Random holomorphic dynamics of Markov systems

Takayuki Watanabe

Kyoto University joint work with: Hiroki Sumi (Kyoto University)

June 25-29, 2018

Random (holomorphic) dynamical systems

Y: compact metric space $y_0 \in Y$: initial point

How do RANDOM orbits behave?

$$y_0 \stackrel{f_1}{\mapsto} y_1 \stackrel{f_2}{\mapsto} y_2 \stackrel{f_3}{\mapsto} \cdots?$$

where f_1, f_2, f_3, \ldots are randomly chosen. In this talk, we consider the random dynamics on the Riemann sphere $\hat{\mathbb{C}}$ whose choices of maps are not independent and identically distributed but obey "Markovian rules".

Motivative example

•
$$\hat{\mathbb{C}} := \mathbb{C} \cup \{\infty\} \stackrel{\textit{top}}{\simeq} S^2$$
: the Riemann sphere

•
$$f_1, \ldots, f_m$$
: polynomial maps on $\hat{\mathbb{C}}$

- Definition of random orbits
 - 0 Fix an initial point $z_0 \in \hat{\mathbb{C}}$.
 - 1 Choose a polynomial f_{ω_1} with probability p_{ω_1} and define $z_1 = f_{\omega_1}(z_0)$.
 - n After choosing $f_{\omega_{n-1}}$, choose a polynomial f_{ω_n} with probability $p_{\omega_{n-1}\omega_n}$ and define $z_n = f_{\omega_n}(z_{n-1})$ for each step.

We are especially intersted in the probablity of random orbits tending to ∞ and the chaotic initial points (or the Julia set).

2 Main results (random polynomial dynamics)

Definition of τ

Let $m \in \mathbb{N}$ and let τ_{ij} be a Borel measure on the space OCM(Y) of all open continuous maps on Y for each $1 \le i, j \le m$. Set $p_{ij} := \tau_{ij}(OCM(Y))$ and suppose that $\sum_{j=1}^{m} p_{ij} = 1$ for all i = 1, ..., m. Purpose We want to investigate the Markov chain on $Y \times \{1, ..., m\}$ with transition probability $\mathbb{P}((y, i), B \times \{j\}) = \tau_{ij}(\{f \in OCM(Y); f(y) \in B\})$

from a point $(y, i) \in Y \times \{1, ..., m\}$ to a Borel set $B \times \{j\}$.

Definition of τ

Let $m \in \mathbb{N}$ and let τ_{ij} be a Borel measure on the space OCM(Y) of all open continuous maps on Y for each $1 \le i, j \le m$. Set $p_{ij} := \tau_{ij}(OCM(Y))$ and suppose that $\sum_{j=1}^{m} p_{ij} = 1$ for all i = 1, ..., m.

We want to investigate the Markov chain on $Y \times \{1, ..., m\}$ with transition probability $\mathbb{P}((y, i), B \times \{j\}) = \tau_{ij}(\{f \in OCM(Y); f(y) \in B\})$ from a point $(y, i) \in Y \times \{1, ..., m\}$ to a Borel set $B \times \{j\}$.

Remark 1

If $\underline{m = 1}$, this Markov chain is <u>i.i.d.</u> random dynamical system.

We always assume that the matrix $P = (p_{ij})$ is irreducible, i.e. $\forall i, j = 1, ..., m, \exists N \in \mathbb{N}$ such that the (i, j)-component of P^N is positive.

Definition of Markov systems

For this family $\tau = (\tau_{ij})_{i,j=1,...,m}$ of measures, we define the "Markov system S_{τ} " in the following way.

- The vertex set $V := \{1, 2, \dots, m\}$.
- 2 The edge set $E := \{(i,j) \in V \times V; p_{ij} > 0\}$.

We regard (V, E) as a directed graph. For all $e \in E$, we denote e = (i(e), t(e)) and we call i(e) (resp. t(e)) the initial (resp. terminal) vertex. We call $S_{\tau} := (V, E, (\text{supp } \tau_e)_{e \in E})$ the Markov system induced by τ .

Definition of Julia sets

Let $S_{\tau} := (V, E, (\text{supp } \tau_e)_{e \in E})$ be a Markov system induced by τ .

A word e = (e₁,..., e_N) ∈ E^N with length N ∈ N is said to be admissible if t(e_n) = i(e_{n+1}) for all n = 1, 2, ..., N - 1. For this word e, we call i(e₁) (resp. t(e_N)) the initial (resp. terminal) vertex of e and we denote it by i(e) (resp. t(e)).

2 For all
$$i,j \in V$$
, we set

 $\begin{aligned} H_{i}^{j}(S_{\tau}) &:= \{ f_{N} \circ \cdots \circ f_{1}; f_{n} \in \text{supp } \tau_{e_{n}}, i = i(e_{1}), t(e_{N}) = j, \\ (e_{1}, \ldots, e_{N}) \text{ is an admissible word with length } N \}. \end{aligned}$

Definition of Julia sets

- For each i ∈ V, we denote by F_i(S_τ) the set of all points y ∈ Y for which there exists a neighborhood U in Y such that the family U_{j∈V} H^j_i(S_τ) is equicontinuous on U. F_i(S_τ) is called the Fatou set of S_τ at the vertex i and the complement J_i(S_τ) := Y \ F_i(S_τ) is called the Julia set of S_τ at the vertex i.
- 4. The set $J_{\ker,i}(S_{\tau}) := \bigcap_{j \in V} \bigcap_{h \in H_i^j(S_{\tau})} h^{-1}(J_j(S_{\tau}))$ is called the kernel Julia set of S_{τ} at the vertex $i \in V$.

Basic properties

- If m = 1, the Julia set J₁(S_τ) is equal to the set of all points y ∈ Y where the semigroup H¹₁(S_τ) is not equicontinuous on any neighborhood U of y in Y. (This is called the Julia set of the semigroup H¹₁(S_τ).)
- ② The Fatou sets F_i(S_τ) is open subset of Y and the Julia set J_i(S_τ) is compact subset of Y for all i ∈ V.
- $h(F_{i(e)}(S_{\tau})) \subset F_{t(e)}(S_{\tau}), h^{-1}(J_{t(e)}(S_{\tau})) \subset J_{i(e)}(S_{\tau})$ for all $h \in H^{j}_{i}(S_{\tau}).$
- Suppose that Y is locally connected and

 $\sup\{\text{diam }B; B \text{ is a connected component of } h^{-1}(B(y,\varepsilon))\} \to 0$

as $\varepsilon \to 0$ for all point $y \in Y$ and for all $h \in H_i^j(S_\tau)$. Then $J_i(S_\tau)$ is equal to the Julia set of the semigroup $H_i^j(S_\tau)$ for all $i \in V$.

Definition of $\tilde{\tau}_i$ and a proposition

We define the Borel probability measures $\tilde{\tau}_i$ on $(OCM(Y) \times E)^{\mathbb{N}}$ for $i \in V$, as follows. For N Borel sets $A_n (n = 1, \dots, N)$ of OCM(Y) and for $(e_1, \dots, e_N) \in E^N$, set $A'_n = A_n \times \{e_n\}$. We define the measure $\tilde{\tau}_i$ on $(OCM(Y) \times E)^{\mathbb{N}}$ so that

$$ilde{ au_i}(A_1' imes \cdots imes A_N' imes \prod_{N+1} (\operatorname{OCM}(Y) imes E))$$

 $= \begin{cases} \tau_{e_1}(A_1)\cdots\tau_{e_N}(A_N) & \text{, if } (e_1,\ldots,e_N) \text{ is admissible with } i(e_1)=i \\ 0 & \text{, otherwise.} \end{cases}$

Definition of $\tilde{\tau}_i$ and a proposition

We define the Borel probability measures $\tilde{\tau}_i$ on $(OCM(Y) \times E)^{\mathbb{N}}$ for $i \in V$, as follows. For N Borel sets A_n $(n = 1, \dots, N)$ of OCM(Y) and for $(e_1, \dots, e_N) \in E^N$, set $A'_n = A_n \times \{e_n\}$. We define the measure $\tilde{\tau}_i$ on $(OCM(Y) \times E)^{\mathbb{N}}$ so that

$$\tilde{\tau}_i(A_1'\times\cdots\times A_N'\times \prod_{N+1}(\operatorname{OCM}(Y)\times E))$$

 $= \begin{cases} \tau_{e_1}(A_1) \cdots \tau_{e_N}(A_N) & \text{, if } (e_1, \dots, e_N) \text{ is admissible with } i(e_1) = i \\ 0 & \text{, otherwise.} \end{cases}$

Proposition 2

Let λ be a Borel finite measure on Y. Suppose that $J_{\ker,j}(S_{\tau}) = \emptyset$ for some $j \in V$. Then,

 $\lambda(\{y \in Y; \{f_N \circ \cdots \circ f_1\}_{N \in \mathbb{N}} \text{ is not equiconti on any nbhd } U\}) = 0$

for $\tilde{\tau}_i$ -a.e. $(f_n, e_n)_{n \in \mathbb{N}} \in (OCM(Y) \times E)^{\mathbb{N}}$ and for all $i \in V$.

Polynomial maps and the probability of tending to ∞

In the following, we assume that

- Y is the Riemann sphere $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\} \stackrel{top.}{\simeq} S^2$.
- Por all e ∈ E, supp τ_e are compact subsets of the space Poly of all polynomial maps of degree 2 or more.

Note that ∞ is a common attracting fixed point of all polynomials $f: \hat{\mathbb{C}} \to \hat{\mathbb{C}}.$

Polynomial maps and the probability of tending to ∞

In the following, we assume that

- Y is the Riemann sphere $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\} \stackrel{top.}{\simeq} S^2$.
- Por all e ∈ E, supp τ_e are compact subsets of the space Poly of all polynomial maps of degree 2 or more.

Note that ∞ is a common attracting fixed point of all polynomials $f: \hat{\mathbb{C}} \to \hat{\mathbb{C}}.$

Definition 3

We define
$$\mathbb{T}_\infty$$
 : $\hat{\mathbb{C}} imes \{1, \dots, m\} o [0, 1]$ by

$$\begin{split} \mathbb{T}_{\infty}(z,i) &:= \tilde{\tau}_i(\{(f_n,e_n)_{n\in\mathbb{N}}\in(\operatorname{Poly}\times E)^{\mathbb{N}};\\ f_N\circ\cdots\circ f_1(z)\to\infty(N\to\infty)\}). \end{split}$$

 \mathbb{T}_{∞} represents the probability of tending to ∞ .

Main results (1)

Main Result A

If $J_{\ker,j}(S_{\tau}) = \emptyset$ for some $j \in V$, then \mathbb{T}_{∞} is continuous on $\hat{\mathbb{C}} \times \{1, \ldots, m\}$.

Main Result B

Suppose that there exists $e \in E$ such that

$$\operatorname{supp} \tau_{e} \supset \{f + c; |c - c_{0}| < \epsilon\}$$

for some $f \in \text{Poly}, c_0 \in \mathbb{C}, \epsilon > 0$. Then $J_{\ker,j}(S_\tau) = \emptyset$ for some $j \in V$.

Main results (2)

Main Result C

Suppose that

- supp τ_e are finite set for all $e \in E$.
- For all $e_1, e_2 \in E$ with $i(e_1) = i(e_2)$ and for all $f_1 \in \text{supp } \tau_{e_1}$, $f_2 \in \text{supp } \tau_{e_2}$, we have $f_1^{-1}(J_{t(e_1)}(S_{\tau})) \cap f_2^{-1}(J_{t(e_2)}(S_{\tau})) = \emptyset$, except the case $e_1 = e_2$ and $f_1 = f_2$.

Then $\mathbb{T}_\infty\equiv 1$ or

 $J_i(S_{\tau}) = \{z \in \mathbb{C}; \mathbb{T}_{\infty}(\cdot, i) \text{ is not constant in any nbhd of } z\}$

for all $i \in V$.

Main results (3)

Main Result D (randomness-induced phenomenon)

In addition to the assumption of Main Result C, if there exist $e_1, e_2 \in E$ such that $i(e_1) = i(e_2)$ and $e_1 \neq e_2$, then \mathbb{T}_{∞} is continuous on the whole space.

Note that

0 On the deterministic polynomial dynamics, \mathbb{T}_{∞} cannot be continuous on the whole space.

• For
$$p = (p_1, \ldots, p_m)$$
 with $\sum_{i \in V} p_i = 1$, define $T_{\infty} : \hat{\mathbb{C}} \to [0, 1]$ by
 $T_{\infty}(z) := \sum p_i \mathbb{T}_{\infty}(z, i).$

If m = 1 (i.i.d. case), either $T_{\infty} \equiv 1$ or $\exists z_0 \in \hat{\mathbb{C}}$ s.t. $T_{\infty}(z_0) = 0$ [Sumi, 2011]. However, if $m \geq 2$ (non-i.i.d. case), there exists Markov systems S_{τ} , which satisfy the assumptions of Main Result D, such that $T_{\infty} \not\equiv 1$ and $\forall z \in \hat{\mathbb{C}}$, $T_{\infty}(z) > 0$.

i∈V

Example

Let
$$g_1(z) = z^2 - 1$$
, $g_2(z) = z^2/4$ and set $m = 2$,
 $(p_1, p_2) = (\frac{2}{3}, \frac{1}{3}), \begin{pmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ 1 & 0 \end{pmatrix}$ and $f_i = g_i \circ g_i$

for i = 1, 2. Define τ_{ij} as the Dirac measure $p_{ij}\delta_{f_i}$.

The graph of $1 - T_{\infty}$, which represents the probability of NOT tending to ∞ , is continuous on $\hat{\mathbb{C}}$ and varies precisely on the Julia sets $\bigcup_{i \in V} J_i(S_{\tau})$.

T. Watanabe (Kyoto U.)

Random hol dynm of Markov systems

References

general theory (text book)

- L. Arnold, "Random Dynamical Systems", 1998. holomorphic case
- R. Stankewitz, "Density of repelling fixed points in the Julia set of a rational or entire semigroup, II". Discrete Contin. Dyn. Syst. 32 (2012), no. 7, 2583-2589.
- H. Sumi, "Random complex dynamics and semigroups of holomorphic maps", Proc. Lond. Math. Soc. (3) 102 (2011), no. 1, 50-112.
- H. Sumi, "Negativity of Lyapunov Exponents and Convergence of Generic Random Polynomial Dynamical Systems and Random Relaxed Newton's Methods", preprint, https://arxiv.org/abs/1608.05230.

Thank you!