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T
he study of fluid motions is of obvious
importance for a host of applications
ranging in scale from the microscopic
to the atmospheric. Since we live in a
three-dimensional world, it may be less

obvious why the understanding of two-dimensional
fluid flows is of interest. However, in many appli-
cations, such as the atmosphere or the ocean, the
fluid domain is much smaller in one direction than
in the other two—and also smaller than the typical
size of features of interest in the fluid. For example,
in the case of the atmosphere, the thickness is a
few tens of kilometers, while the lateral extent is
tens of thousands of kilometers and the diameter
of a feature such as a hurricane can be several
hundreds of kilometers. Furthermore, in both the
atmosphere and the ocean, the applicability of a
two-dimensional approximation is enhanced by
two additional effects: the stratification of the
medium (which reduces the effective thickness of
the domain) and the rotation of the earth, which
tends to reduce variations in the vorticity field with
height and means that in any cross-sectional plane,
the flow is effectively two-dimensional. In such
circumstances a two-dimensional approximation to
the fluid motion can provide very accurate insights
into the behavior of the physical system.

Even more interesting is the fact that two- and
three-dimensional fluids behave in qualitatively
different fashions. In three-dimensional flows
energy typically flows from large-scale features to
small ones until it is dissipated by the viscosity
of the fluid. In two dimensions the phenomenon
tends to reverse itself, and the energy concentrates
itself in a few large vortex-like structures. This
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phenomenon, known as the “inverse cascade”,
manifests itself in a striking visual way through the
coalescence of many small vortices into a smaller
number of larger vortices.

Figure 1. Atmospheric vortices formed by wind
flowing past the Aleutian Islands, captured by

Landsat 7 [17]. Note that in this image, the
vorticity field cannot be directly visualized.

Instead, one views passive tracer particles (i.e.,
clouds!) that are carried along by the

background flow and which are believed to
accurately mimic the vorticity field.

A beautiful visualization of this effect was
created by Maarten Rutgers in turbulent soap
films (see Figure 2). The patterns make visible
differences in the vorticity of the fluid. The
vorticity will be defined more precisely below
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but basically represents the rotational speed of the
fluid either clockwise or counterclockwise. In this
figure, the flow begins above the top of the picture
and falls under the influence of gravity toward the
bottom of the picture, so going down in the picture
indicates a later stage in the evolution of the flow.
The tendency of the vorticity to organize itself into
larger and larger structures is clearly visible.

Figure 2. Two-dimensional turbulent flow
visualized in a soap film by Maarten
Rutgers—for an even more striking illustration
of this phenomenon, see the video clip under
the “Turbulence” section of
http://maartenrutgers.org/ [20].

The growth in the size of vortices and the
reduction in their numbers is also visible in
numerical experiments, such as those displayed
in Figure 3, that are the result of research by
the vortex dynamics group at the Technische
Universiteit Eindhoven (TUE), Netherlands. One of
the main goals in the study of two-dimensional
turbulent flows has been to understand and explain
this inverse cascade and in particular to explain the
tendency of the vorticity to coalesce into a smaller
and smaller number of larger and larger vortices.
In this article I will explain how by exploiting ideas
from the kinetic theory of gases one can show that

almost all two-dimensional viscous flows eventually
approach a single, large vortex.

Figure 3. A numerical simulation of a
two-dimensional turbulent flow. The figures
display the vorticity field (with blue and red
representing fluid swirling in opposite
directions) at successively later and later times
and clearly indicate the tendency of regions of
vorticity of like sign to coalesce into a smaller
and smaller number of larger vortices [21].

The typical way of describing the motion of a
fluid is through its velocity field, v(z, t); that is,
through a vector field that at each point in space
and time gives the velocity of the fluid at that
point. However, more than 150 years ago Helmholtz
realized that in addition to the velocity, the vorticity
of the fluid carries important information about
the nature of the flow. As mentioned above, the
vorticity roughly measures the swirl in a fluid. More
precisely, the vorticity is defined as the curl of the
fluid velocity,

ω(z, t) = ∇× v(z, t).

Note that we see already an important difference
between two and three dimensions—in two di-
mensions, only one component of the vorticity
is nonzero, and thus we can treat the vorticity
essentially as a scalar field.

For an incompressible fluid, the fluid velocity
satisfies the Navier-Stokes equations, the system
of coupled nonlinear partial differential equations

∂tv+ v · ∇v = ν∆v− 1
ρ
∇p ,(1)

∇ · v = 0 ,(2)

whereν is the kinematic viscosity of the fluid (which
we will assume is constant), ρ is the fluid density
(which is constant due to the incompressibility
condition), and p = p(z, t) is the pressure in
the fluid. The first of these equations is just
Newton’s law for the fluid, with the left-hand
side representing the acceleration of the fluid
and the right-hand side the forces acting on it.
We will assume that the only forces present are
the internal viscous forces, modeled by the first
term on the right-hand side, and the pressure
forces, represented by the second. External forces
acting on the fluid could be incorporated by
adding additional terms to the right-hand side of
the equation. We will also ignore the effects of
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boundaries on the fluid by assuming that the fluid
occupies all of Rd with d = 2,3.

In order to determine how the vorticity evolves,
one can take the curl of both sides of the first of the
Navier-Stokes equations. The dynamics represented
by the two- and three-dimensional equations are
strikingly different despite the close relationship
between the equations. In three dimensions one
has the system of equations
(3)
∂tω(z, t)−ω ·∇v(z, t)+v ·∇ω(z, t) = ν∆ω(z, t),
while in two dimensions one has only the single,
scalar equation

(4) ∂tω(z, t)+ v · ∇ω(z, t) = ν∆ω(z, t).
(We will use a boldface ω to denote the vorticity
vector and an ω to denote the single, nonzero
component of the vorticity in two dimensions.)
The presence of the “vortex stretching term”,
−ω ·∇v(z, t) in (3), is a critical physical difference
between these two equations. For certain special
fluid configurations, this term can lead to a sort of
feedback mechanism in which the vorticity begins
to grow. While it is not known if this growth
can continue without bound, there is no obvious
mechanism to stop its growth, and this is the
physical source of the uncertainty as to whether
or not smooth solutions of the Navier-Stokes
equations exist for all time in three dimensions.
The fact that it is still unknown whether or not the
partial differential equations that are believed to
describe such a basic system as fluid motion have
unique, smooth solutions makes this obviously an
extremely important question, and the successful
resolution of this question (or the discovery of
an example demonstrating the formation of a
singularity in the solution in finite time) was
chosen by the Clay Mathematics Institute as one of
the one-million-dollar Millennium Prize Problems.
The role of the vortex-stretching term and its
relationship both to the possible formation of
singularities and the analysis of the Navier-Stokes
equation is discussed in detail in [5]. In contrast,
in two dimensions the absence of this term allows
one to construct global solutions of the two-
dimensional vorticity equation, even for initial data
with very little regularity [8].

One respect in which the vorticity formulation
of the fluid equations is less convenient than the
velocity-pressure formulation is that the velocity
still appears in equations (3) and (4) for the
evolution of the vorticity. However, if we remember
that the vorticity is the curl of a divergence-free
vector field (i.e., the velocity), then we can recover
the vorticity field from the velocity field via the
Biot-Savart law, which inverts the curl, and which
in the two-dimensional case on which we will focus
from now on takes the form

(5) v(z, t) = 1
4π

∫
R2

(z− z̃)⊥

|z− z̃|2 ·ω(z̃, t)dz̃ .

Here, if z = (x, y) ∈ R2, then z⊥ = (−y, x). Thus
the velocity can be regarded as a linear, but
nonlocal, function of the vorticity. With this point
of view the two-dimensional vorticity equation
(4) can be regarded as a nonlinear heat equation
in which the nonlinear term is quadratic and
nonlocal. As we will see later, this relationship with
the heat equation will play an important role in
understanding solutions of (4).

Let’s now look more closely at equation (4) and
try to understand the influence of various terms in
the equation. First consider the case in which ν = 0
(the inviscid case). In this case, if we pretend for the
moment that the velocity field is given to us, rather
than being determined by the vorticity, then the
equation becomes simply a transport equation in
which the vorticity is carried along by the velocity
field. In reality, the situation is more complicated,
because as the vorticity is advected by the velocity
field, the velocity field itself changes in response
to the changing vorticity; and in order to obtain
an accurate model of the evolution of the vorticity,
one must incorporate the “feedback” of the vortex
motion on the velocity field.

Helmholtz, and then later and more system-
atically Kirchhoff, made the assumption that the
vorticity could be written as a finite sum of point
vortices (i.e., delta functions) whose positions
moved in response to the velocity field they cre-
ated. Note that the velocity field of a point vortex
can be computed explicitly from the Biot-Savart law,
and using this, Helmholtz and Kirchhoff could track
the dynamical evolution of the velocity field in their
model and account for the feedback the vortex mo-
tion creates. Thus, if one assumes that the vorticity
field can be written asω(z, t) =

∑N
k=1 Γkδ(z−zj(t)),

where Γj is the strength of the j th vortex and zj(t)
is its position and substitutes this into the ν = 0
case of (4) (and interprets the solution in an
appropriate weak sense—see [13] for details), then
one finds explicit ordinary differential equations
for the locations of the centers of the vortices. If
one sets zj(t) = (xj(t), yj(t)), then one finds that

(6)

ẋj(t) = −
1

2π

∑
k 6=j

Γk yj − yk|zj − zk|2
,

ẏj(t) =
1

2π

∑
k 6=j

Γk xj − xk|zj − zk|2
.

These equations have explicit solutions for a
number of simple arrangements of small num-
bers of vortices. For instance, one can easily
check that two vortices of equal strength will
move on a circle about the point midway be-
tween them, while two vortices of opposite
strength will move on parallel lines, in a di-
rection perpendicular to the line joining them (see
Figure 4).

The set of equations (6) turns out to have a
number of remarkable properties [18]. For instance,
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Vortices of opposite strengthVortices of equal strength

Figure 4. The dynamics of the centers of a pair
of point vortices of equal strength and of
opposite strength.

it is a Hamiltonian system in which the Hamiltonian
is proportional to the sum of the logarithm of the
distance between pairs of vortices; furthermore,
if the number of vortices is three or less, it
is a completely integrable Hamiltonian system.
However, if one has four or more vortices, one
typically finds chaotic solutions.

In spite of the special properties of the point-
vortex equations, analytic solution for general
initial data becomes quickly impossible for more
than a small number of vortices. (An exception
to this general rule are the equilibrium and
relative equilibrium solutions, for which there are
interesting connections with analogous solutions
in the N-body problem in celestial mechanics [1].)
However, given the Hamiltonian nature of the
equations of motion and the chaotic nature of their
solutions for large numbers of vortices, it is natural
(at least in retrospect) to attempt to understand the
behavior of large collections of vortices with the
aid of statistical mechanics. Thus, if one considers
the initial vorticity distribution in Figure 3, one
can imagine it as a “gas” of point vortices that
interact with the other vortices through a potential
energy function in which the energy of a vortex pair
is proportional to the logarithm of the distance
between them. Lars Onsager may have been the first
person to adopt this point of view, and it led him to
a remarkable conclusion [7]. Onsager found that the
statistical mechanical description of a collection of
point vortices moving according to the equations
of motion (6) could support states in which a
parameter analogous to the absolute temperature
in a traditional statistical mechanical system was
actually negative. Furthermore, Onsager realized
that a consequence of these negative temperature
states was that vortices of like sign would coalesce
and that this could explain the tendency observed
in Figure 3 for large vortices of each sign to form
as the fluid evolves. As Onsager himself put it ([19],
quoted in [7])

It stands to reason that the large
compound vortices formed in this
manner will remain as the only con-
spicuous features of the motion.

Thus Onsager had provided a means of explaining
how large vortices could form from random
collections of small vortices, provided the effects
of viscosity are ignored and assuming that the
hypotheses that underlie the theory of statistical
mechanics are satisfied.

It is not only in the theoretical understanding
of fluid flows that the Helmholtz-Kirchhoff point
vortex model has played an important role. Even
though one cannot solve the equations (6) analyti-
cally for more than a few vortices, they are perfectly
amenable to numerical solution, and this idea has
formed the basis of “vortex methods” or “meshless
methods” in computational fluid mechanics. In
this approach, one first approximates the initial
distribution of vorticity by a collection of point vor-
tices (or, more frequently in numerical approaches,
smoothed vortices with finite size cores). The key
quantities are the location and strength of each
of the vortices. The vortex strength is typically
conserved, and thus the evolution of the fluid can
be tracked by following the locations of the centers
of the vortices via a system of ordinary differential
equations such as (6). It can be shown that vor-
tex methods give convergent approximations (as
the number of points used in the approximation
tends to infinity) to inviscid fluid flows (though
sometimes with relatively slow convergence rate).
However, one problem that can arise is related to
Onsager’s observation that in a large collection
of vortices, those of like sign will tend to clump
together. Thus, after some time, large parts of
the computational domain may have only a very
few vortices, which leads to a loss of information
about the flow in these regions. For a further
discussion of the advantages and disadvantages of
using vortex methods to numerically approximate
two-dimensional flows see the recent monograph
of Majda and Bertozzi [12], while [2] contains
a survey of recent improvements in the vortex
method, with a particular focus on how one can
incorporate viscous effects in the method.

Thus far, we have mainly discussed the limiting
case of the Navier-Stokes equation in which the
viscosity is zero. In realistic fluids (with the
spectacular exception of super fluids) the viscosity
may be small but is never zero, so we next consider
its effects on the preceding scenarios. One can show
that for finite (sometimes short) times, the solution
of the weakly viscous Navier-Stokes equation with
appropriate initial data is well approximated by
solutions of the point-vortex model [13]. However,
these short-time results cannot provide insight into
the long-time phenomena that occur in the “inverse
cascade”. Indeed, we’ll see that even within the
long-time regime there are two distinct time scales,
one on which the inviscid phenomena predicted
by Onsager appear and a second, typically longer,
time scale over which viscous effects manifest
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Figure 5. The vorticity field around a
swimming “fish”, computed with a modern

vortex method [6]

themselves and which we show below lead to the
formation of a single large vortex in the system.

If we ignore the nonlinear term and focus on
the linear terms in the equation, we just find the
two-dimensional heat equation

(7) ∂tω = ν∆ω .
In this equation we know that the effects of the
Laplacian term are to spread things out—or diffuse
them—at a rate proportional to ν. Indeed, if we
were to take a point vortex, i.e., a Dirac δ-mass,
as an initial condition, we know that the effect of
the equation is just to “smear” this point out into
a Gaussian. More precisely, if we take an initial
condition ω(z,0) = αδ(z) for (4), and we ignore
the nonlinear term in the equation, then we find
immediately that the resulting solution is

(8) ω(z, t) = α
4πνt

e−|z|2/(4νt) .

Remarkably, this explicit Gaussian turns out to
be an exact solution not only of the linear heat
equation but also of the nonlinear two-dimensional
vorticity equation, known as the Oseen-Lamb vortex.
To see the reason for this, recall that since the fluid
is incompressible, its velocity field is divergence
free. In this case the Helmholtz decomposition
implies the existence of a stream function ψ(z)
such that v(z) = (∂yψ,−∂xψ). Thus the vorticity
is related to the stream function via the equation

(9) ω(z, t) = ∂xv2 − ∂yv1 = −∆ψ(z, t).
In the present example of the Oseen-Lamb vortex,
in which the vorticity is a purely radial function
depending only on |z|, solving Poisson’s equation
will give a stream function that is also purely radial
and that in turn gives rise to a purely tangential
velocity field. Since the nonlinear term in the

vorticity equation consists of the dot product of
the velocity field with the gradient of the vorticity,
we will have the dot product of a tangential with a
radial vector; i.e., the value of the nonlinear term is
zero when evaluated on the velocity and vorticity
fields of the Oseen-Lamb vortex. In this case the
vorticity equation reduces to the heat equation,
which, as we have already remarked, is solved by
the Oseen-Lamb vortex.

Note that in the expression for the vorticity field
of the Oseen vortex the space and time variables
are linked in a special fashion. This suggests that it
may be convenient to study the vorticity equation in
new variables, so-called scaling variables. With this
in mind we define new dependent and independent
variables through the change of variables
(10)

ω(x, y, t)= 1
1+ t w

(
x√

1+ t ,
y√

1+ t , log(1+ t)
)
.

If we define ξ = x√
1+t , η =

y√
1+t , ζ = (ξ, η), and

τ = log(1+ t), then in terms of these new variables
the two-dimensional vorticity equation takes the
form
(11)

∂tw = ν∆w + 1
2
∇· (ζw)−u ·∇w ≡ Lνw −u ·∇w,

where u is just the velocity field, rewritten in terms
of the scaling variables, and the derivatives in
the Laplacian and divergence are now taken with
respect to ζ instead of z.

Note that in terms of these variables, the family
of Oseen vortices are all fixed points of this equation,
i.e., the functions

ω(ξ,η) = Ωα(ξ, η) = α
4π
e−|ζ|2/4ν

= α
4π
e−(ξ2+η2)/4ν

(12)

are all stationary solutions for equation (11). Note
that we have normalized the Gaussian so that
the parameter α of the Oseen vortex gives the
total vorticity (i.e., the integral of the vorticity) of
the solution. Note further that both the vorticity
equation, (4), and the rescaled vorticity equation,
(11), conserve the total vorticity. The presence of
this family of fixed points suggests that we might
be able to use ideas from dynamical systems theory
to study the stability of these fixed points and
to try to determine whether they can explain the
asymptotic behavior of some or all of the solutions
of this partial differential equation.

There are (at least) two different dynamical
systems approaches that can be applied to study
the stability and influence on the asymptotics of
the fixed points (12); namely:

• Linearization about the fixed point and the
construction of invariant manifolds in the
phase space corresponding to the various
spectral subspaces of the linearization, or

• Lyapunov functionals.
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In this article I’ll focus on the Lyapunov func-
tional approach because of its relationship to the
statistical mechanics point of view that we have
discussed above. However, one can also use the
invariant manifold approach to analyze the asymp-
totic behavior of solutions of (11). In contrast to the
Laplacian, whose spectrum is the entire negative
real axis, the linear operator, Lν , when considered
on spaces of functions that go to zero rapidly at
infinity, has a spectrum that consists of a set of
discrete eigenvalues, plus a half-plane of essential
spectrum. One can construct finite-dimensional,
invariant manifolds corresponding to the span
of the eigenfunctions of these eigenvalues that
describe very precisely the asymptotics of small
solutions of (11) [9]. Moreover, the eigenfunctions
corresponding to these discrete eigenvalues form
a convenient basis with respect to which one
can systematically extend the Helmholtz-Kirchhoff
point-vortex model described above to include the
effects of viscosity and finite core size [16].

Recall that a Lyapunov functional for a dynamical
system is a continuous function, bounded below
on the phase space of the dynamical system, which
when evaluated on an orbit of the dynamical
system is monotonic nonincreasing and bounded
below. (Very colloquially, it is a function whose
value decreases with time when evaluated along
solutions of the dynamical system.) Recall that
our goal is to understand how the vorticity forms
large structures after very long times. One way
of characterizing the long-time asymptotics of a
dynamical system is through theω-limit set, which
is the set of points in the phase space which a
trajectory approaches arbitrarily closely to as time
tends to infinity. If the trajectory approaches a
stable fixed point, then the ω-limit set will consist
just of this fixed point. However, the ω-limit
set can also be a periodic orbit or even some
chaotic attractor. Note that it is not immediately
apparent that every trajectory will have anω-limit.
This follows if the solutions of the dynamical
system satisfy certain compactness conditions.
For the remainder of the article we will assume
that the solutions of the vorticity equation satisfy
these conditions, though proving this takes some
work—the details are explained in [10].

A key tool in locating the ω-limit set is the
LaSalle Invariance Principle, which says that given
a Lyapunov functional for a dynamical system, the
ω-limit set of a trajectory must lie in the set on
which the Lyapunov function is constant (when
evaluated along an orbit). More precisely, if the
points in the phase space of the dynamical system
are denoted by w , if the flow or semi-flow defined
by the dynamical system is denoted by Φt , and if
the Lyapunov functional is denoted by H(w) (and
it is differentiable), then theω-limit set must lie in

the set of points

(13) E = {w | d
dt
H(Φt(w))|t=0 = 0}.

Let’s now return to rescaled vorticity equation
(11) and make use of one more analogy. So far, we
have considered the equation in which we ignored
the dissipative term and retained only the time
derivative and the nonlinearity, and we have also
ignored the nonlinear term and retained only the
dissipative term. Let’s finally retain all the terms
in (11) but ignore for the moment the fact that the
velocity field is linked to the vorticity and pretend
that it is just some given, divergence-free vector
field. In this case if we use the fact that ∇ · u = 0,
we can write (11) as

(14) ∂τw = ν∆w −∇ · (w∇U) ,

where ∇U(ζ, τ) = u(ζ, τ) − 1
2ζ. This equation is

just the Fokker-Planck equation, which describes
the evolution of the probability distribution of
the location of a particle in a gas confined by the
potential U and with diffusive effects modeled by
the term ν∆w . Equation (14) has been studied
extensively by physicists and mathematicians for
more than a century, and, in particular, motivated
by Boltzmann’s theory that the entropy of such
a system should never decrease, Lyapunov func-
tionals have been developed that are based on
the entropy. (See [14] for a nice discussion of
the interplay between physics and analysis in this
problem.)

The classical entropy function for solutions of
(11) would be S[w](t) =

∫
R2 w(ζ) lnw(ζ)dζ, but

as explained in [14] it is often more useful to study
the relative entropy, that is, the entropy relative to
the expected asymptotic state of the system. In this
case our candidate for the asymptotic state of the
system is one of the Oseen vortices Ωα defined in
(12), which results in a relative entropy functional

(15) H[w](τ) =
∫
R2
w(ζ, τ) ln

(
w(ζ, τ)Ωα(ζ)

)
dζ.

Of course, so far, there is no proof that this is
a Lyapunov functional for the (rescaled) vorticity
equation. It is a candidate, suggested by the analogy
between (11) and the Fokker-Planck equation, but
in the actual vorticity equation the fluid velocity is
not independent of the vorticity (and in particular
the vorticity equation, unlike the Fokker-Planck
equation, is a nonlinear equation). Furthermore,
a second problem is apparent from formula (15).
Since solutions of the Fokker-Planck equation
represent probability densities, it is natural to
assume that they are nonnegative, and consequently
the logarithm in (15) is well defined. However, it
is quite unnatural to assume that solutions of
the vorticity equation are all of one sign—typical
solutions intermingle regions of positive vorticity
with regions of negative vorticity, and for such
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solutions it becomes impossible to define the
relative entropy functional.

We’ll return to the second of these problems in
a moment, but first consider whether or not (15) at
least defines a Lyapunov functional for solutions
of the vorticity equation which are everywhere
positive. As we’ll explain below, if the solution of
the vorticity equation is positive at some instant of
time, it will remain so for all later times. Assuming
that the solution is positive for some time t and
that the vorticity tends to zero sufficiently rapidly
as |ζ| → ∞ so that the integral in (15) converges,
we can compute the derivative of the entropy, and
we find:
(16)
d
dτ
H[w](τ) =

∫
R2

(
1+ ln

(
w(ζ, τ)Ωα(ζ)

))
∂w
∂τ
dζ.

If we now use (11) to rewrite the time derivative of
the vorticity and then integrate by parts (and use
the relationship between vorticity and velocity), we
find

(17)
d
dτ
H[w](τ) = −

∫
R2
w(ζ)

∣∣∣∣∇( wΩα
)∣∣∣∣2

dζ.

Since w is positive, (17) shows that for such solu-
tions the relative entropy function is a Lyapunov
function. One can also show H is bounded below
for w in an appropriate function space (and that
the compactness properties mentioned above also
hold), and hence the LaSalle Invariance Principle
holds. This means that the ω-limit set for any
positive solution of the vorticity equation must lie
in the set where d

dτH[w](τ) = 0. Since w(ζ, t) > 0,
(17) implies that the only way the time derivative
of the entropy can vanish is if

(18)
(
wΩα
)
= constant;

i.e., if the solution is an Oseen vortex. This means
that for positive solutions of the vorticity equation
the only possible asymptotic states are the Oseen
vortices.

As we remarked above, the assumption that
solutions are positive is a priori a very unnatural
one for the vorticity equation, and thus we now
turn to the question of how to treat solutions
that change sign. To deal with such solutions,
we need another Lyapunov functional. The clue
to finding this second Lyapunov function is the
observation we made earlier about the similarity
of the two-dimensional vorticity equation (4) to a
nonlinear heat equation. Closer inspection shows
that, just like the heat equation, solutions of (4)
satisfy a maximum principle. In particular:

• A solution that is positive (for all z) for
some time t0 will remain positive for any
later time t > t0, and

• If the initial condition for the vorticity
equation satisfies ω(z,0) ≥ 0 for all z,
then the solution will be strictly positive
for all times t > 0.

Note that these remarks also hold for solutions
of the rescaled vorticity equation (11). As a conse-
quence of these two observations, we find a second,
surprisingly simple, Lyapunov functional, namely
the L1(R2)-norm of the solution. Define

(19) K[w](τ) =
∫
R2
|w(ζ, τ)|dζ.

To see that this is a Lyapunov functional, split the
solution of (11) into its positive and negative parts,
i.e., write w(ξ,η, τ) = w+(ξ, η, τ) − w−(ξ, η, τ),
where w± are both nonnegative and satisfy the
equations:

(20) ∂τw± = Lνw± − u · ∇w±.
Here, u is the total velocity field—i.e., the veloc-
ity field associated with w(ζ, τ) rather than that
associated with either w+ or w−. We note that
one can show (by undoing the change to scaling
variables) that solutions of (20) also satisfy two
properties listed above. If we choose initial con-
ditions for w± so that w+(ζ,0) = sup(w(ζ,0),0)
and w−(ζ,0) = − inf(w(ζ,0),0), then w±|τ=0 are
both nonnegative and have disjoint support. By the
maximum principle, ifω±|τ=0 6≡ 0, both w± will be
strictly positive for all positive times. From this we
find that

K[w](τ) =
∫
R2
|w+(ζ, τ)−w−(ζ, τ)|dζ

≤
∫
R2
w+(ζ, τ)dζ +

∫
R2
w−(ζ, τ)dζ

=
∫
R2
w+(ζ,0)dζ +

∫
R2
w−(ξ, η,0)dζ(21)

=
∫
R2
|w+(ζ,0)dζ −w+(ζ,0)|dζ

= K[w](0) ,
where the equality in the middle of (21) follows
from the fact that solutions of (20) conserve “mass”
(i.e., the integral of the solution), as do solutions of
the vorticity equation. From (21) we see that K is a
Lyapunov functional for solutions of the vorticity
equation. Furthermore, recalling that the maximum
principle implies that both w± are strictly positive,
we see that the first inequality in (21) will be a strict
inequality unless either w+ or w− is identically
zero. Thus the Lyapunov functional K is strictly
decreasing except on the set of functions that is
either strictly positive or strictly negative, and,
appealing again to the LaSalle invariance principle,
we see that the ω-limit set of solutions must lie in
the set where K is not strictly decreasing—i.e., in
the set of either everywhere positive or everywhere
negative solutions.

If we now put together our two Lyapunov func-
tionals, we have the following conclusion, namely,
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for general solutions, the Lyapunov functional K
implies that the ω-limit set must lie in the set
of solutions of one sign. However, for solutions
of one sign, the relative entropy functional, H,
implies that the ω limit set must be an Oseen
vortex. So far, we have been somewhat vague about
the function space on which we work, but in fact
these results hold for any solution whose initial
vorticity is absolutely integrable (for this and other
technical details we refer the reader to [10]) and
thus we have

Theorem 1.1. Any solution of the two-dimensional
vorticity equation whose initial vorticity is in L1(R2)
and whose total vorticity

∫
R2 ω(z,0)dz 6= 0 will tend,

as time tends to infinity, to the Oseen vortex with
parameter α =

∫
R2 ω(z,0)dz.

Extensions and Conclusions
Theorem 1.1 implies that with even the slightest
amount of viscosity present, two-dimensional fluid
flows will eventually approach a single large vortex.
However, if the viscosity is small, this convergence
may take a very long time. Furthermore, Onsager’s
original calculations of vortex coalescence were for
an inviscid fluid model, which suggests that some
sort of coalescence should occur independent
of the viscosity—and, in particular, on a time
scale that does not depend on the viscosity. Thus,
while Theorem 1.1 says that eventually all two-
dimensional viscous flows will approach an Oseen
vortex, there should be a variety of interesting and
important behaviors that manifest themselves in
the fluid prior to reaching the asymptotic state
described in the theorem.

One of the most important physical effects,
and one of the hardest to understand from a
mathematical point of view, concerns the merger
of two or more vortices. Clearly such mergers
must take place in order for the multitude of
small vortices present in an initially turbulent
flow to coalesce into the small number of large
vortices predicted by Onsager. Furthermore, as
discussed in [15], this process plays a key role
in many nonturbulent flows such as the wingtip
vortices that form behind an airplane wing, as
illustrated in Figure 6. As the authors of [15]
explain, although the phenomenon is obviously
a three-dimensional one, and three-dimensional
effects undoubtedly influence the details of the
flow, the two-dimensional dynamics “contain all the
ingredients necessary to explore and understand
the physics involved in vortex merging”. While
the Oseen vortex that characterizes the long-
time asymptotics of the flow has the property
that the effects of the nonlinear terms in the
vorticity equation vanish, both numerical and
experimental studies show that the merger process
is highly nonlinear and involves the filamentation
and interpenetration of the two vortices into one

co-rotating vortices
merging

counter-rotating
vortices

Figure 6. The merger of wingtip vortices
behind an airplane (from [15]). Although the
flow is obviously three-dimensional, much of
the process of vortex merger can be
understood by considering cross-sections of
the flow as if they were two-dimensional
vortices.

Figure 7. An experimental dye visualization of
the merger of two-dimensional vortices, from
[15]

another, as shown in Figure 7. While physically
based criteria exist to predict when merger will
occur, a rigorous mathematical understanding
of this phenomenon is so far almost completely
absent.

A second interesting phenomenon that is par-
ticularly noticeable in the numerical simulations
of two-dimensional flows on bounded domains is
the creation and persistence of metastable struc-
tures. For square domains with periodic boundary
conditions, the total vorticity is forced to be zero,
and as a consequence the asymptotic state is the
zero state. Nonetheless, a number of different,
very long-lived, metastable states are observed
[22]. The origin and properties of these states in
the two-dimensional Navier-Stokes equation is still
not understood, but statistical mechanical ideas
have again been used to propose an explanation
associated with the different time scales on which
energy and entropy are dissipated [4]. Similar
metastable phenomena also occur in the weakly
viscous Burgers’ equation, which is often used
as a simplified testing ground for understanding
the Navier-Stokes equations. There, the long-time
asymptotics are again governed by a family of
self-similar states, analogous to the Oseen vortices
in the two-dimensional Navier-Stokes equations.
However, for very long times (exponentially long in
the reciprocal of the viscosity!), one observes not
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the self-similar state but rather a special family of
solutions known as “diffusive N-waves” [11], [3]. As
in the expected behavior of the two-dimensional
Navier-Stokes equation, the metastable states in
Burgers’ equation are closely related to theN-waves
of the inviscid equation, while the self-similar as-
ymptotic state depends crucially on the presence
of dissipation in the systems. Because of the
simpler nature of Burgers’ equation, one can show
that the metastable states form a one-dimensional
attractive invariant manifold in the phase space
of the equation, and one can speculate that a
similar dynamical systems explanation might ac-
count for the metastable behavior observed in the
two-dimensional Navier-Stokes equation, as it has
for the long-time asymptotics of solutions.

In summary, two-dimensional fluid motions
present interesting differences with three-
dimensional fluids from both the mathematical
and physical points of view. In spite of the fact
that we live in a three-dimensional world, in
many situations a two-dimensional fluid model is
appropriate. One important situation in which this
is the case and for which a two-dimensional fluid
model is often used is the earth’s atmosphere. In
two dimensions, it is particularly convenient to
study the evolution of the vorticity, rather than
work directly with the velocity field of the fluid.
Ever since Helmholtz and Kirchhoff developed
an ordinary differential equation model to de-
scribe the evolution of point vortices, dynamical
systems ideas have played an important role in
understanding the evolution of the vorticity in
two-dimensional flows, a theme that continues to
pay dividends to the present day.

A distinctive feature of two-dimensional flows is
the “inverse cascade” of energy from small scales to
large ones. Lars Onsager first sought to explain this
phenomenon by studying the statistical mechanics
of large collections of inviscid point vortices. While
Onsager’s observation about inviscid flows remains
unexplained, dynamical systems ideas—in this case
Lyapunov functionals inspired by kinetic theory—
have been used to show that in the presence of an
arbitrarily small amount of viscosity, essentially
any two-dimensional flow whose initial vorticity
field is absolutely integrable will evolve as time goes
to infinity toward a single, explicitly computable
vortex.
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