ℓ -torsion in class groups of certain families of D_4 -quartic fields

Chen An Duke University

BU-Keio Workshop 2019 Boston University June 24, 2019

Outline

Objects:

- certain families of D₄-quartic fields
- ℓ -torsion in class groups

Outline

Objects:

- certain families of D₄-quartic fields
- ℓ -torsion in class groups

Goal: An unconditional nontrivial upper bound on $\ell\text{-torsion}$ in class groups of the families of fields

Outline

Objects:

- certain families of D₄-quartic fields
- *l*-torsion in class groups

Goal: An unconditional nontrivial upper bound on $\ell\text{-torsion}$ in class groups of the families of fields

Tools:

- A lower bound for the number of fields in the families
- A new effective Chebotarev density theorem for these families of *D*₄-quartic fields

• K: a number field

- K: a number field
- \widetilde{K} : the Galois closure of K over \mathbb{Q} within a fixed choice of $\overline{\mathbb{Q}}$

- K: a number field
- \widetilde{K} : the Galois closure of K over \mathbb{Q} within a fixed choice of $\overline{\mathbb{Q}}$
- $d = [K : \mathbb{Q}]$

- K: a number field
- \widetilde{K} : the Galois closure of K over \mathbb{Q} within a fixed choice of $\overline{\mathbb{Q}}$

•
$$d = [K : \mathbb{Q}]$$

• $D_{K} = |\operatorname{disc}(K/\mathbb{Q})|$

- K: a number field
- \widetilde{K} : the Galois closure of K over \mathbb{Q} within a fixed choice of $\overline{\mathbb{Q}}$
- $d = [K : \mathbb{Q}]$
- $D_{\mathcal{K}} = |\operatorname{disc}(\mathcal{K}/\mathbb{Q})|$
- a D_4 -quartic field K: a quartic extension K of \mathbb{Q} such that $\operatorname{Gal}(\widetilde{K}/\mathbb{Q}) \cong D_4$.

- K: a number field
- \widetilde{K} : the Galois closure of K over \mathbb{Q} within a fixed choice of $\overline{\mathbb{Q}}$
- $d = [K : \mathbb{Q}]$
- $D_{\mathcal{K}} = |\operatorname{disc}(\mathcal{K}/\mathbb{Q})|$
- a D_4 -quartic field K: a quartic extension K of \mathbb{Q} such that $\operatorname{Gal}(\widetilde{K}/\mathbb{Q}) \cong D_4$.
- Q = Q(√a, √b): a biquadratic field over Q, where a, b are distinct square-free integers not equal to 0, 1.

- K: a number field
- \widetilde{K} : the Galois closure of K over \mathbb{Q} within a fixed choice of $\overline{\mathbb{Q}}$
- $d = [K : \mathbb{Q}]$
- $D_{\mathcal{K}} = |\operatorname{disc}(\mathcal{K}/\mathbb{Q})|$
- a D_4 -quartic field K: a quartic extension K of \mathbb{Q} such that $\operatorname{Gal}(\widetilde{K}/\mathbb{Q}) \cong D_4$.
- Q = Q(√a, √b): a biquadratic field over Q, where a, b are distinct square-free integers not equal to 0, 1.

For any such Q, we define the family

 $\mathscr{F}_4(Q) = \{K : K \text{ is a } D_4\text{-quartic field}, \widetilde{K} \text{ contains } Q = \mathbb{Q}(\sqrt{a}, \sqrt{b})\}$

and denote

$$\mathscr{F}_4(Q;X) = \{K : K \in \mathscr{F}_4(Q), D_K \leq X\}.$$

For every number field K, we define the ideal class group Cl_K to be the quotient group of the fractional ideals modulo principal ideals.

For every number field K, we define the ideal class group Cl_K to be the quotient group of the fractional ideals modulo principal ideals.

 $\text{Examples: } \operatorname{Cl}_{\mathbb{Q}(\sqrt{-1})} \cong \{1\}; \operatorname{Cl}_{\mathbb{Q}(\sqrt{-5})} \cong \mathbb{Z}/2\mathbb{Z}.$

For every number field K, we define the ideal class group Cl_K to be the quotient group of the fractional ideals modulo principal ideals.

 $\text{Examples: } \operatorname{Cl}_{\mathbb{Q}(\sqrt{-1})}\cong \{1\}; \operatorname{Cl}_{\mathbb{Q}(\sqrt{-5})}\cong \mathbb{Z}/2\mathbb{Z}.$

• ℓ -torsion in class groups For an integer $\ell \ge 1$, we define the ℓ -torsion subgroup

$$\mathrm{Cl}_{\mathcal{K}}[\ell] = \{ [\mathfrak{a}] \in \mathrm{Cl}_{\mathcal{K}} : [\mathfrak{a}]^{\ell} = \mathrm{Id} \}.$$

For every number field K, we define the ideal class group Cl_K to be the quotient group of the fractional ideals modulo principal ideals.

 $\text{Examples: } \operatorname{Cl}_{\mathbb{Q}(\sqrt{-1})}\cong \{1\}; \operatorname{Cl}_{\mathbb{Q}(\sqrt{-5})}\cong \mathbb{Z}/2\mathbb{Z}.$

• ℓ -torsion in class groups For an integer $\ell \ge 1$, we define the ℓ -torsion subgroup

$$\operatorname{Cl}_{\mathcal{K}}[\ell] = \{[\mathfrak{a}] \in \operatorname{Cl}_{\mathcal{K}} : [\mathfrak{a}]^{\ell} = \operatorname{Id}\}.$$

• Trivial bound: for any $\varepsilon > 0$,

$$|\mathrm{Cl}_{\mathcal{K}}[\ell]| \leq |\mathrm{Cl}_{\mathcal{K}}| \ll_{d,\varepsilon} D_{\mathcal{K}}^{1/2+\varepsilon}.$$

For every number field K, we define the ideal class group Cl_K to be the quotient group of the fractional ideals modulo principal ideals.

 $\text{Examples: } \operatorname{Cl}_{\mathbb{Q}(\sqrt{-1})}\cong \{1\}; \operatorname{Cl}_{\mathbb{Q}(\sqrt{-5})}\cong \mathbb{Z}/2\mathbb{Z}.$

• ℓ -torsion in class groups For an integer $\ell \ge 1$, we define the ℓ -torsion subgroup

$$\operatorname{Cl}_{\mathcal{K}}[\ell] = \{[\mathfrak{a}] \in \operatorname{Cl}_{\mathcal{K}} : [\mathfrak{a}]^{\ell} = \operatorname{Id}\}.$$

• Trivial bound: for any $\varepsilon > 0$,

$$|\mathrm{Cl}_{\mathcal{K}}[\ell]| \leq |\mathrm{Cl}_{\mathcal{K}}| \ll_{d,\varepsilon} D_{\mathcal{K}}^{1/2+\varepsilon}.$$

• Conjectural bound: for any $\varepsilon > 0$,

 $|\mathrm{Cl}_{K}[\ell]| \ll_{d,\ell,\varepsilon} D_{K}^{\varepsilon}.$

• Starting point

Theorem (Ellenberg & Venkatesh, 2007)

Let K be a number field of degree d and fix a positive integer ℓ . Set $\eta < \frac{1}{2\ell(d-1)}$ and suppose that there are at least M rational primes with $p \leq D_{K}^{\eta}$ that are unramified and split completely in K. Then

$$|\mathrm{Cl}_{\mathcal{K}}[\ell]| \ll_{d,\ell,\varepsilon_1} D_{\mathcal{K}}^{\frac{1}{2}+\varepsilon_1} M^{-1},$$

for any $\varepsilon_1 > 0$.

• Starting point

Theorem (Ellenberg & Venkatesh, 2007)

Let K be a number field of degree d and fix a positive integer ℓ . Set $\eta < \frac{1}{2\ell(d-1)}$ and suppose that there are at least M rational primes with $p \leq D_{K}^{\eta}$ that are unramified and split completely in K. Then

$$|\operatorname{Cl}_{\mathcal{K}}[\ell]| \ll_{d,\ell,\varepsilon_1} D_{\mathcal{K}}^{\frac{1}{2}+\varepsilon_1} M^{-1},$$

for any $\varepsilon_1 > 0$.

• Nontrivial bound under GRH: (Ellenberg & Venkatesh, 2007)

$$|\mathrm{Cl}_{\mathcal{K}}[\ell]| \ll_{d,\ell,\varepsilon} D_{\mathcal{K}}^{\frac{1}{2}-\frac{1}{2\ell(d-1)}+\varepsilon},$$

for all $\varepsilon > 0$.

l-torsion in class groups

- Nontrivial bound without assuming GRH:
 - K imaginary quadratic: (Heath-Brown & Pierce, 2017) Let ℓ ≥ 5 be prime. For all but a possible zero-density exceptional family of imaginary quadratic fields K/Q, we have

$$|\mathrm{Cl}_{\mathcal{K}}[\ell]| \ll_{\ell,\varepsilon} D_{\mathcal{K}}^{\frac{1}{2} - \frac{3}{2\ell+2} + \varepsilon},$$

for all $\varepsilon > 0$.

- Nontrivial bound without assuming GRH:
 - K imaginary quadratic: (Heath-Brown & Pierce, 2017) Let ℓ ≥ 5 be prime. For all but a possible zero-density exceptional family of imaginary quadratic fields K/Q, we have

$$|\mathrm{Cl}_{\mathcal{K}}[\ell]| \ll_{\ell,\varepsilon} D_{\mathcal{K}}^{\frac{1}{2}-\frac{3}{2\ell+2}+\varepsilon},$$

for all $\varepsilon > 0$.

• $d = 2, 3, 4(K \text{ non-}D_4), 5$: Ellenberg, Pierce, & Wood, 2017 For all but a possible zero-density exceptional family of fields K/\mathbb{Q} , we have

$$|\mathrm{Cl}_{K}[\ell]| \ll_{d,\ell,\varepsilon} D_{K}^{\frac{1}{2} - \frac{1}{2\ell(d-1)} + \varepsilon},$$

for all $\varepsilon > 0$.

l-torsion in class groups

- Nontrivial bound without assuming GRH:
 - $\operatorname{Gal}(\widetilde{K}/\mathbb{Q}) = C_n, S_n, A_n$, or D_p , $n \ge 2$, p prime, d=n or p respectively: Pierce, Turnage-Butterbaugh, & Wood, 2017 Under some restriction on tamely ramified primes, for all but a possible zero-density exceptional subfamily of fields K/\mathbb{Q} , we have

$$|\mathrm{Cl}_{K}[\ell]| \ll_{d,\ell,\varepsilon} D_{K}^{\frac{1}{2} - \frac{1}{2\ell(d-1)} + \varepsilon}$$

for all $\varepsilon > 0$. In the cases $\operatorname{Gal}(\widetilde{K}/\mathbb{Q}) = A_n$, $n \ge 5$, one needs to assume the strong Artin conjecture, and for S_n , $n \ge 6$, certain field counting conjecture.

l-torsion in class groups

- Nontrivial bound without assuming GRH:
 - Gal(K̃/ℚ) = C_n, S_n, A_n, or D_p, n ≥ 2, p prime, d=n or p respectively: Pierce, Turnage-Butterbaugh, & Wood, 2017 Under some restriction on tamely ramified primes, for all but a possible zero-density exceptional subfamily of fields K/ℚ, we have

$$|\mathrm{Cl}_{K}[\ell]| \ll_{d,\ell,\varepsilon} D_{K}^{\frac{1}{2} - \frac{1}{2\ell(d-1)} + \varepsilon}$$

for all $\varepsilon > 0$. In the cases $\operatorname{Gal}(\widetilde{K}/\mathbb{Q}) = A_n$, $n \ge 5$, one needs to assume the strong Artin conjecture, and for S_n , $n \ge 6$, certain field counting conjecture.

Notably, D_4 -quartic fields have not been treated in these works.

Recall that $\mathscr{F}_4(Q) = \{K : K \ D_4$ -quartic, \widetilde{K} contains $Q = \mathbb{Q}(\sqrt{a}, \sqrt{b})\}$ and that $\mathscr{F}_4(Q; X) = \{K : K \in \mathscr{F}_4(Q), D_K \leq X\}.$

Recall that $\mathscr{F}_4(Q) = \{K : K \ D_4$ -quartic, \widetilde{K} contains $Q = \mathbb{Q}(\sqrt{a}, \sqrt{b})\}$ and that $\mathscr{F}_4(Q; X) = \{K : K \in \mathscr{F}_4(Q), D_K \leq X\}.$

Theorem (A., arXiv 2018)

Let $Q = \mathbb{Q}(\sqrt{a}, \sqrt{b})$ be such that $\mathscr{F}_4(Q) \neq \emptyset$. For every $0 < \varepsilon < \frac{1}{4}$ sufficiently small, and every integer $\ell \ge 1$, there exists a parameter $B_1 = B_1(\ell, \varepsilon)$ such that for every $X \ge 1$, aside from at most $B_1 X^{\varepsilon}$ fields in $\mathscr{F}_4(Q; X)$, every field $K \in \mathscr{F}_4(Q; X)$ satisfies

$$|\mathrm{Cl}_{\mathcal{K}}[\ell]| \ll_{\ell,\varepsilon} D_{\mathcal{K}}^{\frac{1}{2} - \frac{1}{6\ell} + \varepsilon}$$

Recall that $\mathscr{F}_4(Q) = \{K : K \ D_4$ -quartic, \widetilde{K} contains $Q = \mathbb{Q}(\sqrt{a}, \sqrt{b})\}$ and that $\mathscr{F}_4(Q; X) = \{K : K \in \mathscr{F}_4(Q), D_K \leq X\}.$

Theorem (A., arXiv 2018)

Let $Q = \mathbb{Q}(\sqrt{a}, \sqrt{b})$ be such that $\mathscr{F}_4(Q) \neq \emptyset$. For every $0 < \varepsilon < \frac{1}{4}$ sufficiently small, and every integer $\ell \ge 1$, there exists a parameter $B_1 = B_1(\ell, \varepsilon)$ such that for every $X \ge 1$, aside from at most $B_1 X^{\varepsilon}$ fields in $\mathscr{F}_4(Q; X)$, every field $K \in \mathscr{F}_4(Q; X)$ satisfies

$$|\mathrm{Cl}_{\mathcal{K}}[\ell]| \ll_{\ell,\varepsilon} D_{\mathcal{K}}^{\frac{1}{2}-\frac{1}{6\ell}+\varepsilon}.$$

This theorem provides the first unconditional nontrivial bound for ℓ -torsion in class groups of infinite families of D_4 -quartic fields.

Question: assuming that $\mathscr{F}_4(Q) \neq \emptyset$, we want a lower bound of $|\mathscr{F}_4(Q; X)|$ as $X \to \infty$.

Question: assuming that $\mathscr{F}_4(Q) \neq \emptyset$, we want a lower bound of $|\mathscr{F}_4(Q; X)|$ as $X \to \infty$. Method: explicit construction. Question: assuming that $\mathscr{F}_4(Q) \neq \emptyset$, we want a lower bound of $|\mathscr{F}_4(Q; X)|$ as $X \to \infty$. Method: explicit construction.

Lemma

For $K \in \mathscr{F}_4(Q)$, there is a unique quadratic subfield of K.

Question: assuming that $\mathscr{F}_4(Q) \neq \emptyset$, we want a lower bound of $|\mathscr{F}_4(Q;X)|$ as $X \to \infty$. Method: explicit construction.

Lemma

For $K \in \mathscr{F}_4(Q)$, there is a unique quadratic subfield of K.

In the following of this talk, we will assume that for $K \in \mathscr{F}_4(Q)$, the unique quadratic subfield of K is $\mathbb{Q}(\sqrt{a})$. The general case follows by rearranging $a, b, \frac{ab}{\gcd(a,b)^2}$.

Question: assuming that $\mathscr{F}_4(Q) \neq \emptyset$, we want a lower bound of $|\mathscr{F}_4(Q; X)|$ as $X \to \infty$. Method: explicit construction.

Lemma

For $K \in \mathscr{F}_4(Q)$, there is a unique quadratic subfield of K.

In the following of this talk, we will assume that for $K \in \mathscr{F}_4(Q)$, the unique quadratic subfield of K is $\mathbb{Q}(\sqrt{a})$. The general case follows by rearranging $a, b, \frac{ab}{\gcd(a,b)^2}$.

Lemma

For $K \in \mathscr{F}_4(Q)$ such that the unique quadratic subfield of K is $\mathbb{Q}(\sqrt{a})$, there exists $g \in \mathbb{Z}$, $h \in \mathbb{Z} - \{0\}$ s.t. $K = \mathbb{Q}(\sqrt{g + h\sqrt{a}})$.

Lemma

There exists a well-defined function $\varphi : (a, b) \mapsto (g_0, h_0, n_0)$, the image being an ordered triple of positive integers satisfying

$$g_0^2 - h_0^2 a = n_0^2 b$$

or

$$g_0^2 - h_0^2 a = n_0^2 \frac{ab}{\operatorname{gcd}(a,b)^2}.$$

The triple depends only on the ordered pair (a, b).

Lemma

There exists a well-defined function $\varphi : (a, b) \mapsto (g_0, h_0, n_0)$, the image being an ordered triple of positive integers satisfying

$$g_0^2 - h_0^2 a = n_0^2 b$$

or

$$g_0^2 - h_0^2 a = n_0^2 \frac{ab}{\operatorname{gcd}(a,b)^2}.$$

The triple depends only on the ordered pair (a, b).

Lemma

Let
$$K = \mathbb{Q}(\sqrt{g + h\sqrt{a}})$$
 as before. Then we have $D_K \leq C_{a,b}|g^2 - h^2a|$.

•
$$K_{[m]} = \mathbb{Q}(\sqrt{g_0 m + h_0 m \sqrt{a}})$$
 where *m* is any positive integer.

•
$$M(X) = \{m \in \mathbb{Z}_{>0} \text{ square-free } | \operatorname{gcd}(m, |ab|) = 1, m \leq \frac{1}{n_0 C_{a,b}^{1/2}} X^{1/2} \}$$

•
$$T(X) = \{K_{[m]} : m \in M(X)\}$$

Theorem

(1) We have
$$T(X) \subseteq \mathscr{F}_4(Q; X)$$
.
(2) If $m_1, m_2 \in M(X)$, $m_1 \neq m_2$, then $K_{[m_1]} \neq K_{[m_2]}$.
(3) We have
 $|T(X)| \gg_O X^{1/2}$.

A lower bound for the number of fields in $\mathcal{F}_4(Q; X)$

Theorem (A., 2018)

Let $Q = \mathbb{Q}(\sqrt{a}, \sqrt{b})$ be such that $\mathscr{F}_4(Q) \neq \emptyset$. Then we have

 $|\mathscr{F}_4(Q;X)|\gg_Q X^{1/2}.$

Hence, the family of at most $B_1 X^{\varepsilon}$ possible exceptions to our ℓ -torsion bound is truly zero density.

For a D_4 -quartic field K and its Galois closure \widetilde{K} , and for any fixed conjugacy class \mathscr{C} in $G \cong D_4$, we define the prime counting function as

$$\pi_{\mathscr{C}}(x,\widetilde{K}/\mathbb{Q}) = |\{p \text{ prime }: p \text{ is unramified in } \widetilde{K}, \left[\frac{\widetilde{K}/\mathbb{Q}}{p}\right] = \mathscr{C}, p \leq x\}|,$$

where $\left[\frac{\widetilde{K}/\mathbb{Q}}{p}\right]$ is the Artin symbol, i.e., the conjugacy class of the Frobenius element corresponding to the extension \widetilde{K}/\mathbb{Q} and the prime *p*.

For $K \in \mathscr{F}_4(Q)$, we consider

$$\zeta_{\widetilde{K}}(s) = \prod_{\rho \in \operatorname{Irr}(D_4)} L(s, \rho, \widetilde{K}/\mathbb{Q})^{\dim \rho} = \zeta(s)L(s, \chi_1)L(s, \chi_2)L(s, \chi_3)L^2(s, \rho_{\widetilde{K}}).$$

For $K \in \mathscr{F}_4(Q)$, we consider

$$\zeta_{\widetilde{K}}(s) = \prod_{\rho \in \operatorname{Irr}(D_4)} L(s, \rho, \widetilde{K}/\mathbb{Q})^{\dim \rho} = \zeta(s)L(s, \chi_1)L(s, \chi_2)L(s, \chi_3)L^2(s, \rho_{\widetilde{K}}).$$

Since we have fixed Q, the Dedekind zeta function

$$\zeta_Q(s) = \zeta(s)L(s,\chi_1)L(s,\chi_2)L(s,\chi_3)$$

is fixed.

For $K \in \mathscr{F}_4(Q)$, we consider

$$\zeta_{\widetilde{K}}(s) = \prod_{\rho \in \operatorname{Irr}(D_4)} L(s, \rho, \widetilde{K}/\mathbb{Q})^{\dim \rho} = \zeta(s)L(s, \chi_1)L(s, \chi_2)L(s, \chi_3)L^2(s, \rho_{\widetilde{K}}).$$

Since we have fixed Q, the Dedekind zeta function

$$\zeta_Q(s) = \zeta(s)L(s,\chi_1)L(s,\chi_2)L(s,\chi_3)$$

is fixed. Therefore, as K varies in $\mathscr{F}_4(a, b)$, the only varying L-factor in $\zeta_{\widetilde{K}}(s)$ is $L(s, \rho_{\widetilde{K}})$. It is crucial in our study together with the fact that $\rho_{\widetilde{K}}$ is faithful.

Theorem (Effective Chebotarev density theorem with assumed zero-free region)

Let $0 < \varepsilon_0 < \frac{1}{4}$ be sufficiently small. Suppose that $\mathscr{F}_4(Q) \neq \emptyset$. Suppose also that for $K \in \mathscr{F}_4(Q)$ such that $D_{\widetilde{K}} \geq C_7$ for an absolute constant C_7 , $\zeta_{\widetilde{K}}(s)/\zeta_Q(s) = L^2(s, \rho_{\widetilde{K}})$ (hence $L(s, \rho_{\widetilde{K}})$) has no zero in

$$[1-\delta,1] imes [-(\log D_{\widetilde{K}})^{2/\delta}, (\log D_{\widetilde{K}})^{2/\delta}],$$

where $\delta=\frac{\epsilon_0}{42+4\epsilon_0},$ then for every conjugacy class $\mathscr{C}\subset G=D_4,$

$$\left|\pi_{\mathscr{C}}(x,\widetilde{K}/\mathbb{Q})-\frac{|\mathscr{C}|}{|G|}\mathrm{Li}(x)
ight|\leq \frac{|\mathscr{C}|}{|G|}\frac{x}{(\log x)^2}$$

for all

 $x \ge \kappa_1 \exp \left[\kappa_2 (\log \log(D_{\widetilde{K}}^{\kappa_3}))^2\right]$

for parameters $\kappa_i = \kappa_i(a, b, \varepsilon_0)$.

We note that $\kappa_1 \exp \left[\kappa_2 (\log \log(D_{\widetilde{K}}^{\kappa_3}))^2\right] \ll D_K^{\varepsilon}$ for any $\varepsilon > 0$. Hence, for the field K above, we are able to count unramified primes p that splits completely in K and satisfies $D_K^{\varepsilon} \le p \le D_K^{\frac{1}{2\ell(d-1)}-\iota}$ for any $\varepsilon > 0$, $\iota > 0$. By the Theorem of

Ellenberg and Venkatesh, we obtain our ℓ -torsion bound for $Cl_{\mathcal{K}}$.

Next, we show via work of Kowalski and Michel (2002) that almost all fields in our family are zero-free in the described region.

Theorem

Suppose that $Q = \mathbb{Q}(\sqrt{a}, \sqrt{b})$ is such that $\mathscr{F}_4(Q) \neq \emptyset$. For every $0 < \varepsilon_0 < \frac{1}{4}$, there are $\ll_{\varepsilon_0} X^{\varepsilon_0}$ fields $K \in \mathscr{F}_4(Q; X)$ such that $\zeta_{\widetilde{K}}(s)/\zeta_Q(s) = L^2(s, \rho_{\widetilde{K}})$ could have a zero in the region

$$[1-\delta,1] imes [-(\log D_{\widetilde{K}})^{2/\delta}, (\log D_{\widetilde{K}})^{2/\delta}].$$

Theorem (A., 2018)

Suppose that $Q = \mathbb{Q}(\sqrt{a}, \sqrt{b})$ is such that $\mathscr{F}_4(Q) \neq \emptyset$. For every $0 < \varepsilon_0 < \frac{1}{4}$ sufficiently small, there exists a constant $B_2 = B_2(\varepsilon_0)$ such that for every $X \ge 1$, aside from at most $B_2 X^{\varepsilon_0}$ fields in $\mathscr{F}_4(Q; X)$, each field $K \in \mathscr{F}_4(Q; X)$ has the property that for every conjugacy class $\mathscr{C} \subset G = D_4$,

$$\left|\pi_{\mathscr{C}}(x,\widetilde{K}/\mathbb{Q}) - \frac{|\mathscr{C}|}{|G|}\mathrm{Li}(x)\right| \leq \frac{|\mathscr{C}|}{|G|}\frac{x}{(\log x)^2}$$

for all

 $x \ge \kappa_1 \exp \left[\kappa_2 (\log \log(D_{\widetilde{K}}^{\kappa_3}))^2\right]$

for parameters $\kappa_i = \kappa_i(a, b, \varepsilon_0)$.

Theorem

Let $Q = \mathbb{Q}(\sqrt{a}, \sqrt{b})$ be such that $\mathscr{F}_4(Q) \neq \emptyset$. For every $0 < \varepsilon < \frac{1}{4}$ sufficiently small, and every integer $\ell \ge 1$, there exists a parameter $B_1 = B_1(\ell, \varepsilon)$ such that for every $X \ge 1$, aside from at most B_1X^{ε} fields in $\mathscr{F}_4(Q; X)$, every field $K \in \mathscr{F}_4(Q; X)$ satisfies

$$|\operatorname{Cl}_{\mathcal{K}}[\ell]| \ll_{\ell,\varepsilon} D_{\mathcal{K}}^{\frac{1}{2}-\frac{1}{6\ell}+\varepsilon}$$