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Well-posedness problem and Scattering

Well-posedness problem

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

a solution exists in short time or long time,

the solution is unique,

the solution’s behavior changes continuously with the initial data.

Scattering

the solutions of the nonlinear problem behave asymptotically like the
solutions of the associated linear problem.
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Introduction of Schrödinger equations

Initial value problem of the linear Schrödinger equations:

⎧⎪⎪⎨⎪⎪⎩

i∂tu +∆u = 0,

u(0, x) = u0(x).

Fourier transformation gives the following solution:

û(t, ξ) = e−it ∣ξ∣
2

û0(ξ), then u(t, x) = e it∆u0.

The power-type nonlinear Schrödinger equations (NLS):

⎧⎪⎪⎨⎪⎪⎩

i∂tu +∆u = ± ∣u∣p−1 u,

u(0, x) = u0(x),
(pNLS)

u ∶ Rt ×Rd
x → C is a complex-valued function of time and space, p > 1

Duhamel formula:

u(t) = e it∆u0 ∓ i ∫
t

0
e i(t−s)∆ ( ∣u∣p−1

u) (s, x)ds
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Conservation laws

This equation (pNLS) conserves

Mass,

M(u(t)) ∶= ∫
Rd

∣u(t, x)∣2 dx =M(u0),

Total energy or Hamiltonian,

E(u(t)) ∶= ∫
Rd

1

2
∣∇u(t, x)∣2 ± 1

p + 1
∣u(t, x)∣p+1 dx = E(u0),

⎧⎪⎪⎨⎪⎪⎩

+ ∶ defocusing ←ÐWe center the discussion below here ⋆
− ∶ focusing

and Momentum,

P(u(t)) ∶= ∫
Rd

Im[ū(t, x)∇u(t, x)]dx = P(u0).
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Strichartz estimates

We call a pair of exponents (q, r) admissible if

2 ≤ q, r ≤∞, 2

q
+ d

r
= d

2
and (q, r ,d) ≠ (2,∞,2).

Then for any admissible exponents (q, r) and (q̃, r̃) we have

the homogeneous Strichartz estimate

∥e it∆u0∥Lqt Lrx(Rd)
≤ C ∥u0∥L2(Rd) ,

and the inhomogeneous Strichartz estimate

∥∫
s<t

e i(t−s)∆F (s)ds∥
Lqt L

r
x(R×Rd)

≤ C ∥F ∥
Lq̃
′

t Lr̃ ′x (R×Rd)
.
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Symmetries

Time and space translation invariance, spatial rotation symmetry,
phase rotation symmetry, time reversal symmetry

Pseudo-conformal symmetry, Galilean invariance: only at d
2 = 2

p−1

Scaling symmetry

If u solves (pNLS), then for any λ ∈ R

uλ(t, x) = λ−
2

p−1 u( t

λ2
,
x

λ
) with uλ,0(x) = λ−

2
p−1 u0(

x

λ
) solves (pNLS).

Initial data under scaling:

∥uλ,0∥Ḣs ∼ λ−s+sc ∥u0∥Ḣs , where sc =
d

2
− 2

p − 1
.

Different regimes:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

s > sc subcritical → size of initial data ↓ while time of existence ↑
s = sc critical → initial data remains invariant

s < sc supercritical → size of initial data ↑ while time of existence ↓
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Back to the question

Local well-posedness?

Global well-posedness?
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Local (in time) well-posedness (LWP)

Both subcritical and critical cases were solved by Cazenave and
Weissler.

Tools: Strichartz estimates + fixed point argument

Time of existence:

⎧⎪⎪⎨⎪⎪⎩

Subcritical: depends only on the Hs norm of the data

Critical: depends also on the profile of the data
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Global (in time) well-posedness (GWP)

Subcritical? Critical?

Conservation law?

Iteration Bourgain’s high-low method

CKSTT’s I-method, etc

Subcritical

yes no



Defocusing critical NLS

Recall the Cauchy problem for the defocusing Ḣsc -critical NLS in R1+d :

⎧⎪⎪⎨⎪⎪⎩

i∂tu +∆u = ∣u∣p−1u,

u(0, x) = u0(x) ∈ Ḣsc (Rd).

with u ∶ R ×Rd → C, and sc = d
2 −

2
p−1 .

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

sc = 0 mass-critical

sc = 1 energy-critical

sc ∈ (0,1) intercritical

sc > 1 energy-supercritical

scsc
0 1

Mass-critical Energy-criticalIntercritical Energy-supercritical

X X
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Global (in time) well-posedness (GWP)

Subcritical? Critical?

Conservation law?

Iteration Bourgain’s high-low method

CKSTT’s I-method, etc

Subcritical

yes no

Conservation law?

Small data?

Iteration Background

Critical

yes

yes no



Background

● Energy-critical regime (sc = 1) Large data

d = 3 d = 4 d ≥ 5

Radial Bourgain, Grillakis

General Colliander-Keel-Staffilani-Takaoka-Tao Ryckman-Visan Visan

● Mass-critical regime (sc = 0) Large data

d = 1 d = 2 d ≥ 3

Radial Killip-Tao-Visan Tao-Visan-Zhang

General Dodson
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Global (in time) well-posedness (GWP)

Subcritical? Critical?

Conservation law?

Iteration Bourgain’s high-low method

CKSTT’s I-method, etc

Subcritical

yes no

Conservation law?

Small data?

Iteration Background

Critical

yes

yes no

Small data?

Iteration ?⋆

no

yes no



Background

● Intercritical regime and energy-supercritical regime (sc ≠ 0,1)
Large data

No conservation laws

Assume Ḣsc norm bounded

d = 2 d = 3 d ≥ 4

sc = 1
2 ⋆ Kenig-Merle Murphy

sc > 1 X
Killip-Visan, Miao-Murphy-Zheng,

Murphy, Dodson-Miao-Murphy-Zheng,...

0 < sc < 1 Murphy, Xie-Fang,...

sc < 0 Killip-Masaki-Murphy-Visan,...

The quintic Ḣ
1
2 -critical result in dimensions two remained open, because:

the interaction Morawetz estimates in d = 2 are significantly different
from those in d ≥ 3,

the endpoint Strichartz estimates fail.
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Main theorem

Let’s focus on the Cauchy problem for the defocusing Ḣ
1
2 -critical quintic

Schrödinger equation in R1+2:

⎧⎪⎪⎨⎪⎪⎩

i∂tu +∆u = ∣u∣4 u,
u(0, x) = u0(x) ∈ Ḣ

1
2 (R2).

(5NLS)

We show that if a solution remains bounded in Ḣ
1
2 (R2) in its maximal

interval of existence, then the interval is infinite and the solution scatters.

Theorem (Y. 2018)

Let u ∶ I ×R2 → C be a maximal-lifespan solution to (5NLS) such that

u ∈ L∞t Ḣ
1
2
x (I ×R2). Then u is global and scatters, with

∫
R
∫
R2

∣u(t, x)∣8 dxdt ≤ C (∥u∥
L∞t Ḣ

1
2
x (R×R2)

)

for some function C ∶ [0,∞)→ [0,∞).
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Road map (Bourgain, CKSTT, Kenig-Merle)

Argue by contradiction:

Step 1: existence of minimal blow-up solutions, that is,

∃ a solution u s.t. u blows up in L8
t,x norm with minimal L∞t Ḣ

1
2
x norm.

⎧⎪⎪⎨⎪⎪⎩

for large data assumption: L8
t,x norm is unbounded

for small data fact: GWP and L8
t,x norm is bounded

⇒ existence of minimal blow-up solutions

Moreover, u is almost periodic. (u concentrates in both space with
radius 1

N(t) and frequency with radius N(t).)

Definition (almost periodicity)

There exist functions: N ∶ I → R+, x ∶ I → R2, C ∶ R+ → R+ such that:

∫
∣x−x(t)∣≥

C(η)
N(t)

∣ ∣∇∣
1
2 u(t, x)∣

2
dx + ∫

∣ξ∣≥C(η)N(t)
∣ξ∣ ∣û(t, ξ)∣2 dξ ≤ η

for all t ∈ I and η > 0.
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Road map (Bourgain, CKSTT, Kenig-Merle)

Step 2: preclude the existence of minimal blow-up solutions

Main tools:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

conservation laws

suitable (frequency-localized interaction) Morawetz estimates

long-time Strichartz estimates
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Outline of proof (Step 2)

Now we prove this kind of u does not exist. Here, we classify u into the
following 4 classes:

Tmax <∞ Tmax =∞

∫
Tmax

0 N(t)dt <∞ I II

∫
Tmax

0 N(t)dt =∞ III IV

where

I, III: finite-time blow-up solutions

I, II: frequency cascade solutions

III, IV: quasi-soliton solutions

Note that in Ḣ
1
2 critical regime, ∫

Tmax

0 N(t)dt <∞ implies Tmax <∞,
hence there is No case II in this setting.
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Impossibility of quasi-soliton solutions ∫
Tmax

0 N(t)dt =∞

In dimensions two, Planchon-Vega and Colliander-Grillakis-Tzirakis proved
the following interaction Morawetz estimates:

Theorem (Interaction Morawetz estimates in 2D)

∥ ∣∇∣
1
2 ∣u(t, x)∣2∥

2

L2
t,x(I×R2)

≲ ∥u∥2
L∞t L2

x(I×R2) ∥u∥
2

L∞t Ḣ
1
2
x (I×R2)

.

Morawetz inequality above scales like ∫I N(t)dt.

To preclude the this case, we use interaction Morawetz estimates (FLME).

K ≤ ME ≤ o(K)

where K = ∫
T

0 N(t)dt.
Then take K →∞, contradiction!
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Impossibility of finite-time blow-up solutions Tmax <∞

To preclude the finite-time blow-up solutions, we consider the following
quantity:

y2(t,R) ∶= ∫
R2
χR(x) ∣u(t, x)∣2 dx ,

where χR(x) = χ( x
R ) is a smooth cutoff function, such that

χ(x) =
⎧⎪⎪⎨⎪⎪⎩

1 if ∣x ∣ ≤ 1

0 if ∣x ∣ > 2.

Then we can compute the derivative of y2 w.r.t. time t (the rate of
change in time)

∣∂y
2

∂t
∣ ≲ 1√

R
.

The fact limt→Tmax y
2(t,R) = 0 implies that y2(0,R) ≲ Tmax√

R
.

Next by taking R →∞, ∥u0∥2
L2
x
= limR→∞ y2(0,R) = 0 implies u0 ≡ 0.

Contradiction!
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Recap

Existence of minimal blow-up solutions

Classify solutions

Quasi-soliton solutions Finite-time blow-up solutions

Interaction Morawetz Cutoff mass

Contradiction by scaling Contradiction by mass

Done! ,



Outline

1 Introduction
Well-posedness problem and Scattering
Schrödinger equations
Conservation laws
Strichartz estimates
Symmetries
Local well-posedness
Gobal well-posedness

2 Main result

3 Road map

4 Outline of proof
Impossibility of quasi-soliton solutions
Impossibility of finite-time blow-up solutions

5 Generalization

Xueying Yu (UMass Amherst) GWP for the quintic NLS in R2 BU-Keio Workshop 2018 26 / 31



Generalization

Let’s focus on the Cauchy problem for the defocusing Ḣsc -critical
Schrödinger equation in R1+2:

⎧⎪⎪⎨⎪⎪⎩

i∂tu +∆u = ∣u∣2k u,
u(0, x) = u0(x) ∈ Ḣsc (R2),

((2k + 1)NLS)

where sc = 1 − 1
k .

Theorem (Y.-Haitian Yue 2018)

k = 3,4,5,6, . . .
Let u ∶ I ×R2 → C be a maximal-lifespan solution to ((2k + 1)NLS) such
that u ∈ L∞t Ḣsc

x (I ×R2). Then u is global and scatters, with

∫
R
∫
R2

∣u(t, x)∣4k dxdt ≤ C ( ∥u∥L∞t Ḣsc
x (R×R2)

)

for some function C ∶ [0,∞)→ [0,∞).
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Outline of proof (Step 2)

Now we prove this kind of u does not exist. Here, we classify u into the
following 4 classes:

Tmax <∞ Tmax =∞

∫
Tmax

0 N(t)
4
k
−1 dt <∞ I II

∫
Tmax

0 N(t)
4
k
−1 dt =∞ III IV

where

I, III: finite-time blow-up solutions

I, II: frequency cascade solutions

III, IV: quasi-soliton solutions

Note that

When k = 3,4, ∫
Tmax

0 N(t)
4
k
−1 dt <∞ implies Tmax <∞, hence there

is No case II in this setting.

When k = 5,6,7, . . . , we have all 4 cases.
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Differences

Impossibility of quasi-soliton solutions
Recall the Interaction Morawetz estimates in 2D

∥ ∣∇∣
1
2 ∣u(t, x)∣2∥

2

L2
t,x(I×R2)

≲ ∥u∥2
L∞t L2

x(I×R2) ∥u∥
2

L∞t Ḣ
1
2
x (I×R2)

Impossibility of frequency cascade solutions for k ≥ 5

⎧⎪⎪⎨⎪⎪⎩

∥u∥Ḣ−s ≲ 1

∥P≤c(η)N(t)u∥Ḣsc
x
≤ η

⇒ ∥P≤c(η)N(t)u∥L2
x
≲ ηα

∥P≥c(η)N(t)u∥L2
x
≲ 1
(c(η)N(t))sc

∥ ∣∇∣sc P≥c(η)N(t)u∥L2
x
≲ ε

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

⇒ ∥u∥L2
x
= 0

Impossibility of finite-time blow-up solutions
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Recap

Existence of minimal blow-up solutions

Classify solutions

Quasi-soliton Frequency cascade Finite-time blow-up

Interaction Morawetz More decay Cutoff mass

Contradiction by scaling Contradiction by mass Contradiction by mass

Done!,



Thank you for your attention!
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