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Random (holomorphic) dynamical systems

Y : compact metric space
y0 ∈ Y : initial point

How do RANDOM orbits behave?

y0
f17→ y1

f27→ y2
f37→ · · ·?

where f1, f2, f3, . . . are randomly chosen. In this talk, we consider the
random dynamics on the Riemann sphere Ĉ whose choices of maps are
not independent and identically distributed but obey “Markovian rules”.
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Motivative example

Ĉ := C ∪ {∞}
top
≃ S2 : the Riemann sphere

f1, . . . , fm : polynomial maps on Ĉ

Definition of random orbits� �
0 Fix an initial point z0 ∈ Ĉ.
1 Choose a polynomial fω1 with probability pω1 and define

z1 = fω1(z0).

n After choosing fωn−1 , choose a polynomial fωn with probability
pωn−1ωn and define zn = fωn(zn−1) for each step.� �

We are especially intersted in the probablity
of random orbits tending to ∞ and the chaotic initial
points (or the Julia set).
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Settings

Definition of τ

Let m ∈ N and let τij be a Borel measure on the space OCM(Y ) of all
open continuous maps on Y for each 1 ≤ i , j ≤ m. Set
pij := τij(OCM(Y )) and suppose that

∑m
j=1 pij = 1 for all i = 1, . . . ,m.

Purpose� �
We want to investigate the Markov chain on Y ×{1, . . . ,m} with tran-
sition probability P((y , i),B × {j}) = τij({f ∈ OCM(Y ); f (y) ∈ B})
from a point (y , i) ∈ Y × {1, . . . ,m} to a Borel set B × {j}.� �

.
Remark 1
..
.
. ..

.

.

If m = 1, this Markov chain is i.i.d. random dynamical system.

We always assume that the matrix P = (pij) is irreducible, i.e.
∀i , j = 1, . . . ,m, ∃N ∈ N such that the (i , j)-component of PN is positive.
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Settings

Definition of Markov systems

For this family τ = (τij)i ,j=1,...,m of measures, we define the
“Markov system Sτ” in the following way.

...1 The vertex set V := {1, 2, · · · ,m}.

...2 The edge set E := {(i , j) ∈ V × V ; pij > 0}.

We regard (V ,E ) as a directed graph. For all e ∈ E , we denote
e = (i(e), t(e)) and we call i(e) (resp. t(e)) the initial (resp. terminal)
vertex. We call Sτ := (V ,E , (supp τe)e∈E ) the Markov system induced by
τ .

&%
'$

i -τij

&%
'$

j
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Settings

Definition of Julia sets

Let Sτ := (V ,E , (supp τe)e∈E ) be a Markov system induced by τ .
...1 A word e = (e1, . . . , eN) ∈ EN with length N ∈ N is said to be
admissible if t(en) = i(en+1) for all n = 1, 2, · · · ,N − 1. For this word
e, we call i(e1) (resp. t(eN)) the initial (resp. terminal) vertex of e
and we denote it by i(e) (resp. t(e)).

...2 For all i , j ∈ V , we set

H j
i (Sτ ) := {fN ◦ · · ·◦f1; fn ∈ supp τen , i = i(e1), t(eN) = j ,

(e1, . . . , eN) is an admissible word with length N}.
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Settings

Definition of Julia sets

3. For each i ∈ V , we denote by Fi (Sτ ) the set of all points y ∈ Y for
which there exists a neighborhood U in Y such that the family∪

j∈V H j
i (Sτ ) is equicontinuous on U. Fi (Sτ ) is called the Fatou set of

Sτ at the vertex i and the complement Ji (Sτ ) := Y \ Fi (Sτ ) is called
the Julia set of Sτ at the vertex i .

4. The set Jker,i (Sτ ) :=
∩

j∈V
∩

h∈H j
i (Sτ )

h−1(Jj(Sτ )) is called the kernel

Julia set of Sτ at the vertex i ∈ V .
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Settings

Basic properties

...1 If m = 1, the Julia set J1(Sτ ) is equal to the set of all points y ∈ Y
where the semigroup H1

1 (Sτ ) is not equicontinuous on any
neighborhood U of y in Y . (This is called the Julia set of the
semigroup H1

1 (Sτ ).)
...2 The Fatou sets Fi (Sτ ) is open subset of Y and the Julia set Ji (Sτ ) is
compact subset of Y for all i ∈ V .

...3 h(Fi(e)(Sτ )) ⊂ Ft(e)(Sτ ), h
−1(Jt(e)(Sτ )) ⊂ Ji(e)(Sτ ) for all

h ∈ H j
i (Sτ ).

...4 Suppose that Y is locally connected and

sup{diamB; B is a connected component of h−1(B(y , ε))} → 0

as ε → 0 for all point y ∈ Y and for all h ∈ H j
i (Sτ ). Then Ji (Sτ ) is

equal to the Julia set of the semigroup H i
i (Sτ ) for all i ∈ V .
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Settings

Definition of τ̃i and a proposition

We define the Borel probability measures τ̃i on (OCM(Y )× E )N for
i ∈ V , as follows. For N Borel sets An (n = 1, · · · ,N) of OCM(Y ) and for
(e1, . . . , eN) ∈ EN , set A′

n = An × {en}. We define the measure τ̃i on
(OCM(Y )× E )N so that

τ̃i (A
′
1 × · · · × A′

N ×
∞∏

N+1

(OCM(Y )× E ))

=

{
τe1(A1) · · · τeN (AN) , if (e1, . . . , eN) is admissible with i(e1) = i

0 , otherwise.

.
Proposition 2
..

.

. ..

.

.

Let λ be a Borel finite measure on Y . Suppose that Jker,j(Sτ ) = ∅ for
some j ∈ V . Then,

λ({y ∈ Y ; {fN ◦ · · · ◦ f1}N∈N is not equiconti on any nbhd U}) = 0

for τ̃i -a.e. (fn, en)n∈N ∈ (OCM(Y )× E )N and for all i ∈ V .
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Main results (random polynomial dynamics)
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.
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Main results (random polynomial dynamics)

Polynomial maps and the probability of tending to ∞

In the following, we assume that

...1 Y is the Riemann sphere Ĉ = C ∪ {∞}
top.
≃ S2.

...2 For all e ∈ E , supp τe are compact subsets of the space Poly of all
polynomial maps of degree 2 or more.

Note that ∞ is a common attracting fixed point of all polynomials
f : Ĉ → Ĉ.

.
Definition 3
..

.

. ..

.

.

We define T∞ : Ĉ×{1, . . . ,m} → [0, 1] by

T∞(z , i) := τ̃i ({(fn, en)n∈N ∈(Poly×E )N;

fN ◦ · · · ◦ f1(z) → ∞(N → ∞)}).

T∞ represents the probability of tending to ∞.
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Main results (random polynomial dynamics)

Main results (1)

.
Main Result A
..

.

. ..

.

.

If Jker,j(Sτ ) = ∅ for some j ∈ V , then T∞ is continuous on Ĉ×{1, . . . ,m}.

.
Main Result B
..

.

. ..

.

.

Suppose that there exists e ∈ E such that

supp τe ⊃ {f + c ; |c − c0| < ϵ}

for some f ∈ Poly, c0 ∈ C, ϵ > 0. Then Jker,j(Sτ ) = ∅ for some j ∈ V .
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Main results (random polynomial dynamics)

Main results (2)

.
Main Result C
..

.

. ..

.

.

Suppose that

supp τe are finite set for all e ∈ E .

For all e1, e2 ∈ E with i(e1) = i(e2) and for all f1 ∈ supp τe1 ,
f2 ∈ supp τe2 , we have f −1

1 (Jt(e1)(Sτ )) ∩ f −1
2 (Jt(e2)(Sτ )) = ∅, except

the case e1 = e2 and f1 = f2.

Then T∞ ≡ 1 or

Ji (Sτ ) = {z ∈ C;T∞(·, i) is not constant in any nbhd of z}

for all i ∈ V .
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Main results (random polynomial dynamics)

Main results (3)

.
Main Result D (randomness-induced phenomenon)
..

.

. ..

.

.

In addition to the assumption of Main Result C, if there exist e1, e2 ∈ E
such that i(e1) = i(e2) and e1 ̸= e2, then T∞ is continuous on the whole
space.

Note that
...1 On the deterministic polynomial dynamics, T∞ cannot be continuous
on the whole space.

...2 For p = (p1, . . . , pm) with
∑

i∈V pi = 1, define T∞ : Ĉ → [0, 1] by

T∞(z) :=
∑
i∈V

piT∞(z , i).

If m = 1 (i.i.d. case), either T∞ ≡ 1 or ∃z0 ∈ Ĉ s.t. T∞(z0) = 0
[Sumi, 2011]. However, if m ≥ 2 (non-i.i.d. case), there exists
Markov systems Sτ , which satisfy the assumptions of Main Result D,
such that T∞ ̸≡ 1 and ∀z ∈ Ĉ, T∞(z) > 0 .
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Main results (random polynomial dynamics)

Example

Let g1(z) = z2 − 1, g2(z) = z2/4 and set m = 2,

(p1, p2) = (
2

3
,
1

3
),

(
p11 p12
p21 p22

)
=

(
1
2

1
2

1 0

)
and fi = gi ◦ gi

for i = 1, 2. Define τij as the Dirac measure pijδfi .

The graph of 1− T∞, which represents the probability of NOT tending to
∞, is continuous on Ĉ and varies precisely on the Julia sets

∪
i∈V Ji (Sτ ).
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Main results (random polynomial dynamics)
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Main results (random polynomial dynamics)

Thank you!
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