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Introduction

Dynamical system:
A measurable transformation T on a measurable sp. (X;F)
(i.e., T`1F ȷ F).

(X;F ; —; T ): a measure preserving system
def() — ‹ T`1 = — (—: T -invariant meausre).

Birkhoff (1931)
(X;F ; —; T ): an ergodic probability preserving system,
8f : X ! R with

R

X fd— <1,

lim
n!1

1

n

n`1
X

i=0

f ‹ T i(x) =
Z

X
fd— —`a:e: x 2 X:

(T; —): ergodic
def() —(A) = 0 or —(Ac) = 0 if T`1A = A.
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Introduction
W : a (weakly) wandering set
def() —(T`nW \ T`mW ) = 0;
(resp. 9fnigi–1 s.t. —(T`nkW \ T`nlW ) = 0).

(T; —): conservative def() any wandering set, —(W ) = 0.

Hopf (1937)
(X;F ; —; T ): a conservative and ergodic ff-finite measure
preserving system, 8f; g 2 L1 with

R

X gd— , 0,

lim
n!1

n`1
X

i=0

f ‹ T i(x)

n`1
X

i=0

g ‹ T i(x)
=

Z

X
fd—

Z

X
gd—

—`a:e: x 2 X:

Target: an absolutely continuous (ff-)finite invariant
measure with respect to some reference measure.
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Background

[Hajian, Kakutani 1964],[Sucheston 1964]
T : a nonsingular transformation on a prob. sp. (X;F ;m)
(i.e., m(T`1A) = 0 if m(A) = 0).
The followings are equivalent:

There exists an equivalent finite invariant measure;
lim inf
n!1

m ‹ T`n(A) > 0 if m(A) > 0;

lim inf
n!1

1

n

n`1
X

i=0

m ‹ T`i(A) > 0 if m(A) > 0;

lim sup
n!1

1

n

n`1
X

i=0

m ‹ T`i(A) > 0 if m(A) > 0;

There exists no weakly wandering set of positive
m-measure.

H. Toyokawa BU-KEIO 2018 June 29, 2018 6 / 27



Background

[Dean, Sucheston 1966]
(X;F ;m): a probability sp.
P : a positive linear op. over L1(m) with kPkop » 1.
The followings are equivalen:

There exists a strictly positive f0 2 L1 s.t. Pf0 = f0;

inf
n–0

Z

A
Pn1Xdm if m(A) > 0;

lim
n!1

2

6

4sup
j–0

1

n

n+j`1
X

i=j

Z

A
P i1Xdm

3

7

5 > 0 if m(A) > 0;

lim inf
n!1

1

n

n`1
X

i=0

Z

A
P i1Xdm > 0 if m(A) > 0.
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Preliminaries

(X;F ;m): a probability space,
L1: all real-valued integrable functions over (X;F ;m),
L1: all real-valued essentially bounded functions.

The Perron-Frobenius operator
T : X ! X a measurable and nonsingular transformation.
The Perron-Frobenius operator corresponding to T :
P : L1 ! L1,

Z

A
Pfdm =

Z

T`1A
fdm (f 2 L1; A 2 F):

The Koopman operator : P ˜ : L1 ! L1; P ˜g = g ‹ T ,
Z

X
Pf ´ gdm =

Z

X
f ´ P ˜gdm (f 2 L1; g 2 L1):

H. Toyokawa BU-KEIO 2018 June 29, 2018 9 / 27



Preliminaries

(X;F ;m): a probability space.

Defnition (Markov operators)
A linear operator P : L1 ! L1 is a Markov operator.
def() Pf – 0 and kPfk1 = kfk1 if f – 0.

Remark
The Perron-Frobenius operator corresponding to a
nonsingular transformation is also a Markov operator.
P ˜ : L1 ! L1 the adjoint op. (P ˜1X = 1X)
Z

X
Pf ´ gdm =

Z

X
f ´ P ˜gdm (f 2 L1; g 2 L1).

— ‹ T`1 = — with —fi m, P
d—

dm
=
d—

dm
.
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Markov Processes

P : a Markov operator given.
⇝ The transition probability of the Markov process:

P (x; A) B P ˜1A(x) (8A 2 F):

Conversely,

P (x; A): a transition probability of a Markov process given.
⇝ The Markov operator:

Pf B
d

 
Z

X
f(x)P (x; ´)dm(x)

!

dm
(8f 2 L1):
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Example (Additive Noise)
T : a measurable transformation on ([0; 1];B; –),
the process: xn+1 = T (xn) + ‰n (mod 1)
‰0; ‰1; ´ ´ ´ : i.i.d. with the density k.
fn: the distribution of xn.

fn+1(x) =

Z

[0;1]
fn(y)k(x` T (y))dy:

The Markov operator P arising from this stochastic process
is given by

Pf =

Z

[0;1]
f(y)k(x` T (y))dy:

Iwata, Ogihara (2013)

9f0 2 L1+ with
Z

X
f0dm = 1 s.t. Pf0 = f0,

lim
n!1

kPnf ` f0k1 = 0 (8f 2 L1+ with
Z

X
fdm = 1):
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The Existence of Absolutely Continuous
Invariant Probabilities

Theorem (1)
(X;F ;m): a probability space,
T : X ! X a measurable and nonsingular transformation.
Then the followings are equivalent.
1 9—fi m : a finite T -invariant measure s.t.

[

n–0
T`n

"

d—

dm
> 0

#

= X mod m;

2 8› > 0; 9‹ > 0; s.t.
[m(A) < ‹ ) sup

n–0
m(T`nA) < ›]

(The unif. integrability of fd(m‹T
`n)

dm
gn–0);

3 8A 2 F ; 9 lim
n!1

1

n

n`1
X

i=0

m ‹ T`i(A):
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The Existence of Finite Invariant Densities for
Markov Operators

Theorem (2)
(X;F ;m): a probability space, P : L1 ! L1: a Markov
operator. Then the followings are equivalent.
1 9f0 2 L1+ B ff 2 L1 j f – 0g s.t.

▶ Pf0 = f0 m-a.e. and
▶ lim
n!1

P ˜n1[f0>0] = 1X, (P ˜n1[f0>0] = 1T`n[f0>0]);

2 fPn1Xgn : weakly precompact;
3 P : weakly almost periodic.

fPnfgn: weakly precompact.
def() 9fnkgk s.t. 9w-limk!1 Pnkf.
P : weakly almost periodic.
def() 8f 2 L1; fPnfgn: weakly precompact.
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Conservative (Dissipative) Part for
Transformations

T : a nonsingular transformation on (X;F ;m).

Defnition (The conservative and dissipative part)
W: the family of all wandering sets.

The dissipative part: D B
[

W2W
W:

The conservative part: C B X n D:

Aaronson (1997)
8u 2 L1 with u > 0,

C =

8

<

:

x 2 X j
1
X

n=0

Pnu(x) =1
9

=

;

:
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Conservative (Dissipative) Part for Operators

P : a Markov operator. 8u 2 L1 with u > 0,

Defnition (The conservative and dissipative part)
The set (which is independent of the choice of u)

C B

8

<

:

x 2 X j
1
X

n=0

Pnu(x) =1
9

=

;

is called the conservative part and

D B X n C

is called the dissipative part.
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The Induced Transformation
T : X ! X a nonsingular transformation,

9E 2 F s.t.
[

n–1
T`nE = X mod m.

Then, we can define the hitting time of E for a.e. x 2 X

’E(x) = minfn – 1 j x 2 T`nEg:

The induced transformation

TE : X `! E
2 2

x 7`! T’E(x)x

is called the induced transformation on E.

Remark
The customary def. of the induced trans.: TE jE: E ! E.
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The Induced Transformation

Figure: Graph of T Figure: Graph of TE

Tx =

8

>

<

>

:

x
1`x x 2 [0; 1=2)
`2x+ 2 x 2 [1=2; 1](=: E):
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The Induced Operator

The induced operator
P : a Markov operator. Assume lim

n!1
(P ˜IEc)

n1X = 0.
PE: the induced operator on E,

PE B (IEP )
1
X

n=0

(IEcP )
n

(IE: the restriction operator on E: IEf = f ´ 1E).

PEf =
1
X

n=0

P (P (: : : P (Pf ´ 1Ec)1Ec : : : )1Ec)
|                                                        {z                                                        }

n`th time

1E (f 2 L1):

Remark
T : a nonsingular transformation
) PE: the Perron-Frobenius operator corresponding to TE.
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The Existence of Absolutely Continuous
ff-finite Invariant Measures

Theorem (3)
(X;F ;m): a probability space,
T : X ! X a measurable and nonsingular transformation.
Then the followings are equivalent.
1 9—fi m: a ff-finite T -invariant measure,
9A ȷ [ d—

dm
> 0] \ C with —(A) <1 s.t.

[

n–1
T`nA = X mod m;

2 9E 2 F s.t. TE is well-defined and
9—E fi m: a finite TE-invariant measure s.t.

[

n–1
T`n

"

d—E

dm
> 0

#

= X mod m:

H. Toyokawa BU-KEIO 2018 June 29, 2018 24 / 27



The Existence of ff-finite Invariant Densities
for Markov Operators

Theorem (4)
(X;F ;m): a probability space, P : a Markov operator.
Then the followings are equivalent.
1 9h: a non-negative measurable func.
s.t.

R

´ hdm: ff-finite and Ph = h,
9A ȷ [h > 0] \ C with

R

A hdm <1 s.t.
lim
n!1

(P ˜IAc)
n1X = 0;

2 9E 2 F s.t. PE is well-defined and
9h˜ 2 L1+ s.t. PEh˜ = h˜ and limn!1(P

˜I[h˜=0])
n1X = 0.
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Future work
(Position Dependent Random Maps)

(X;F ;m): a state space, (W;B; ): a parameter space,
Tw : X ! X (w 2 W ) a nonsingular transformation,
p : W ˆ X ! [0;1) a probability density
(i.e.,

R

W p(w; x)d(w) = 1 for x 2 X).
The position dependent random map is defined as a
Markov process with the transition function

P (x; A) =

Z

W
p(w; x)1A(Tw(x))d(w):

[Inoue, 2012] gives a sufficient condition for the existence of
an invariant density for P .

Target: a ff-finite infinite invariant measure.

H. Toyokawa BU-KEIO 2018 June 29, 2018 26 / 27



References
1 J. Aaronson, An Introduction to Infinite Ergodic Theory.
American Mathematical Society (1997).

2 David W. Dean, and L. Sucheston, On Invariant
Measures for Operators. Z. Wah. verw. Geb. 6, 1-9
(1966)

3 S. R. Foguel, The Ergodic Theory of Markov Processes.
Van Nostrand Mathematical Studies 21 (1969).

4 A. Hajian, and S. Kakutani, Weakly wandering sets and
invariant measures. Trans. Amer. Math. Soc. 110
(1964):136-151

5 T. Inoue, Invariant measures for position dependent
random maps with continuous random parameters.
Studia Math. 208 (2012): 11-29.

6 Y. Iwata, and T. Ogihara, Random perturbations of
non-singular transformation on [0,1]. Hokkaido Math.
Jornal 42 (2013): 269-291.

7 L. Sucheston, On existence of finite invariant measures.
Math. Zeitschrift, 86 (1964): 327-336.
H. Toyokawa BU-KEIO 2018 June 29, 2018 27 / 27


	Introduction
	Settings
	An Absolutely Continuous Invariant Probability
	Conservative Part and Dissipative Part
	The Induced Operator
	An Absolutely Continuous -finite Invariant Measure

