Global well-posedness and scattering for the defocusing quintic nonlinear Schrödinger equation in two dimensions

#### Xueying Yu

Department of Mathematics and Statistics University of Massachusetts Amherst

> BU-Keio Workshop 2018 June 28th, 2018

# Outline



#### Introduction

- Well-posedness problem and Scattering
- Schrödinger equations
- Conservation laws
- Strichartz estimates
- Symmetries
- Local well-posedness
- Gobal well-posedness

- Impossibility of guasi-soliton solutions
- Impossibility of finite-time blow-up solutions

# Well-posedness problem and Scattering

#### • Well-posedness problem

a solution **exists** in short time or long time,

the solution is **unique**,

the solution's behavior changes continuously with the initial data.

#### Scattering

the solutions of the nonlinear problem behave asymptotically like the solutions of the associated linear problem.



#### Introduction of Schrödinger equations

• Initial value problem of the linear Schrödinger equations:

$$\begin{cases} i\partial_t u + \Delta u = 0, \\ u(0, x) = u_0(x). \end{cases}$$

Fourier transformation gives the following solution:

$$\hat{u}(t,\xi) = e^{-it |\xi|^2} \hat{u}_0(\xi), \quad \text{then } u(t,x) = e^{it\Delta} u_0.$$

• The power-type nonlinear Schrödinger equations (NLS):

$$\begin{cases} i\partial_t u + \Delta u = \pm |u|^{p-1} u, \\ u(0, x) = u_0(x), \end{cases}$$
(pNLS)

*u*: ℝ<sub>t</sub> × ℝ<sup>d</sup><sub>x</sub> → ℂ is a complex-valued function of time and space, *p* > 1
Duhamel formula:

$$u(t) = e^{it\Delta} u_0 \neq i \int_0^t e^{i(t-s)\Delta} \left( |u|^{p-1} u \right) (s,x) \, ds$$

Xueying Yu (UMass Amherst)

This equation (pNLS) conserves

Mass,

$$M(u(t)) \coloneqq \int_{\mathbb{R}^d} |u(t,x)|^2 dx = M(u_0),$$

• Total energy or Hamiltonian,

$$E(u(t)) \coloneqq \int_{\mathbb{R}^d} \frac{1}{2} |\nabla u(t,x)|^2 \pm \frac{1}{p+1} |u(t,x)|^{p+1} dx = E(u_0),$$
  
$$\begin{cases} + : \text{defocusing} \quad \longleftarrow \text{We center the discussion below here } \star \\ - : \text{focusing} \end{cases}$$

and Momentum,

$$\mathcal{P}(u(t)) \coloneqq \int_{\mathbb{R}^d} \operatorname{Im}[\bar{u}(t,x) \nabla u(t,x)] \, dx = \mathcal{P}(u_0).$$

We call a pair of exponents (q, r) admissible if

$$2 \leq q, r \leq \infty, \ \frac{2}{q} + \frac{d}{r} = \frac{d}{2} \text{ and } (q, r, d) \neq (2, \infty, 2).$$

Then for any admissible exponents (q, r) and  $(\tilde{q}, \tilde{r})$  we have

• the homogeneous Strichartz estimate

$$\left\|e^{it\Delta}u_0\right\|_{L^q_tL^r_x(\mathbb{R}^d)}\leq C \|u_0\|_{L^2(\mathbb{R}^d)},$$

• and the inhomogeneous Strichartz estimate

$$\left\|\int_{s < t} e^{i(t-s)\Delta} F(s) \, ds\right\|_{L^q_t L^r_x(\mathbb{R} \times \mathbb{R}^d)} \le C \, \|F\|_{L^{\tilde{q}'}_t L^{\tilde{r}'}_x(\mathbb{R} \times \mathbb{R}^d)}$$

# Symmetries

- Time and space translation invariance, spatial rotation symmetry, phase rotation symmetry, time reversal symmetry
- Pseudo-conformal symmetry, Galilean invariance: only at  $\frac{d}{2} = \frac{2}{p-1}$
- Scaling symmetry
  - If u solves (pNLS), then for any  $\lambda \in \mathbb{R}$

$$u_{\lambda}(t,x) = \lambda^{-\frac{2}{p-1}} u(\frac{t}{\lambda^2}, \frac{x}{\lambda}) \text{ with } u_{\lambda,0}(x) = \lambda^{-\frac{2}{p-1}} u_0(\frac{x}{\lambda}) \text{ solves (pNLS)}.$$

• Initial data under scaling:

$$\|u_{\lambda,0}\|_{\dot{H}^{s}} \sim \lambda^{-s+s_{c}} \|u_{0}\|_{\dot{H}^{s}}$$
, where  $s_{c} = \frac{d}{2} - \frac{2}{p-1}$ .

• Different regimes:

| .е I |
|------|
|      |
| :e ↓ |
| c    |

Xueying Yu (UMass Amherst)

# Local well-posedness?

# Global well-posedness?

Xueying Yu (UMass Amherst)

GWP for the quintic NLS in  $\mathbb{R}^2$ 

BU-Keio Workshop 2018 8 / 31

- Both subcritical and critical cases were solved by Cazenave and Weissler.
- Tools: Strichartz estimates + fixed point argument
- Time of existence:

Subcritical: depends only on the  $H^s$  norm of the data Critical: depends also on the profile of the data

# Global (in time) well-posedness (GWP)



◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

# Defocusing critical NLS

Recall the Cauchy problem for the defocusing  $\dot{H}^{s_c}$ -critical NLS in  $\mathbb{R}^{1+d}$ :

$$\begin{cases} i\partial_t u + \Delta u = |u|^{p-1}u, \\ u(0,x) = u_0(x) \in \dot{H}^{s_c}(\mathbb{R}^d) \end{cases}$$

with  $u: \mathbb{R} \times \mathbb{R}^d \to \mathbb{C}$ , and  $s_c = \frac{d}{2} - \frac{2}{p-1}$ .

 $\begin{cases} s_c = 0 & mass-critical \\ s_c = 1 & energy-critical \\ s_c \in (0, 1) & intercritical \\ s_c > 1 & energy-supercritical \end{cases}$ 



11 / 31

# Global (in time) well-posedness (GWP)



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Energy-critical regime  $(s_c = 1)$  Large data

|         | <i>d</i> = 3                           | <i>d</i> = 4  | <i>d</i> ≥ 5 |
|---------|----------------------------------------|---------------|--------------|
| Radial  | Bourgain, Grillakis                    |               |              |
| General | Colliander-Keel-Staffilani-Takaoka-Tao | Ryckman-Visan | Visan        |

• Mass-critical regime  $(s_c = 0)$  Large data

|         | <i>d</i> = 1 | <i>d</i> = 2     | <i>d</i> ≥ 3    |  |
|---------|--------------|------------------|-----------------|--|
| Radial  |              | Killip-Tao-Visan | Tao-Visan-Zhang |  |
| General |              | Dodson           |                 |  |

3

# Global (in time) well-posedness (GWP)



▲日▶ ▲圖▶ ▲画▶ ▲画▶ ▲国▼

# Background

- Intercritical regime and energy-supercritical regime ( $s_c \neq 0, 1$ ) Large data
  - No conservation laws
  - Assume  $\dot{H}^{s_c}$  norm bounded

|                           | <i>d</i> = 2 | <i>d</i> = 3                      | <i>d</i> ≥ 4 |
|---------------------------|--------------|-----------------------------------|--------------|
| $S_{c} = \frac{1}{2}$     | *            | Kenig-Merle                       | Murphy       |
| c > 1                     | Y            | Killip-Visan, Miao-Murphy-Zheng,  |              |
| $S_C > 1$                 | ^            | Murphy, Dodson-Miao-Murphy-Zheng, |              |
| $0 < s_c < 1$             |              | Murphy, Xie-Fang,                 |              |
| <i>s</i> <sub>c</sub> < 0 |              | Killip-Masaki-Murphy-Visan,       |              |

The quintic  $\dot{H}^{\frac{1}{2}}$ -critical result in dimensions two remained open, because:

- the interaction Morawetz estimates in d = 2 are significantly different from those in  $d \ge 3$ ,
- the endpoint Strichartz estimates fail.

Xueying Yu (UMass Amherst)

GWP for the quintic NLS in  $\mathbb{R}^2$ 

# Outline

Introductio

#### • Well-posedness problem and Scattering

- Schrödinger equations
- Conservation laws
- Strichartz estimates
- Symmetries
- Local well-posedness
- Gobal well-posedness

### Main result

#### B Road map

#### Outline of proof

- Impossibility of quasi-soliton solutions
- Impossibility of finite-time blow-up solutions

#### Generalization

### Main theorem

Let's focus on the Cauchy problem for the defocusing  $\dot{H}^{\frac{1}{2}}$ -critical quintic Schrödinger equation in  $\mathbb{R}^{1+2}$ :

$$\begin{cases} i\partial_t u + \Delta u = |u|^4 u, \\ u(0, x) = u_0(x) \in \dot{H}^{\frac{1}{2}}(\mathbb{R}^2). \end{cases}$$
(5NLS)

We show that if a solution remains bounded in  $\dot{H}^{\frac{1}{2}}(\mathbb{R}^2)$  in its maximal interval of existence, then the interval is infinite and the solution scatters.

Theorem (Y. 2018)

Let  $u: I \times \mathbb{R}^2 \to \mathbb{C}$  be a maximal-lifespan solution to (5NLS) such that  $u \in L_t^{\infty} \dot{H}_x^{\frac{1}{2}}(I \times \mathbb{R}^2)$ . Then u is global and scatters, with

$$\int_{\mathbb{R}} \int_{\mathbb{R}^2} |u(t,x)|^8 dx dt \leq C \left( \|u\|_{L^{\infty}_t \dot{H}^{\frac{1}{2}}_x(\mathbb{R} \times \mathbb{R}^2)} \right)$$

for some function  $C : [0, \infty) \to [0, \infty)$ .

# Outline

Introductio

#### • Well-posedness problem and Scattering

- Schrödinger equations
- Conservation laws
- Strichartz estimates
- Symmetries
- Local well-posedness
- Gobal well-posedness
- 2 Main result

# 3 Road map

#### Outline of proof

- Impossibility of quasi-soliton solutions
- Impossibility of finite-time blow-up solutions

#### Generalization

# Road map (Bourgain, CKSTT, Kenig-Merle)

Argue by contradiction:

- Step 1: existence of minimal blow-up solutions, that is,
  - $\exists$  a solution *u* s.t. *u* blows up in  $L_{t,x}^8$  norm with minimal  $L_t^{\infty}\dot{H}_x^{\frac{1}{2}}$  norm.

 $\begin{cases} \text{for large data} & \text{assumption: } L^8_{t,x} \text{ norm is unbounded} \\ \text{for small data} & \text{fact: GWP and } L^8_{t,x} \text{ norm is bounded} \end{cases}$ 

 $\Rightarrow$  existence of **minimal blow-up solutions** 

Moreover, *u* is **almost periodic**. (*u* concentrates in both space with radius  $\frac{1}{N(t)}$  and frequency with radius N(t).)

#### Definition (almost periodicity)

There exist functions:  $N: I \to \mathbb{R}^+$ ,  $x: I \to \mathbb{R}^2$ ,  $C: \mathbb{R}^+ \to \mathbb{R}^+$  such that:

$$\int_{|x-x(t)|\geq \frac{C(\eta)}{N(t)}} \left| \left| \nabla \right|^{\frac{1}{2}} u(t,x) \right|^2 dx + \int_{|\xi|\geq C(\eta)N(t)} \left| \xi \right| \left| \hat{u}(t,\xi) \right|^2 d\xi \leq \eta$$

for all  $t \in I$  and  $\eta > 0$ .

• Step 2: preclude the existence of minimal blow-up solutions

Main tools:

conservation laws

suitable (frequency-localized interaction) Morawetz estimates long-time Strichartz estimates

# Outline

Introductio

#### • Well-posedness problem and Scattering

- Schrödinger equations
- Conservation laws
- Strichartz estimates
- Symmetries
- Local well-posedness
- Gobal well-posedness
- 2 Main result

### 3 Road map

#### Outline of proof

- Impossibility of quasi-soliton solutions
- Impossibility of finite-time blow-up solutions

#### Generalization

# Outline of proof (Step 2)

Now we prove this kind of u does not exist. Here, we classify u into the following 4 classes:

|                                      | $T_{max} < \infty$ | $T_{max} = \infty$ |
|--------------------------------------|--------------------|--------------------|
| $\int_0^{T_{max}} N(t)  dt < \infty$ | I                  | Π                  |
| $\int_0^{T_{max}} N(t)  dt = \infty$ |                    | IV                 |

where

- I, III: finite-time blow-up solutions
- I, II: frequency cascade solutions
- III, IV: quasi-soliton solutions

Note that in  $\dot{H}^{\frac{1}{2}}$  critical regime,  $\int_{0}^{T_{max}} N(t) dt < \infty$  implies  $T_{max} < \infty$ , hence there is **No case II** in this setting.

22 / 31

# Impossibility of quasi-soliton solutions $\int_0^{T_{max}} N(t) dt = \infty$

In dimensions two, Planchon-Vega and Colliander-Grillakis-Tzirakis proved the following interaction Morawetz estimates:

Theorem (Interaction Morawetz estimates in 2D)

$$\left\| |\nabla|^{\frac{1}{2}} |u(t,x)|^{2} \right\|_{L^{2}_{t,x}(I\times\mathbb{R}^{2})}^{2} \lesssim \|u\|_{L^{\infty}_{t}L^{2}_{x}(I\times\mathbb{R}^{2})}^{2} \|u\|_{L^{\infty}_{t}\dot{H}^{\frac{1}{2}}_{x}(I\times\mathbb{R}^{2})}^{2}$$

• Morawetz inequality above scales like  $\int_I N(t) dt$ .

To preclude the this case, we use interaction Morawetz estimates (FLME).

$$K \leq ME \leq o(K)$$

where  $K = \int_0^T N(t) dt$ . Then take  $K \to \infty$ , contradiction!

# Impossibility of finite-time blow-up solutions $T_{max} < \infty$

To preclude the finite-time blow-up solutions, we consider the following quantity:

$$y^{2}(t,R) \coloneqq \int_{\mathbb{R}^{2}} \chi_{R}(x) |u(t,x)|^{2} dx,$$

where  $\chi_R(x) = \chi(\frac{x}{R})$  is a smooth cutoff function, such that

$$\chi(x) = \begin{cases} 1 & \text{if } |x| \le 1 \\ 0 & \text{if } |x| > 2. \end{cases}$$

Then we can compute the derivative of  $y^2$  w.r.t. time t (the rate of change in time)

$$\left|\frac{\partial y^2}{\partial t}\right| \lesssim \frac{1}{\sqrt{R}}$$

The fact  $\lim_{t \to T_{max}} y^2(t, R) = 0$  implies that  $y^2(0, R) \leq \frac{T_{max}}{\sqrt{R}}$ . Next by taking  $R \to \infty$ ,  $\|u_0\|_{L^2_x}^2 = \lim_{R \to \infty} y^2(0, R) = 0$  implies  $u_0 \equiv 0$ . Contradiction!

Xueying Yu (UMass Amherst)

#### Recap



# Outline

Introductio

#### • Well-posedness problem and Scattering

- Schrödinger equations
- Conservation laws
- Strichartz estimates
- Symmetries
- Local well-posedness
- Gobal well-posedness
- 2 Main result

# 3 Road map

#### Outline of proof

- Impossibility of quasi-soliton solutions
- Impossibility of finite-time blow-up solutions

#### Generalization

### Generalization

Let's focus on the Cauchy problem for the defocusing  $\dot{H}^{s_c}$ -critical Schrödinger equation in  $\mathbb{R}^{1+2}$ :

$$\begin{cases} i\partial_t u + \Delta u = |u|^{2k} u, \\ u(0,x) = u_0(x) \in \dot{H}^{s_c}(\mathbb{R}^2), \end{cases}$$
((2k+1)NLS)

where  $s_c = 1 - \frac{1}{k}$ .

#### Theorem (Y.-Haitian Yue 2018)

k = 3, 4, 5, 6, ...Let  $u : I \times \mathbb{R}^2 \to \mathbb{C}$  be a maximal-lifespan solution to ((2k + 1)NLS) such that  $u \in L_t^{\infty} \dot{H}_x^{s_c}(I \times \mathbb{R}^2)$ . Then u is global and scatters, with

$$\int_{\mathbb{R}} \int_{\mathbb{R}^2} |u(t,x)|^{4k} dx dt \leq C \left( \|u\|_{L^{\infty}_t \dot{H}^{s_c}_x(\mathbb{R} \times \mathbb{R}^2)} \right)$$

for some function  $C : [0, \infty) \to [0, \infty)$ .

# Outline of proof (Step 2)

Now we prove this kind of u does not exist. Here, we classify u into the following 4 classes:

|                                                      | $T_{max} < \infty$ | $T_{max} = \infty$ |
|------------------------------------------------------|--------------------|--------------------|
| $\int_0^{T_{max}} N(t)^{\frac{4}{k}-1}  dt < \infty$ | I                  | П                  |
| $\int_0^{T_{max}} N(t)^{\frac{4}{k}-1} dt = \infty$  |                    | IV                 |

where

- I, III: finite-time blow-up solutions
- I, II: frequency cascade solutions
- III, IV: quasi-soliton solutions

Note that

- When k = 3, 4,  $\int_0^{T_{max}} N(t)^{\frac{4}{k}-1} dt < \infty$  implies  $T_{max} < \infty$ , hence there is **No case II** in this setting.
- When  $k = 5, 6, 7, \ldots$ , we have all 4 cases.

28 / 31

 Impossibility of quasi-soliton solutions Recall the Interaction Morawetz estimates in 2D

$$\left\| \left| \nabla \right|^{\frac{1}{2}} \left| u(t,x) \right|^{2} \right\|_{L^{2}_{t,x}(I \times \mathbb{R}^{2})}^{2} \lesssim \left\| u \right\|_{L^{\infty}_{t} L^{2}_{x}(I \times \mathbb{R}^{2})}^{2} \left\| u \right\|_{L^{\infty}_{t} \dot{H}^{\frac{1}{2}}_{x}(I \times \mathbb{R}^{2})}^{2}$$

• Impossibility of frequency cascade solutions for  $k \ge 5$ 

$$\begin{cases} \|u\|_{\dot{H}^{-s}} \lesssim 1 \\ \|P_{\leq c(\eta)N(t)}u\|_{\dot{H}^{s_{c}}_{x}} \leq \eta \end{cases} \Rightarrow \|P_{\leq c(\eta)N(t)}u\|_{L^{2}_{x}} \lesssim \eta^{\alpha} \\ P_{\geq c(\eta)N(t)}u\|_{L^{2}_{x}} \lesssim \frac{1}{(c(\eta)N(t))^{s_{c}}} \||\nabla|^{s_{c}} P_{\geq c(\eta)N(t)}u\|_{L^{2}_{x}} \lesssim \varepsilon \end{cases} \Rightarrow \|u\|_{L^{2}_{x}} = 0$$

Impossibility of finite-time blow-up solutions





# Thank you for your attention!