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Goal: An unconditional nontrivial upper bound on /-torsion in class
groups of the families of fields

Tools:

@ A lower bound for the number of fields in the families

@ A new effective Chebotarev density theorem for these families
of D4-quartic fields
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Certain families of D,-quartic fields

K: a number field

K: the Galois closure of K over Q within a fixed choice of Q
d=[K:Q

Dk = |disc(K/Q)|

a Dy-quartic field K: a quartic extension K of @ such that
Gal(K/Q) = Dy.

o Q =0Q(/a, \/E) a biquadratic field over Q, where a, b are
distinct square-free integers not equal to 0, 1.

For any such @, we define the family
F4(Q) = {K : K is a Dy-quartic field, K contains Q = Q(v/a,Vb)}
and denote

§4(Q;X) = {K K e §4(Q), Dy < X}
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@ class group
For every number field K, we define the ideal class group Clk
to be the quotient group of the fractional ideals modulo
principal ideals.

Examples: Clgy /=) = {1}; Cly/=5) = Z/2Z.
@ (-torsion in class groups
For an integer ¢ > 1, we define the ¢-torsion subgroup

Clk[€] = {[a] € Clk : [a]* = Id}.
@ Trivial bound: for any £ > 0,
Clk[d]] < [Cli| <0 DT
@ Conjectural bound: for any € > 0,

|CIK[£]| <<d,€,s D,E(
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@ Starting point

Theorem (Ellenberg & Venkatesh, 2007)
Let K be a number field of degree d and fix a positive integer £.
Set n < m and suppose that there are at least M rational

primes with p < D)\ that are unramified and split completely in K.
Then

1
IClk[A]] <d.pe, DET* MY,

for any e1 > 0.
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@ Starting point

Theorem (Ellenberg & Venkatesh, 2007)

Let K be a number field of degree d and fix a positive integer £.

Set n < m and suppose that there are at least M rational

primes with p < D)\ that are unramified and split completely in K.
Then

1
IClk[A]] <d.pe, DET* MY,

for any e1 > 0.

@ Nontrivial bound under GRH: (Ellenberg & Venkatesh, 2007)

Y- te
|Clk[{]| <d,ee Dy :

for all e > 0.
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@ Nontrivial bound without assuming GRH:
e K imaginary quadratic: (Heath-Brown & Pierce, 2017)
Let ¢ > 5 be prime. For all but a possible zero-density
exceptional family of imaginary quadratic fields K/Q, we have

1__3
Clk[0)] < D777,

for all e > 0.

o d =2,3,4(K non-D,),5: Ellenberg, Pierce, & Wood, 2017
For all but a possible zero-density exceptional family of fields
K/Q, we have

2€(d1—1)+s

1_
IClk[(]] <4, Dy ,

for all e > 0.
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@ Nontrivial bound without assuming GRH:
° Gal(R/Q) = Cp, 54, An, or Dy, n> 2, p prime, d=n or p
respectively: Pierce, Turnage-Butterbaugh, & Wood, 2017
Under some restriction on tamely ramified primes, for all but a
possible zero-density exceptional subfamily of fields K/Q, we
have i1,
|Clk[]| <dpe D 77
for all € > 0. In the cases Gal(R/Q) = A,, n>5, one needs
to assume the strong Artin conjecture, and for S,, n > 6,
certain field counting conjecture.
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@ Nontrivial bound without assuming GRH:
° Gal(R/Q) = Cp, 54, An, or Dy, n> 2, p prime, d=n or p
respectively: Pierce, Turnage-Butterbaugh, & Wood, 2017
Under some restriction on tamely ramified primes, for all but a
possible zero-density exceptional subfamily of fields K/Q, we
have i1,
|Clk[]| <dpe D 77
for all € > 0. In the cases Gal(R/Q) = A,, n>5, one needs
to assume the strong Artin conjecture, and for S,, n > 6,
certain field counting conjecture.

Notably, Ds-quartic fields have not been treated in these works.
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Z4(Q) = {K : K D4-quartic, K contains @ = Q(v/a,vb)} and
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Theorem (A., arXiv 2018)

Let Q = Q(+/a, V'b) be such that F4(Q) # 0. For every

O<e< % sufficiently small, and every integer £ > 1, there exists a
parameter By = Bi(¢, ) such that for every X > 1, aside from at

most By X¢ fields in F4(Q; X), every field K € Z4(Q); X) satisfies
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Main theorem

Recall that B
Z4(Q) = {K : K D4-quartic, K contains @ = Q(v/a,vb)} and
that §4(Q,X) = {K K e §4(Q), Dk < X}

Theorem (A., arXiv 2018)

Let Q = Q(+/a, V'b) be such that F4(Q) # 0. For every

O<e< % sufficiently small, and every integer £ > 1, there exists a
parameter By = Bi(¢, ) such that for every X > 1, aside from at

most By X¢ fields in F4(Q; X), every field K € Z4(Q); X) satisfies

11
|Clx[€]] <¢e D275

This theorem provides the first unconditional nontrivial bound for
£-torsion in class groups of infinite families of D4-quartic fields.
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A lower bound for the number of fields in 74(Q; X)

Question: assuming that Z4(Q) # (), we want a lower bound of
|-Z4(Q; X)| as X — 0.
Method: explicit construction.

For K € .Z4(Q), there is a unique quadratic subfield of K.

In the following of this talk, we will assume that for K € .Z4(Q),

the unique quadratic subfield of K is Q(1/a). The general case

. __ab___
follows by rearranging a, b, 22

For K € Z4(Q) such that the unique quadratic subfield of K is

Q(+/a), there exists g € Z, h€ Z — {0} s.t. K=Q(+/g + h/a).




A lower bound for the number of fields in 74(Q; X)

Lemma

There exists a well-defined function ¢ : (a, b) — (go, ho, no), the
image being an ordered triple of positive integers satisfying

g — hga = ngb
or

5, ab
% ged(a, b)2”

The triple depends only on the ordered pair (a, b).

g5 —hga=n




A lower bound for the number of fields in 74(Q; X)

Lemma

There exists a well-defined function ¢ : (a, b) — (go, ho, no), the
image being an ordered triple of positive integers satisfying

& - a=rib
or
5, ab
% ged(a, b)2”
The triple depends only on the ordered pair (a, b).

g5 —hga=n

Lemma

Let K = Q(+/g + hy/a) as before. Then we have
DK < Ca’b’gz — h2a].

| \




A lower bound for the number of fields in 74(Q; X)

® Kim = Q(v/gom + homy/a) where m is any positive integer.
° ( ) = {m € Z~ square-free | gcd(m, |ab|]) = 1,m <
X1/2}

C
(X

/
) = {K[m] me M(X)}

(1) We have T(X) C Z4(Q; X).
(2) If my, my € M(X), my 75 my, then K[m1] 75 K[m2].
(3) We have

| T(X)| >q XY2.




A lower bound for the number of fields in 74(Q; X)

Theorem (A., 2018)
Let Q = Q(v/a, V'b) be such that F4(Q) # (. Then we have

| Z4(Q; X)| >q X/2.

Hence, the family of at most B; X¢ possible exceptions to our
£-torsion bound is truly zero density.



the effective Chebotarev density theorem

For a Dy-quartic field K and its Galois closure K, and for any fixed

conjugacy class € in G = Dy, we define the prime counting

function as

K/Q
p

(X, R/Q) = |{p prime : p is unramified in R, =%,p < x},

where [KT{Q} is the Artin symbol, i.e., the conjugacy class of the

Frobenius element corresponding to the extension R/Q and the
prime p.
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the effective Chebotarev density theorem

For K € .Z4(Q), we consider

Cg(s) = I Lis.p. K/Q)™? = ((s)L(s, xa)L(s, x2)L(s. x3) (s, ).

p€Elrr(Ds)

Since we have fixed Q, the Dedekind zeta function

Ca(s) = ¢(s)L(s, xa)L(s, x2)L(s, x3)

is fixed. Therefore, as K varies in .%4(a, b), the only varying
L-factor in (z(s) is L(s, pg)- It is crucial in our study together
with the fact that pj is faithful.



the effective Chebotarev density theorem

Theorem (Effective Chebotarev density theorem with

assumed zero-free region)

Let 0 < eg < % be sufficiently small. Suppose that F4(Q) # 0.
Suppose also that for K € %4(Q) such that Dz > C; for an
absolute constant Cy, (z(s)/¢q(s) = L%(s, pg) (hence L(s.py))
has no zero in

[1 - 57 1] X [—(Iog DR)2/67 (|Og DR)2/6]a
where § = 42-?—70480' then for every conjugacy class € C G = Dy,

¢ € X
(X, K/Q) ||G||L1(x) < ||G||(Iogx)2

for all
x > k1 exp [r2(log |0g(DE3))2]

for parameters r; = ki(a, b, £p).




the effective Chebotarev density theorem

We note that 1 exp [r2(log Iog(DE3))2] < Dy for any € > 0.
Hence, for the field K above, we are able to count unramified
primes p that splits completely in K and satisfies

1

Dy <p< fo(d*l) ™ for any € > 0, ¢+ > 0. By the Theorem of
Ellenberg and Venkatesh, we obtain our ¢-torsion bound for Cl.

Next, we show via work of Kowalski and Michel (2002) that almost
all fields in our family are zero-free in the described region.

Theorem

Suppose that @ = Q(v/a,V/b) is such that F4(Q) # 0. For every
0 < eg < 3, there are <., X0 fields K € Z4(Q; X) such that
Cz(s)/Cq(s) = L[%(s, p) could have a zero in the region

[1—6,1] x [~(log Dg)?*, (log D)*°].




the effective Chebotarev density theorem

Theorem (A., 2018)

Suppose that @ = Q(v/a,V/b) is such that F4(Q) # 0. For every
0<egy< % sufficiently small, there exists a constant By = By(eo)
such that for every X > 1, aside from at most By X*° fields in
Fa(Q; X), each field K € Z4(Q; X) has the property that for
every conjugacy class € C G = D,

1] < 161 x

o, K/Q) = (L0 < 1] oy

for all
x > k1 exp [r2(log Iog(D?))z]

for parameters r; = ki(a, b, £p).




Review of the main theorem

Theorem

Let Q = Q(+/a, V'b) be such that F4(Q) # 0. For every

O<e< % sufficiently small, and every integer ¢ > 1, there exists a
parameter By = Bi(¢,€) such that for every X > 1, aside from at

most B1 X¢ fields in Z4(Q; X), every field K € #4(Q; X) satisfies

1_1
IClx[€]] < D25
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