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The Compressible Navier-Stokes Equations

In their 1995 paper, Hoff and Zumbrun study the compressible
Navier-Stokes equations over Rd :

ρt + div m = 0

mj
t + div

(mjm

ρ

)
+ P(ρ)xj = ε ∆

(mj

ρ

)
+ η div

(m
ρ

)
xj

These equations govern the density ρ and momentum m of a fluid and are
particularly relevant for fluids having high Mach number.
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The Compressible Navier-Stokes Equations pt 2

They examined perturbations away from the constant state

(
ρ∗

m∗

)
=

(
1
0

)
,

showing that if u0 = (ρ0,m0)T is such that

E = ‖u0‖L1 + ‖u0‖H [d/2]+`

for ` ≥ 3 is sufficiently small, then the solution u(x , t) = (ρ,m)T satisfies

‖u(t)‖Lp ≤ C (`)EL(t)(1 + t)−rp

for 2 ≤ p ≤ ∞, where rp = d
2 (1− 1

p ) is the rate of decay of the heat
kernel and

L(t)

{
log(1 + t) if d = 2
1 otherwise
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The Linear Artificial Viscosity System

In the course of obtaining their result, Hoff and Zumbrun analyze the
following system:

ρt + div m =
1

2
(ε+ η)∆ρ

mt + c2∇ρ = ε∆m +
1

2
(η − ε)∇div m

Hoff and Zumbrun refer to this system as the effective linear artificial
viscosity system, and show that the solution u(x , t) = (ρ,m)T of the
CNSE are time asymptotic to those of the artificial viscosity system:

‖u(t)− G̃ (t) ∗ u0‖Lp ≤ C (`)E (1 + t)−rp−1/2
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Higher order asymptotics

Kagei and Okita expanded on these results by computing a higher order
profile of the asymptotic behavior. For d ≥ 3, they showed

∥∥∥∥u(t)−G (t)∗u0−
d∑

i=1

∂iG1(t, ·)
∫ ∞

0

∫
Rd

F0
i dyds

∥∥∥∥
Lp
≤ CK (t)(1 + t)−rp−

3
4

We aim to provide a method by which the asymptotic behavior can be
computed out to any desired order. To do so we’ll study the linear
artificial viscosity system.
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Fourier Analysis and Helmholtz Decomposition

We assume our solutions are such that we can take the Fourier transform.
The transformed solutions satisfy

ρ̂t + iξT · m̂ = −ν|ξ|2ρ̂

m̂t + ic2ξρ̂ = −ε|ξ|2m̂ − 1

2
(η − ε)ξ

(
ξT · m̂

)
where ν = 1

2 (ε+ η). We then make use of the Helmholtz projection, which
separates the divergence and divergence free parts of m:

m̂ =
iξ

|ξ|2
â + b̂

Here â = −iξT · m̂ and b̂ satisfies ξT · b̂ = 0.
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Hyperbolic-parabolic system

By making this projection, one must then consider the resulting system:

∂tρ = ν∆ρ− a

∂ta = −c2∆ρ+ ν∆a

∂tb = ε∆b

The incompressible part is decoupled from the rest of the system and has
already been analyzed in [Gallay and Wayne, 2002], hence we study the
resulting hyperbolic-parabolic system for ρ and a. We’ll work over R2.
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Hyperbolic-parabolic system pt 2

To this end, we introduce the following operators:

W =

(
0 −1

−c2∆ 0

)
and H =

(
ν∆ 0
0 ν∆

)
and hence our system can be written as

∂t

(
ρ
a

)
=
(
W + H

)(ρ
a

)
(1)

We’ll also be working in the function space L2(n) which is the closure of
the smooth functions having compact support with respect the norm

‖f ‖L2(n) =
(∫

R2

(1 + |x |2)n|f |2dx
)1/2

Roland Welter (BU) Decay profiles July 2, 2018 9 / 22



Main Result

Theorem

Choose n > 1, and suppose that ρ0, a0 ∈ C∞ ∩ L2(n). If k ∈ Z is such
that k + 1 < n ≤ k + 2, then the solution ~u(x , t) = (ρ, a)T of (1) with
initial data ~u0 = (ρ0, a0)T satisfies

‖~u(·, t)‖L∞ ≤ C‖~u0‖L2(n)(1 + νt)−5/4

and

∥∥∥∥~u(·, t)−
∑
|α|≤k

1

(1 + νt)
|α|

2
+1

S(t)(Hα, ~u0)φα

∥∥∥∥
L∞

≤ C‖~u0‖L2(1 + t)−
5
4
− k

2

where S(t) is the semigroup generated by W .
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Sketch of the proof

1 Commutativity of the W and H operators

2 Hermite expansion for solutions of the heat equation

3 Decay of solutions to the wave equation
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Commutativity of the W and H operators

In the Fourier domain, the system is

∂t

(
ρ̂
â

)
=
(
Ŵ + Ĥ

)(ρ̂
â

)
hence the solution is found to be(

ρ(x , t)
a(x , t)

)
=

1

(2π)2

∫
R2

e ix ·ξ exp
[(
Ŵ + Ĥ

)
t
](ρ̂0(ξ)

â0(ξ)

)
dξ

Since the matrices Ŵ and Ĥ commute for all ξ ∈ R2, we can write this as(
ρ(x , t)
a(x , t)

)
=

1

(2π)2

∫
R2

e ix ·ξ exp
[
Ŵ t
]

exp
[
Ĥt
](ρ̂0(ξ)

â0(ξ)

)
dξ
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Commutativity of the W and H operators

In the Fourier domain, the system is

∂t

(
ρ̂
â

)
=
(
Ŵ + Ĥ

)(ρ̂
â

)
hence the solution is found to be(

ρ(x , t)
a(x , t)

)
=

1

(2π)2

∫
R2

e ix ·ξ exp
[(
Ŵ + Ĥ

)
t
](ρ̂0(ξ)

â0(ξ)

)
dξ

Since the matrices Ŵ and Ĥ commute for all ξ ∈ R2, we can write this as(
ρ(x , t)
a(x , t)

)
=

1

(2π)2

∫
R2

e ix ·ξ exp
[
Ŵ t
]
exp

[
Ĥt
](ρ̂0(ξ)

â0(ξ)

)
dξ
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Hermite Expansion

As shown in [Gallay and Wayne, 2002], solutions of the heat equation in
L2(n) have a special form which we can make use of here. Suppose that
k ∈ Z is such that k + 1 < n ≤ k + 2. We define

φ0(x , t) =
1

4π
e
− |x|2

4(1+νt)

φα(x , t) = (1 + νt)|α|/2∂αx φ0(x)

for |α| ≤ k, and let

Hα(x) =
2|α|

α!
e |x |

2/4∂αx

(
e−|x |

2/4
)

be the α-th Hermite polynomial.
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Hermite expansion pt 2

Lemma

Let n ≥ 0, and suppose that f0 ∈ L2(n). Let k ∈ Z be such that
k + 1 < n ≤ k + 2. If S̃(t) is the semigroup associated with the heat
equation, then the solution f (x , t) = S̃(t)f0 has the form

f (x , t) =
∑
|α|≤k

(Hα, f0)(1 + νt)−
|α|

2
−1φα + R(x , t)

where for all ε > 0

‖R(·, t)‖L2(n) ≤ C‖f0‖L2(n)

(
1 + νt

)− 1
2

(1+n−ε)
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Commutativity of the W and H operators

In the Fourier domain, the system is

∂t

(
ρ̂
â

)
=
(
Ŵ + Ĥ

)(ρ̂
â

)
hence the solution is found to be(

ρ(x , t)
a(x , t)

)
=

1

(2π)2

∫
R2

e ix ·ξ exp
[(
Ŵ + Ĥ

)
t
](ρ̂0(ξ)

â0(ξ)

)
dξ

Since the matrices Ŵ and Ĥ commute for all ξ ∈ R2, we can write this as(
ρ(x , t)
a(x , t)

)
=

1

(2π)2

∫
R2

e ix ·ξ exp
[
Ŵ t
](f̂ (ξ, t)

ĝ(ξ, t)

)
dξ
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Decay of solutions to the wave equation

Following [Constantin, 2012], we make use of the method of oscillatory
integrals for bounding solutions of the wave equation. Write

ρ(x , t) =
1

(2π)2

∫
R2

e ix ·ξ
[

sin(ct|ξ|)|ξ|−1ĝ(ξ) + cos(ct|ξ|)f̂ (ξ)
]
dξ

= ρ+ + ρ−

where

ρ± =
1

2(2π)2

∫
R2

e i(x ·ξ±ct|ξ|)
(
f̂ ∓ i |ξ|−1ĝ

)
dξ

Without loss of generality, assume x = (0, |x |).

Roland Welter (BU) Decay profiles July 2, 2018 17 / 22



Decay of solutions to the wave equation pt 2

Using a smooth cutoff function χ, we can write

ρ+(x , t) =
1

2(2π)2
×[ ∫

R2 e
i(|x |ξ2+ct|ξ|)[f̂ − i |ξ|−1ĝ

]
(1− χ)dξ

+
∫∞

0

∫ δ
0 e icrt(λ cos θ+1)

[
f̂ − ir−1ĝ

]
χdθrdr

+
∫∞

0

∫ π
π−δ e

icrt(λ cos θ+1)
[
f̂ − ir−1ĝ

]
χdθrdr

]
= T1 + T2 + T3

where λ = |x |
ct , r = |ξ| and cos θ = ξ2

|ξ| .
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Decay of solutions to the wave equation pt 3

One can bound each of the terms separately. For T1

T1 =
1

2(2π)2

∫
R2

e i(|x |ξ2+ct|ξ|)[f̂ − i |ξ|−1ĝ
]
(1− χ)dξ

write

e ict|ξ| =
( 1

ict

|ξ|
ξ1

)j ∂j
∂ξj1

e ict|ξ|

By integrating by parts we can obtain the desired decay. Similarly, for T2

T2 =
1

2(2π)2

∫ ∞
0

∫ δ

0
e icrt(λ cos θ+1)

[
f̂ − ik−1ĝ

]
χdθrdr

write

e icrt(λ cos θ+1) =
( 1

ict(λ cos θ + 1)

)j ∂j
∂r j

e icrt(λ cos θ+1)
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Decay of solutions to the wave equation pt 4

For T3, there are two cases: when |x | ∼ ct and when |x | is far from the
light cone.

When |x | is far from the light
cone, the same integration by
parts technique can be used.

When |x | ∼ ct, one needs to
explicitly use the Hermite
expansion and bound the
integral using the properties of
each term.
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Future Directions

1 Weaken the regularity assumptions.

2 Extend to the nonlinear artificial viscosity case.

3 Obtain results in higher dimensions.

4 Relate expansion to the compressible Navier-Stokes.
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