nonsingular transformation is also a Markov operator.

@ P*: L® — [°° the adjoint op. (P*1x = 1x)
. Pf-gam=[ £-Ptaam (fe Ll geL™).

d,u,_d,u,

euoT l=pwithyu<Kme P— .
am am
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Markov Processes

P: a Markov operator given.
~» The transition probability of the Markov process:

P(xz, A) = P*1a(x) (VA € %).
Conversely,

P(x, A): a transition probability of a Markov process given.
~~ The Markov operator:

K (/X F(@)P(. -)am(:c)>

1
o (Vf e L.

Pf
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Example (Additive Noise)

T: a measurable transformation on ([0, 1], 8, \),
the process: Tnt+1 = T (xTn) + &n (Mmod 1)

£o0,&1, - i.i.d. with the density k.

fn: the distribution of x,.

mﬂww=k”mwmw—Tw»w.

The Markov operator P arising from this stochastic process
is given by

Pr=[ FWk(z—Tw)dv.
[0,1]
Iwata, Ogihara (2013)

3fo € L] with / fodm =1 s.t. Pfo = fo,
X

o n _ 1 o _
Mm [P — folli =0 (VF € L with | fam =1).
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The Existence of Absolutely Continuous
Invariant Probabilities
Theorem (1)

(X,.Z,m): a probability space,
T : X — X a measurable and nonsingular transformation.
Then the followings are equivalent.

1 3u K m : a finite T-invariant measure s.t.
a
U 7" [ K >O]=X mod m;
n>0 am

2 Ve > 0, 30 > 0, s.t.
m(A) < 0 = supm(T "A) < €]
n>0

(The unif. integrability of {w}n>0)
n—1

1 )
3VAE.Z, 3 lim = ) moT "(A).
n—0o0 n, i=0
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The Existence of Finite Invariant Densities for
Markov Operators

Theorem (2)

(X, #,m): a probability space, P : L1 — L': a Markov
operator. Then the followings are equivalent.
13foe Ll ={feL|f>0}st.
Pfo = fo m-a.e. and
Lim P 150 = 1x, (P*™1i5>00 = l7-n(50>01);
2 {P™1x}n : weakly precompact;
3 P: weakly almost periodic.

o {P"f}n: weakly precompact.
&L 3 e st Iw-Limeg_oo P f.
@ P: weakly almost periodic.

Lty Vfe L, {P*"f}n: weakly precompact.
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Conservative (Dissipative) Part for
Transformations

T: a nonsingular transformation on (X, .%, m).

Defnition (The conservative and dissipative part)
W: the family of all wandering sets.

The dissipative part: = [J W.
Wew

The conservative part: € = X \ D.

Aaronson (1997)
Vu € L' with u > 0,

(S={CBEX| iPnu(a:)zoo}.

n=0

H. Toyokawa BU-KEIO 2018 June 29, 2018 17 / 27



Conservative (Dissipative) Part for Operators

P: a Markov operator. Vu € L1 with ©w > 0,

Defnition (The conservative and dissipative part)
The set (which is independent of the choice of u)

(i::{mEXI § Pnu(x)zoo}

n=0

is called the conservative part and
D=X\C

is called the dissipative part.
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The Induced Transformation
T : X — X a nonsingular transformation,

JEe€e Fst. |J T "E=X modm.
n>1

Then, we can define the hitting time of E for a.e. T € X
we(x) =min{n >1 |z e T "E}.

The induced transformation

Te : X —> E
w w
Tz — TYE@g

is called the induced transformation on E.

Remark
The customary def. of the induced trans.: Tg |e: E — E.
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The Induced Transformation

0.5 0.5
Figure: Graph of T Figure: Graph of Tg
T
—2z4+2 ze€[l1/2 1](=: E).
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The Induced Operator

The induced operator
P: a Markov operator. Assume nLLrgO(P*IEc)nlx =0}
Pe: the induced operator on E,

Pe = (IEP) ) (IecP)"

n=0

(Ig: the restriction operator on E: Ief = f - 1g).

Pef= ) P(P(..P(Pf-1g)lee.. )lec)1e (f € LY).
n=0

n—th time

Remark

T: a nonsingular transformation
= Pgc: the Perron-Frobenius operator corresponding to Te.
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The Existence of Absolutely Continuous
o-finite Invariant Measures

Theorem (3)

(X, #,m): a probability space,
T : X — X a measurable and nonsingular transformation.
Then the followings are equivalent.

1 Ju K€ m: a o-finite T-invariant measure,
JA C [2£ > 0] N € with u(A) < 00 s.t.

U TT"A =X mod m;
n>1

2 dE € ¥ s.t. Tg is well-defined and
dues K€ m: a finite Teg-invariant measure s.t.

_n [QUE

IT”[—>O]=X mod m.
am

n>1
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The Existence of o-finite Invariant Densities
for Markov Operators

Theorem (4)
(X,.Z,m): a probability space, P: a Markov operator.
Then the followings are equivalent.

1 3h: a non-negative measurable func.
s.t. [ hdm: o-finite and Ph = h,
JA C [Ah > 0] N € with 4 hdam < oo s.t.

; * n — N
nl.l_)l’go(P Inc)"1x = 0;

2 3E € ¥ s.t. Pe is well-defined and
3h* € LY s.t. Peh* = h* and lim (P*Ijp+=q))"1x = 0.
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Future work
(Position Dependent Random Maps)

(X,.Z,m): a state space, (W, %4, v): a parameter space,
Tw: X = X (w € W) a nonsingular transformation,

p: W X X — [0,00) a probability density

(i.e., wp(w,z)adv(w) =1 for x € X).

The position dependent random map is defined as a
Markov process with the transition function

P(z, A) = /W p(w, T)1a(Tw(z))dv (w).

[Inoue, 2012] gives a sufficient condition for the existence of
an invariant density for P.

Target: a o-finite infinite invariant measure.
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