ℓ-torsion in class groups of certain families of D_{4}-quartic fields

Chen An
Duke University

BU-Keio Workshop 2019
Boston University
June 24, 2019

Objects:

- certain families of D_{4}-quartic fields
- ℓ-torsion in class groups

Objects:

- certain families of D_{4}-quartic fields
- ℓ-torsion in class groups

Goal: An unconditional nontrivial upper bound on ℓ-torsion in class groups of the families of fields

Objects:

- certain families of D_{4}-quartic fields
- ℓ-torsion in class groups

Goal: An unconditional nontrivial upper bound on ℓ-torsion in class groups of the families of fields

Tools:

- A lower bound for the number of fields in the families
- A new effective Chebotarev density theorem for these families of D_{4}-quartic fields

Certain families of D_{4}-quartic fields

Certain families of D_{4}-quartic fields

- K : a number field

Certain families of D_{4}-quartic fields

- K : a number field
- \widetilde{K} : the Galois closure of K over \mathbb{Q} within a fixed choice of $\overline{\mathbb{Q}}$

Certain families of D_{4}-quartic fields

- K : a number field
- \widetilde{K} : the Galois closure of K over \mathbb{Q} within a fixed choice of $\overline{\mathbb{Q}}$
- $d=[K: \mathbb{Q}]$

Certain families of D_{4}-quartic fields

- K : a number field
- \widetilde{K} : the Galois closure of K over \mathbb{Q} within a fixed choice of $\overline{\mathbb{Q}}$
- $d=[K: \mathbb{Q}]$
- $D_{K}=|\operatorname{disc}(K / \mathbb{Q})|$

Certain families of D_{4}-quartic fields

- K : a number field
- \widetilde{K} : the Galois closure of K over \mathbb{Q} within a fixed choice of $\overline{\mathbb{Q}}$
- $d=[K: \mathbb{Q}]$
- $D_{K}=|\operatorname{disc}(K / \mathbb{Q})|$
- a D_{4}-quartic field K : a quartic extension K of \mathbb{Q} such that $\operatorname{Gal}(K / \mathbb{Q}) \cong D_{4}$.

Certain families of D_{4}-quartic fields

- K : a number field
- \widetilde{K} : the Galois closure of K over \mathbb{Q} within a fixed choice of $\overline{\mathbb{Q}}$
- $d=[K: \mathbb{Q}]$
- $D_{K}=|\operatorname{disc}(K / \mathbb{Q})|$
- a D_{4}-quartic field K : a quartic extension K of \mathbb{Q} such that $\operatorname{Gal}(K / \mathbb{Q}) \cong D_{4}$.
- $Q=\mathbb{Q}(\sqrt{a}, \sqrt{b})$: a biquadratic field over \mathbb{Q}, where a, b are distinct square-free integers not equal to 0,1 .

Certain families of D_{4}-quartic fields

- K : a number field
- \widetilde{K} : the Galois closure of K over \mathbb{Q} within a fixed choice of $\overline{\mathbb{Q}}$
- $d=[K: \mathbb{Q}]$
- $D_{K}=|\operatorname{disc}(K / \mathbb{Q})|$
- a D_{4}-quartic field K : a quartic extension K of \mathbb{Q} such that $\operatorname{Gal}(K / \mathbb{Q}) \cong D_{4}$.
- $Q=\mathbb{Q}(\sqrt{a}, \sqrt{b})$: a biquadratic field over \mathbb{Q}, where a, b are distinct square-free integers not equal to 0,1 .

For any such Q, we define the family
$\mathscr{F}_{4}(Q)=\left\{K: K\right.$ is a D_{4}-quartic field, \widetilde{K} contains $\left.Q=\mathbb{Q}(\sqrt{a}, \sqrt{b})\right\}$
and denote

$$
\mathscr{F}_{4}(Q ; X)=\left\{K: K \in \mathscr{F}_{4}(Q), D_{K} \leq X\right\} .
$$

ℓ-torsion in class groups

- class group

For every number field K, we define the ideal class group Cl_{K} to be the quotient group of the fractional ideals modulo principal ideals.

ℓ-torsion in class groups

- class group

For every number field K, we define the ideal class group Cl_{K} to be the quotient group of the fractional ideals modulo principal ideals.
Examples: $\mathrm{Cl}_{\mathbb{Q}(\sqrt{-1})} \cong\{1\} ; \mathrm{Cl}_{\mathbb{Q}(\sqrt{-5})} \cong \mathbb{Z} / 2 \mathbb{Z}$.

- class group

For every number field K, we define the ideal class group Cl_{K} to be the quotient group of the fractional ideals modulo principal ideals.
Examples: $\mathrm{Cl}_{\mathbb{Q}(\sqrt{-1})} \cong\{1\} ; \mathrm{Cl}_{\mathbb{Q}(\sqrt{-5})} \cong \mathbb{Z} / 2 \mathbb{Z}$.

- ℓ-torsion in class groups

For an integer $\ell \geq 1$, we define the ℓ-torsion subgroup

$$
\mathrm{Cl}_{K}[\ell]=\left\{[\mathfrak{a}] \in \mathrm{Cl}_{K}:[\mathfrak{a}]^{\ell}=\mathrm{Id}\right\} .
$$

- class group

For every number field K, we define the ideal class group Cl_{K} to be the quotient group of the fractional ideals modulo principal ideals.
Examples: $\mathrm{Cl}_{\mathbb{Q}(\sqrt{-1})} \cong\{1\} ; \mathrm{Cl}_{\mathbb{Q}(\sqrt{-5})} \cong \mathbb{Z} / 2 \mathbb{Z}$.

- ℓ-torsion in class groups

For an integer $\ell \geq 1$, we define the ℓ-torsion subgroup

$$
\mathrm{Cl}_{K}[\ell]=\left\{[\mathfrak{a}] \in \mathrm{Cl}_{K}:[\mathfrak{a}]^{\ell}=\mathrm{Id}\right\}
$$

- Trivial bound: for any $\varepsilon>0$,

$$
\left|\mathrm{Cl}_{K}[\ell]\right| \leq\left|\mathrm{Cl}_{K}\right|<_{d, \varepsilon} D_{K}^{1 / 2+\varepsilon}
$$

- class group

For every number field K, we define the ideal class group Cl_{K} to be the quotient group of the fractional ideals modulo principal ideals.
Examples: $\mathrm{Cl}_{\mathbb{Q}(\sqrt{-1})} \cong\{1\} ; \mathrm{Cl}_{\mathbb{Q}(\sqrt{-5})} \cong \mathbb{Z} / 2 \mathbb{Z}$.

- ℓ-torsion in class groups

For an integer $\ell \geq 1$, we define the ℓ-torsion subgroup

$$
\mathrm{Cl}_{K}[\ell]=\left\{[\mathfrak{a}] \in \mathrm{Cl}_{K}:[\mathfrak{a}]^{\ell}=\mathrm{Id}\right\}
$$

- Trivial bound: for any $\varepsilon>0$,

$$
\left|\mathrm{Cl}_{K}[\ell]\right| \leq\left|\mathrm{Cl}_{K}\right|<_{d, \varepsilon} D_{K}^{1 / 2+\varepsilon}
$$

- Conjectural bound: for any $\varepsilon>0$,

$$
\left|\mathrm{Cl}_{K}[\ell]\right|<_{d, \ell, \varepsilon} D_{K}^{\varepsilon}
$$

- Starting point

Theorem (Ellenberg \& Venkatesh, 2007)

Let K be a number field of degree d and fix a positive integer ℓ. Set $\eta<\frac{1}{2 \ell(d-1)}$ and suppose that there are at least M rational primes with $p \leq D_{K}^{\eta}$ that are unramified and split completely in K. Then

$$
\left|\mathrm{Cl}_{K}[\ell]\right| \ll_{d, \ell, \varepsilon_{1}} D_{K}^{\frac{1}{2}+\varepsilon_{1}} M^{-1}
$$

for any $\varepsilon_{1}>0$.

- Starting point

Theorem (Ellenberg \& Venkatesh, 2007)

Let K be a number field of degree d and fix a positive integer ℓ. Set $\eta<\frac{1}{2 \ell(d-1)}$ and suppose that there are at least M rational primes with $p \leq D_{K}^{\eta}$ that are unramified and split completely in K. Then

$$
\left|\mathrm{Cl}_{K}[\ell]\right| \ll_{d, \ell, \varepsilon_{1}} D_{K}^{\frac{1}{2}+\varepsilon_{1}} M^{-1}
$$

for any $\varepsilon_{1}>0$.

- Nontrivial bound under GRH: (Ellenberg \& Venkatesh, 2007)

$$
\left|\mathrm{Cl}_{K}[\ell]\right|<_{d, \ell, \varepsilon} D_{K}^{\frac{1}{2}-\frac{1}{2 \ell(d-1)}+\varepsilon}
$$

for all $\varepsilon>0$.

l-torsion in class groups

- Nontrivial bound without assuming GRH:
- K imaginary quadratic: (Heath-Brown \& Pierce, 2017) Let $\ell \geq 5$ be prime. For all but a possible zero-density exceptional family of imaginary quadratic fields K / \mathbb{Q}, we have

$$
\left|\mathrm{Cl}_{K}[\ell]\right| \lll \ell, \varepsilon D_{K}^{\frac{1}{2}-\frac{3}{2 \ell+2}+\varepsilon},
$$

for all $\varepsilon>0$.

- Nontrivial bound without assuming GRH:
- K imaginary quadratic: (Heath-Brown \& Pierce, 2017) Let $\ell \geq 5$ be prime. For all but a possible zero-density exceptional family of imaginary quadratic fields K / \mathbb{Q}, we have

$$
\left|\mathrm{Cl}_{K}[\ell]\right|<_{\ell, \varepsilon} D_{K}^{\frac{1}{2}-\frac{3}{2 \ell+2}+\varepsilon},
$$

for all $\varepsilon>0$.

- $d=2,3,4\left(K\right.$ non- $\left.D_{4}\right)$, 5: Ellenberg, Pierce, \& Wood, 2017 For all but a possible zero-density exceptional family of fields K / \mathbb{Q}, we have

$$
\left|\mathrm{Cl}_{K}[\ell]\right|<_{d, \ell, \varepsilon} D_{K}^{\frac{1}{2}-\frac{1}{2 \ell(d-1)}+\varepsilon},
$$

for all $\varepsilon>0$.

- Nontrivial bound without assuming GRH:
- $\operatorname{Gal}(\widetilde{K} / \mathbb{Q})=C_{n}, S_{n}, A_{n}$, or $D_{p}, n \geq 2, p$ prime, $\mathrm{d}=\mathrm{n}$ or p respectively: Pierce, Turnage-Butterbaugh, \& Wood, 2017 Under some restriction on tamely ramified primes, for all but a possible zero-density exceptional subfamily of fields K / \mathbb{Q}, we have

$$
\left|\mathrm{Cl}_{K}[\ell]\right|<_{d, \ell, \varepsilon} D_{K}^{\frac{1}{2}-\frac{1}{2 \ell(d-1)}+\varepsilon}
$$

for all $\varepsilon>0$. In the cases $\operatorname{Gal}(\widetilde{K} / \mathbb{Q})=A_{n}, n \geq 5$, one needs to assume the strong Artin conjecture, and for $S_{n}, n \geq 6$, certain field counting conjecture.

- Nontrivial bound without assuming GRH:
- $\operatorname{Gal}(\widetilde{K} / \mathbb{Q})=C_{n}, S_{n}, A_{n}$, or $D_{p}, n \geq 2, p$ prime, $\mathrm{d}=\mathrm{n}$ or p respectively: Pierce, Turnage-Butterbaugh, \& Wood, 2017 Under some restriction on tamely ramified primes, for all but a possible zero-density exceptional subfamily of fields K / \mathbb{Q}, we have

$$
\left|\mathrm{Cl}_{K}[\ell]\right|<_{d, \ell, \varepsilon} D_{K}^{\frac{1}{2}-\frac{1}{2 \ell(d-1)}+\varepsilon}
$$

for all $\varepsilon>0$. In the cases $\operatorname{Gal}(\widetilde{K} / \mathbb{Q})=A_{n}, n \geq 5$, one needs to assume the strong Artin conjecture, and for $S_{n}, n \geq 6$, certain field counting conjecture.
Notably, D_{4}-quartic fields have not been treated in these works.

Recall that
$\mathscr{F}_{4}(Q)=\left\{K: K D_{4}\right.$-quartic, \widetilde{K} contains $\left.Q=\mathbb{Q}(\sqrt{a}, \sqrt{b})\right\}$ and that $\mathscr{F}_{4}(Q ; X)=\left\{K: K \in \mathscr{F}_{4}(Q), D_{K} \leq X\right\}$.

Recall that
$\mathscr{F}_{4}(Q)=\left\{K: K D_{4}\right.$-quartic, \widetilde{K} contains $\left.Q=\mathbb{Q}(\sqrt{a}, \sqrt{b})\right\}$ and that $\mathscr{F}_{4}(Q ; X)=\left\{K: K \in \mathscr{F}_{4}(Q), D_{K} \leq X\right\}$.

Theorem (A., arXiv 2018)

Let $Q=\mathbb{Q}(\sqrt{a}, \sqrt{b})$ be such that $\mathscr{F}_{4}(Q) \neq \emptyset$. For every $0<\varepsilon<\frac{1}{4}$ sufficiently small, and every integer $\ell \geq 1$, there exists a parameter $B_{1}=B_{1}(\ell, \varepsilon)$ such that for every $X \geq 1$, aside from at most $B_{1} X^{\varepsilon}$ fields in $\mathscr{F}_{4}(Q ; X)$, every field $K \in \mathscr{F}_{4}(Q ; X)$ satisfies

$$
\left|\mathrm{Cl}_{K}[\ell]\right| \lll \ell, \varepsilon D_{K}^{\frac{1}{2}-\frac{1}{6 \ell}+\varepsilon}
$$

Recall that
$\mathscr{F}_{4}(Q)=\left\{K: K D_{4}\right.$-quartic, \widetilde{K} contains $\left.Q=\mathbb{Q}(\sqrt{a}, \sqrt{b})\right\}$ and that $\mathscr{F}_{4}(Q ; X)=\left\{K: K \in \mathscr{F}_{4}(Q), D_{K} \leq X\right\}$.

Theorem (A., arXiv 2018)

Let $Q=\mathbb{Q}(\sqrt{a}, \sqrt{b})$ be such that $\mathscr{F}_{4}(Q) \neq \emptyset$. For every
$0<\varepsilon<\frac{1}{4}$ sufficiently small, and every integer $\ell \geq 1$, there exists a parameter $B_{1}=B_{1}(\ell, \varepsilon)$ such that for every $X \geq 1$, aside from at most $B_{1} X^{\varepsilon}$ fields in $\mathscr{F}_{4}(Q ; X)$, every field $K \in \mathscr{F}_{4}(Q ; X)$ satisfies

$$
\left|\mathrm{Cl}_{K}[\ell]\right| \lll \ell, \varepsilon D_{K}^{\frac{1}{2}-\frac{1}{6 \ell}+\varepsilon}
$$

This theorem provides the first unconditional nontrivial bound for ℓ-torsion in class groups of infinite families of D_{4}-quartic fields.

Question: assuming that $\mathscr{F}_{4}(Q) \neq \emptyset$, we want a lower bound of $\left|\mathscr{F}_{4}(Q ; X)\right|$ as $X \rightarrow \infty$.

Question: assuming that $\mathscr{F}_{4}(Q) \neq \emptyset$, we want a lower bound of $\left|\mathscr{F}_{4}(Q ; X)\right|$ as $X \rightarrow \infty$.
Method: explicit construction.

Question: assuming that $\mathscr{F}_{4}(Q) \neq \emptyset$, we want a lower bound of $\left|\mathscr{F}_{4}(Q ; X)\right|$ as $X \rightarrow \infty$.
Method: explicit construction.

Lemma

For $K \in \mathscr{F}_{4}(Q)$, there is a unique quadratic subfield of K.

Question: assuming that $\mathscr{F}_{4}(Q) \neq \emptyset$, we want a lower bound of $\left|\mathscr{F}_{4}(Q ; X)\right|$ as $X \rightarrow \infty$.
Method: explicit construction.

Lemma

For $K \in \mathscr{F}_{4}(Q)$, there is a unique quadratic subfield of K.
In the following of this talk, we will assume that for $K \in \mathscr{F}_{4}(Q)$, the unique quadratic subfield of K is $\mathbb{Q}(\sqrt{a})$. The general case follows by rearranging $a, b, \frac{a b}{\operatorname{gcd}(a, b)^{2}}$.

Question: assuming that $\mathscr{F}_{4}(Q) \neq \emptyset$, we want a lower bound of $\left|\mathscr{F}_{4}(Q ; X)\right|$ as $X \rightarrow \infty$.
Method: explicit construction.

Lemma

For $K \in \mathscr{F}_{4}(Q)$, there is a unique quadratic subfield of K.
In the following of this talk, we will assume that for $K \in \mathscr{F}_{4}(Q)$, the unique quadratic subfield of K is $\mathbb{Q}(\sqrt{a})$. The general case follows by rearranging $a, b, \frac{a b}{\operatorname{gcd}(a, b)^{2}}$.

Lemma

For $K \in \mathscr{F}_{4}(Q)$ such that the unique quadratic subfield of K is $\mathbb{Q}(\sqrt{a})$, there exists $g \in \mathbb{Z}, h \in \mathbb{Z}-\{0\}$ s.t. $K=\mathbb{Q}(\sqrt{g+h \sqrt{a}})$.

Lemma

There exists a well-defined function $\varphi:(a, b) \mapsto\left(g_{0}, h_{0}, n_{0}\right)$, the image being an ordered triple of positive integers satisfying

$$
g_{0}^{2}-h_{0}^{2} a=n_{0}^{2} b
$$

or

$$
g_{0}^{2}-h_{0}^{2} a=n_{0}^{2} \frac{a b}{\operatorname{gcd}(a, b)^{2}}
$$

The triple depends only on the ordered pair (a, b).

Lemma

There exists a well-defined function $\varphi:(a, b) \mapsto\left(g_{0}, h_{0}, n_{0}\right)$, the image being an ordered triple of positive integers satisfying

$$
g_{0}^{2}-h_{0}^{2} a=n_{0}^{2} b
$$

or

$$
g_{0}^{2}-h_{0}^{2} a=n_{0}^{2} \frac{a b}{\operatorname{gcd}(a, b)^{2}}
$$

The triple depends only on the ordered pair (a, b).

Lemma

Let $K=\mathbb{Q}(\sqrt{g+h \sqrt{a}})$ as before. Then we have $D_{K} \leq C_{a, b}\left|g^{2}-h^{2} a\right|$.

- $K_{[m]}=\mathbb{Q}\left(\sqrt{g_{0} m+h_{0} m \sqrt{a}}\right)$ where m is any positive integer.
- $M(X)=\left\{m \in \mathbb{Z}_{>0}\right.$ square-free $\mid \operatorname{gcd}(m,|a b|)=1, m \leq$
$\left.\frac{1}{n_{0} C_{a, b}^{1 / 2}} X^{1 / 2}\right\}$
- $T(X)=\left\{K_{[m]}: m \in M(X)\right\}$

Theorem

(1) We have $T(X) \subseteq \mathscr{F}_{4}(Q ; X)$.
(2) If $m_{1}, m_{2} \in M(X), m_{1} \neq m_{2}$, then $K_{\left[m_{1}\right]} \neq K_{\left[m_{2}\right]}$.
(3) We have

$$
|T(X)| \gg_{Q} X^{1 / 2} .
$$

Theorem (A., 2018)

Let $Q=\mathbb{Q}(\sqrt{a}, \sqrt{b})$ be such that $\mathscr{F}_{4}(Q) \neq \emptyset$. Then we have

$$
\left|\mathscr{F}_{4}(Q ; X)\right| \gg_{Q} X^{1 / 2}
$$

Hence, the family of at most $B_{1} X^{\varepsilon}$ possible exceptions to our ℓ-torsion bound is truly zero density.

For a D_{4}-quartic field K and its Galois closure \widetilde{K}, and for any fixed conjugacy class \mathscr{C} in $G \cong D_{4}$, we define the prime counting function as
$\left.\pi_{\mathscr{C}}(x, \widetilde{K} / \mathbb{Q})=\left\lvert\,\left\{p\right.$ prime : p is unramified in $\left.\widetilde{K},\left[\frac{\widetilde{K} / \mathbb{Q}}{p}\right]=\mathscr{C}, p \leq x\right\}\right. \right\rvert\,$,
where $\left[\frac{\widetilde{K} / \mathbb{Q}}{p}\right]$ is the Artin symbol, i.e., the conjugacy class of the Frobenius element corresponding to the extension $\widetilde{K} / \mathbb{Q}$ and the prime p.

For $K \in \mathscr{F}_{4}(Q)$, we consider

$$
\zeta_{\widetilde{K}}(s)=\prod_{\rho \in \operatorname{Irr}\left(D_{4}\right)} L(s, \rho, \widetilde{K} / \mathbb{Q})^{\operatorname{dim} \rho}=\zeta(s) L\left(s, \chi_{1}\right) L\left(s, \chi_{2}\right) L\left(s, \chi_{3}\right) L^{2}\left(s, \rho_{\widetilde{K}}\right) .
$$

For $K \in \mathscr{F}_{4}(Q)$, we consider

$$
\zeta_{\widetilde{K}}(s)=\prod_{\rho \in \operatorname{Irr}\left(D_{4}\right)} L(s, \rho, \widetilde{K} / \mathbb{Q})^{\operatorname{dim} \rho}=\zeta(s) L\left(s, \chi_{1}\right) L\left(s, \chi_{2}\right) L\left(s, \chi_{3}\right) L^{2}\left(s, \rho_{\widetilde{K}}\right) .
$$

Since we have fixed Q, the Dedekind zeta function

$$
\zeta_{Q}(s)=\zeta(s) L\left(s, \chi_{1}\right) L\left(s, \chi_{2}\right) L\left(s, \chi_{3}\right)
$$

is fixed.

For $K \in \mathscr{F}_{4}(Q)$, we consider

$$
\zeta_{\widetilde{K}}(s)=\prod_{\rho \in \operatorname{Irr}\left(D_{4}\right)} L(s, \rho, \widetilde{K} / \mathbb{Q})^{\operatorname{dim} \rho}=\zeta(s) L\left(s, \chi_{1}\right) L\left(s, \chi_{2}\right) L\left(s, \chi_{3}\right) L^{2}\left(s, \rho_{\widetilde{K}}\right) .
$$

Since we have fixed Q, the Dedekind zeta function

$$
\zeta_{Q}(s)=\zeta(s) L\left(s, \chi_{1}\right) L\left(s, \chi_{2}\right) L\left(s, \chi_{3}\right)
$$

is fixed. Therefore, as K varies in $\mathscr{F}_{4}(a, b)$, the only varying L-factor in $\zeta_{\widetilde{K}}(s)$ is $L\left(s, \rho_{\widetilde{K}}\right)$. It is crucial in our study together with the fact that $\rho_{\tilde{K}}$ is faithful.

the effective Chebotarev density theorem

Theorem (Effective Chebotarev density theorem with assumed zero-free region)

Let $0<\varepsilon_{0}<\frac{1}{4}$ be sufficiently small. Suppose that $\mathscr{F}_{4}(Q) \neq \emptyset$. Suppose also that for $K \in \mathscr{F}_{4}(Q)$ such that $D_{\widetilde{K}} \geq C_{7}$ for an absolute constant $C_{7}, \zeta_{\widetilde{K}}(s) / \zeta_{Q}(s)=L^{2}\left(s, \rho_{\tilde{K}}\right)\left(\right.$ hence $\left.L\left(s, \rho_{\tilde{K}}\right)\right)$ has no zero in

$$
[1-\delta, 1] \times\left[-\left(\log D_{\widetilde{K}}\right)^{2 / \delta},\left(\log D_{\widetilde{K}}\right)^{2 / \delta}\right]
$$

where $\delta=\frac{\varepsilon_{0}}{42+4 \varepsilon_{0}}$, then for every conjugacy class $\mathscr{C} \subset G=D_{4}$,

$$
\left|\pi_{\mathscr{C}}(x, \widetilde{K} / \mathbb{Q})-\frac{|\mathscr{C}|}{|G|} \operatorname{Li}(x)\right| \leq \frac{|\mathscr{C}|}{|G|} \frac{x}{(\log x)^{2}}
$$

for all

$$
x \geq \kappa_{1} \exp \left[\kappa_{2}\left(\log \log \left(D_{\widetilde{K}}^{\kappa_{3}}\right)\right)^{2}\right]
$$

for parameters $\kappa_{i}=\kappa_{i}\left(a, b, \varepsilon_{0}\right)$.

We note that $\kappa_{1} \exp \left[\kappa_{2}\left(\log \log \left(D_{\widetilde{K}}^{\kappa_{3}}\right)\right)^{2}\right] \ll D_{K}^{\varepsilon}$ for any $\varepsilon>0$. Hence, for the field K above, we are able to count unramified primes p that splits completely in K and satisfies
$D_{K}^{\varepsilon} \leq p \leq D_{K}^{\frac{1}{2(d-1)}-\iota}$ for any $\varepsilon>0, \iota>0$. By the Theorem of Ellenberg and Venkatesh, we obtain our ℓ-torsion bound for Cl_{K}.

Next, we show via work of Kowalski and Michel (2002) that almost all fields in our family are zero-free in the described region.

Theorem

Suppose that $Q=\mathbb{Q}(\sqrt{a}, \sqrt{b})$ is such that $\mathscr{F}_{4}(Q) \neq \emptyset$. For every $0<\varepsilon_{0}<\frac{1}{4}$, there are $<_{\varepsilon_{0}} X^{\varepsilon_{0}}$ fields $K \in \mathscr{F}_{4}(Q ; X)$ such that $\zeta_{\widetilde{K}}(s) / \zeta_{Q}(s)=L^{2}\left(s, \rho_{\widetilde{K}}\right)$ could have a zero in the region

$$
[1-\delta, 1] \times\left[-\left(\log D_{\widetilde{K}}\right)^{2 / \delta},\left(\log D_{\widetilde{K}}\right)^{2 / \delta}\right]
$$

Theorem (A., 2018)

Suppose that $Q=\mathbb{Q}(\sqrt{a}, \sqrt{b})$ is such that $\mathscr{F}_{4}(Q) \neq \emptyset$. For every $0<\varepsilon_{0}<\frac{1}{4}$ sufficiently small, there exists a constant $B_{2}=B_{2}\left(\varepsilon_{0}\right)$ such that for every $X \geq 1$, aside from at most $B_{2} X^{\varepsilon_{0}}$ fields in $\mathscr{F}_{4}(Q ; X)$, each field $K \in \mathscr{F}_{4}(Q ; X)$ has the property that for every conjugacy class $\mathscr{C} \subset G=D_{4}$,

$$
\left|\pi_{\mathscr{C}}(x, \widetilde{K} / \mathbb{Q})-\frac{|\mathscr{C}|}{|G|} \operatorname{Li}(x)\right| \leq \frac{|\mathscr{C}|}{|G|} \frac{x}{(\log x)^{2}}
$$

for all

$$
x \geq \kappa_{1} \exp \left[\kappa_{2}\left(\log \log \left(D_{\widetilde{\kappa}}^{\kappa_{3}}\right)\right)^{2}\right]
$$

for parameters $\kappa_{i}=\kappa_{i}\left(a, b, \varepsilon_{0}\right)$.

Theorem

Let $Q=\mathbb{Q}(\sqrt{a}, \sqrt{b})$ be such that $\mathscr{F}_{4}(Q) \neq \emptyset$. For every
$0<\varepsilon<\frac{1}{4}$ sufficiently small, and every integer $\ell \geq 1$, there exists a parameter $B_{1}=B_{1}(\ell, \varepsilon)$ such that for every $X \geq 1$, aside from at most $B_{1} X^{\varepsilon}$ fields in $\mathscr{F}_{4}(Q ; X)$, every field $K \in \mathscr{F}_{4}(Q ; X)$ satisfies

$$
\left|\mathrm{Cl}_{K}[\ell]\right|<_{\ell, \varepsilon} D_{K}^{\frac{1}{2}-\frac{1}{6 \ell}+\varepsilon}
$$

