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Abstract. The relations satisfied by period polynomials associ-
ated to modular forms yield a way to count dimensions of spaces of
cusp forms. After showing how these relations arise from those on
the mapping class group PSL(2,Z) of the moduli space M0,4 of
genus 0 curves with 4 marked points, in this lecture I will go on to
define period polynomials associated to Picard modular forms. Re-
lations on these Picard period polynomials will then be given, and
via an embedding of a monodromy representation of the moduli
spaceM0,5 of genus 0 curves with 5 marked points in PU(2, 1;Z[ρ])
(where ρ denotes a third root of unity), they will be related to the
geometry of M0,5.
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1. From elliptic curves to period polynomials

1.1. The Eichler-Shimura theorem and the Manin relations.
Suppose that f is a cusp form for SL(2,Z) of weight k over R. Recall

1
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that this means that f is a holomorphic function on the upper half
space H which is also holomorphic at the cusps {i∞} ∪ Q and which
transforms under the action of

σ =

(
a b
c d

)
∈ PSL(2,Z)

on H via
f(σz) = (cz + d)kf(z).

Denote the space of these cusp forms of weight k for SL(2,Z) over R
by M0

k (R).

The periods with moment associated to f ∈M0
k (R) and x1, x2 ∈ {i∞}∪

Q are the complex numbers∫
x1→x2

f(τ)τ sdτ

for s = 0, 1, . . . , k − 2, where the integral is taken along the geodesic
arc x1 → x2 from x1 to x2.

Of special interest is the case x1 = i∞ and x2 = 0, giving integrals
along the imaginary axis. We set

rs(f) :=

∫
i∞→0

f(τ)τ sdτ.

These periods are examples of the modular symbols studied extensively
by Manin, as discussed in the lecture by Professor Stevens.

Notice that when s is even, rs(f) is purely imaginary (since f is defined
over R) while s odd implies that rs(f) is real. Hence writing

r+(f) :=
1

i
(r0(f), r2(f), . . . , rk−2(f))

and
r−(f) := (r1(f), r3(f), . . . , rk−3(f)) ,

each of these vectors lies in a Euclidean space, say R+
k−1 and R−k−1 re-

spectively; and the relations with integer coefficients which they satisfy
determine subspaces, say V + of R+

k−1 and V − of R−k−1 defined over Q.
We would like to find these linear relations.

Let us denote generators of PSL(2,Z) by

(1) S =

(
0 1
−1 0

)
and T =

(
1 1
0 1

)
It turns out that corresponding to each of the two relations S2 = I and
(ST )3 = I on PSL(2,Z) we get a relation on the periods:∫

i∞→0

f(τ)τ jdτ +

∫
S(i∞→0)

f(τ)τ jdτ = 0
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and

(2)

∫
i∞→0

f(τ)τ jdτ+

∫
ST (i∞→0)

f(τ)τ jdτ+

∫
(ST )2(i∞→0)

f(τ)τ jdτ = 0

There is a nice geometric way to understand these so-called Manin
relations: first, notice that S acts on H as an involution about the
circle of radius 1 centered at the cusp 0. Consequently, S acts on the
imaginary line as a reflection about i, and hence merely switches the
direction of the geodesic path i∞ → 0. Next, one checks that ST
maps i∞ → 0 to the geodesic arc from 0 to −1, and (ST )2 maps
i∞ → 0 to the vertical line from −1 to −1 + i∞ = i∞. These three
arcs form a triangle, and - roughly speaking - because the cusp form f
is holomorphic at the vertices, the integral taken around the boundary
of the triangle (which is the sum in (2)) is zero. One can write down a
careful proof checking these details (cf. Lang’s book [14] for example),
but I will shortly explain this from a slightly different perspective since
the triangle in fact corresponds to the lower hemisphere of P1\{0, 1,∞}
and by considering this viewpoint we will see that these relations can
be connected to relations satisfied by the Drinfel’d associator.

We are now in a position to state the Eichler-Shimura-Manin Theorem.
Usually it is framed in terms of cohomology; for this perspective see the
original works of Eichler and Shimura from the fifties. The version I’m
giving follows Lang’s discussion in [14], in which the proof is attributed
to David Rohrlich. The injectivity of the map is the hardest part of
the proof.

Theorem 1.1. The mapping

f 7→ r−(f)

is an isomorphism of M0
k (R) with V −, while the mapping

f 7→ r+(f)

is an isomorphism of M0
k (R) with a subspace of V + of codimension 1

which does not contain (1, 0, . . . , 0,−1).

As a nice corollary we get a dimension count of the space of cusp forms.

Now let X and Y be formal variables. We can define an action of
PSL(2,Z) on t(X, Y ) via a left action of the inverse transpose.1 Then
if f ∈M0

k (R) as above, the 1-form f(τ)(Xτ−Y )k−2dτ is invariant under
the PSL(2,Z) action. We define the period polynomial associated to

1This is not the usual action one will find in the literature but it works just as
well here and generalizes to the Picard period polynomial case - see below.
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the cusp form f of weight k to be

Pf (X, Y ) =

∫
i∞→0

f(τ)(Xτ − Y )k−2dτ.

This is a sort of generating function for the periods with moment in
that rs(f) appears as a term “labelled” by XsY k−2−s multiplied by(
k − 2
s

)
.

The Manin relations for the period polynomials are then:

(3) Pf (X0, X1) = −Pf (−X1, X0)

and

(4) Pf (X0, X1) + Pf (−X0 −X1, X0) + Pf (X1,−X0 −X1) = 0

1.2. Extending the monodromy representation of P1\{0, 1,∞}.
The Legendre form of the Weierstrass equation of an elliptic curve Eλ
is

y2 = x(x− 1)(x− λ)

and for each λ ∈ P1\{0, 1,∞} the curve Eλ is isomorphic to the curves
Ef(λ) where f(λ) is an element of the anharmonic group of transforma-
tions of P1\{0, 1,∞} given by

(5) Λλ :=

{
λ, 1− λ, 1

1− λ
,

λ

λ− 1
,

1

λ
,
λ− 1

λ

}
.v

There are six such curves for a given choice of λ, unless two or more of
the elements of Λλ are equal (which only happens if λ is a sixth root
of unity or lies in {−1, 2, 1

2
}).

Fix λ ∈ P1\{0, 1,∞}. Then we can regard Eλ as a two-sheeted cover
of the x-sphere by making branch cuts on two respective copies P0 and
P1 of P1\{0, 1,∞} along the geodesics γj0 between 0 and ∞ and γj1
between 1 and λ in Pj for j = 0, 1, and gluing along these cuts. Now
let Aλ denote a loop in Eλ about 0 and 1 which crosses each of the four
geodesics γjk exactly once, and let Bλ denote a loop in P0 about 1 and
λ which does not cross any of the four geodesics γkj . Then {Aλ, Bλ}
may be regarded as a basis of the homology group H1(Eλ,Z).

The periods of Eλ are then

ω1 =

∫
Aλ

dx

y
and ω2 =

∫
Bλ

dx

y
,

and τλ := ω2/ω1 lies in H, the upper half plane.

If we now let λ vary in P1\{0, 1,∞}, then λ 7→ τλ is a multi-valued
map Ψ of P1\{0, 1,∞} → H, the inverse of which is the classical lambda
function giving the uniformization of P1\{0, 1,∞} by H.



Period polynomials for picard modular forms 5

Given γ ∈ π1(P1\{0, 1,∞}, λ0) for some basepoint λ0, the analytic con-
tinuation of the restriction of Ψ to some simply connected neighborhood
of λ0 along γ gives rise to a map γ 7→ N(γ) via the transformation of
Ψ to N(γ) ◦ Ψ where N(γ) is some automorphism of H - i.e. N(γ) ∈
PSL(2,R). In other words, we have a map π1(P1\{0, 1,∞}, λ0) →
PSL(2,R), the image of which is called the monodromy group of Ψ.

Denote loops based at λ0 about 0 and 1 respectively by σ0 and σ1. These
can be viewed as the generators of π1(P1\{0, 1,∞}, λ0). Now N(σj) can
be computed via the effect of the analytic continuation along σj on the
homology basis {Aλ, Bλ}. One sees that

N(σ0)
t[Bλ Aλ] =

[
1 2
0 1

] [
Bλ

Aλ

]
while

N(σ1)
t[Bλ Aλ] =

[
−1 0
2 −1

] [
Bλ

Aλ

]
.

One finds that N(σ0) = T 2 while N(σ1) = ST 2S. Since the latter
matrices generate the congruence subgroup Γ(2) ≤ PSL(2,Z), which
is a free group on the two generators, in this case the monodromy
representation is faithful.

Now as Schneps explains in §2.5 of [2], the fundamental group of the
moduli space M0,n of genus 0 curves with n marked points may be
identified with the kernel K(0, n) of the projection of the mapping
class group M(0, n) to Sn (where n should be replaced by n− 1 when
n = 4); and this identification may be extended to a mapping from
M(0, n) itself to a certain set of path classes emanating from a so-
called real point of M0,n. When the real point in question admits no
automorphisms (which could arise from the orbifold structure onM0,n)
the map is an isomorphism and the path space thus acquires a group
structure.

Schneps gives her map for the configuration space model of M0,n but
an explicit version of this map in the complex model would be very
useful for computations. In [11] I gave such a map for the n = 4 case.
This yields a correspondence between the elements of all of M(0, 3) =
PSL(2,Z), and certain homotopy classes of paths in P1\{0, 1,∞}. In
order to describe this correspondence, first we need to introduce the
notion of tangential basepoint, which is due to Deligne [4]. To this end,
suppose that X = X\S is a smooth curve over C where S denotes some
finite set of points. Then at any omitted point a ∈ S, it is possible
to define the fundamental group of X in the direction of a specified
tangent vector to X at a. A classical way to do this (cf. for example
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[8]) is to set

Pv0,v1 := {γ : [0, 1]→ X | γ′(0) = v0; γ
′(1) = −v1; γ((0, 1)) ⊂ X}

(where vj ∈ Taj is a tangent vector at aj ∈ S for j = 0, 1), and then
denote the set of path components of Pv0,v1 by π1(X, v0, v1). When
v0 = v1 this gives the fundamental group based at v0, denoted π1(X, v0).

Now the anharmonic group Λλ ' S3 of (5) both permutes 0, 1 and ∞,
and gives the group of all linear fractional transformations of P1\{0, 1,∞}.
Therefore given a homotopy class α ∈ π1(P1\{0, 1,∞},−→01,

−→
ab) where

a, b are distinct elements of {0, 1,∞} and
−→
ab denotes the unit vector

based at a in the direction of b along the real line in P1(C), the per-
mutation σab ∈ S3 sending 0 to a and 1 to b corresponds to a unique

element of Λλ, say λab, so given any β ∈ π1(P1\{0, 1,∞},−→01,
−→
cd) for any

distinct c, d ∈ {0, 1,∞} then λab(β) ∈ π1(P1\{0, 1,∞},
−→
ab,
−−−−−→
σabc σabd).

But then we can define the product of α and β in

G01 :=
⋃

a,b∈{0,1,∞},a 6=b

π1(P1\{0, 1,∞},−→01,
−→
ab)

as the path α followed by λab(β). Now let s denote the tangential path

along the unit interval from
−→
01 to

−→
10, and let t denote the tangential

path from
−→
01 to

−→
0∞ which is a loop tangential to the real line lying in

the upper half plane. In [11], G01 with the group operation described
above is shown to be isomorphic to PSL(2,Z) under the association
of s and t respectively with the matrices S and T of (1). With this
notation a presentation for G01 is:

G01 = < s, t | s2 = (st)3 = 1 > .

Notice that σ0 above corresponds to t2, and σ1 corresponds to s followed
by t2 followed by s, so N(σ0) = T 2 and N(σ1) = ST 2S is exactly the re-

striction of the isomorphism G01 → PSL(2,Z), to π1(P1\{0, 1,∞},−→01)→
Γ(2) = K(0, 3). In other words, the short exact sequence

(6) 1→ K(0, 3)→ PSL(2,Z)→ S3 → 1

is then faithfully represented on

(7) 1→ π1(P1\{0, 1,∞},−→01)→ G01 → S3 → 1,

where the multiplication on G01 is “twisted” by the action of S3 on
P1\{0, 1,∞} as described above.

1.3. Period polynomials and the geometry of P1\{0, 1,∞}. The
classical lambda function λ which gives the uniformization of P1\{0, 1,∞}
by H maps the path of integration i∞ → 0 to the tangential path s,
which we associate with the element S of PSL(2,Z).
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Given any contractible path in P1\{0, 1∞}, there is a corresponding
relation in PSL(2,Z) coming from the decomposition of the path in
terms of σ and τ . The path also lifts to a (contractible) path in a
fundamental domain for Γ(2) in the PSL(2,Z) action on H, for example
(cf. [3]) the set

F := {τ ∈ H | − 1 < <(τ) ≤ 1;

∣∣∣∣τ − 1

2

∣∣∣∣ ≥ 1

2
;

∣∣∣∣τ +
1

2

∣∣∣∣ > 1

2
},

which, by prepending σ ◦ σ (the identity) if necessary, starts with the
path i∞ → 0. This path in H can then be regarded as a succession
of images of i∞ → 0 and in this way we get a relation on our period
polynomial.

Example. Consider the trivial path (στ−1)3 = 1 on G01. This is the
tangential path from 0 to 1 (s) followed by a loop (λ10(τ

−1)) in the up-

per hemisphere from
−→
10 to

−→
1∞, then the tangential path (λ1∞σ) from

1 to ∞ along the real line, a loop in the upper hemisphere (λ∞1(τ
−1)

from
−→∞1 to

−→∞0, the path along the real axis from ∞ to 0, and finally

the loop in the upper hemisphere from
−→
0∞ to

−→
01. This path is merely

a contractible loop in the upper hemisphere of P1\{0, 1,∞}. In the
lifting thereof to the fundamental domain F for Γ(2) given above, the
images of τ−1 lift to non-geodesic loops from tangential basepoints at
the cusps of the reflection of the triangle considered before over the
imaginary axis. The two tangential basepoints at each relevant cusp
are in fact equal. For example, at the cusp 0, there is a tangential base-
point pointing in the direction of i∞ along the imaginary axis, and a
second tangential basepoint in the direction of the geodesic arc from
0 to 1. The relevant tangent vectors coincide. Consequently, the lifts
of τ−1 to F are loops over which the images of the period integral are
zero. Essentially then, these serve to cut out the cusps from the path,
and as before the integral over the entire path is zero. In this way, we
find that the hexagonal path (στ−1)3 in P1\{0, 1,∞} gives rise to the
Manin relation on the period polynomials. (For a more careful proof
see Theorem 1.1 in [12].)

Integrating over the same path gives a way to compute the analytic
continuation of a flat section of the universal prounipotent bundle with
connection2 on P1\{0, 1,∞}. Such a flat section is given by the poly-
logarithm generating function Li(z, A,B), and I showed in [11] that
this procedure carried out along a path α in G01 always transforms

2Here the connection is the Knizhnik-Zamolodchikov equation

dG(z,A,B) =
Adz

z
+

Bdz

1− z
mentioned in Professor Kaneko’s talk.
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Li(z, A,B) to Fα(A,B) · Li(z, A,B) where Fα(A,B) is some power
series in the non-commuting variables A and B, and the association
of paths in G01 (and hence of elements of PSL(2,Z)) with power se-
ries is injective. When interpreted suitably, (working with a unipotent
completion of the topological fundamental group), this mapping can
be identified with Deligne’s Betti-de Rham comparison isomorphism of
fundamental groups of P1\{0, 1,∞}, (cf. [4] and §4 of Kedlaya’s notes
[13] from Deligne’s 2003 Arizona Winter School lecture); and group-
like elements3 of the image lie in the Grothendieck-Teichmüller group
GT - see Appendix A.

Now the power series arising from analytic continuation along σ is the
Drinfel’d associator Φ(A,B) and the relation on power series coming
from the hexagonal path (στ−1)3 is none other than the hexagonal
relation

ΦKZ(A,B) exp(iπB)ΦKZ(−B,A−B) exp(iπ(A−B))ΦKZ(B−A,−A) exp(iπ(−A)) = 1

on GT .

The Manin relation (4) coincides with the Lie algebra version of the
hexagonal relation in GT .

Now a five term “pentagonal relation” for GT arises similarly in the
context of the moduli space M0,5 of genus zero curves with 5 marked
points. In some way, this relation must be more fundamental than the
hexagonal relation: in [7], Hidekazu Furusho showed the quite aston-
ishing fact that the pentagonal relation implies the hexagonal relation.

The obvious question which arises here is then: Can we develop an
analogue of the period polynomials in the context of M0,5, and would
such objects satisfy a linearized pentagonal relation?

In an attempt to answer this question, we begin by studying a mon-
odromy representation forM0,5 arising from a family of genus 3 curves.

But first, let us mention an amazing recent result of Brown and Hain:
they proved that the comparison isomorphism for de Rham and singular
(Betti) cohomology for the moduli spaceM1,1 of elliptic curves yields a
version of the Eichler-Shimura-Manin Theorem for weakly holomorphic
modular forms of level 1. See their work [1] for details. It’s noteworthy
that in our situation, the logarithm (Lie algebra mapping) of the image
of the Betti-deRham comparison isomorphism for fundamental groups
can be seen to give the relations on period polynomials which are at
the heart of the Eichler-Shimura-Manin Theorem for cusp forms.

3Group like elements satisfy ∆Ψ = Ψ⊗Ψ under a coproduct ∆ on the image.
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2. The Picard curve case

2.1. From Picard curves to a representation of the fundamen-
tal groupoid of M0,5 on PU(2, 1;Z[ρ]). The curves C(x0, y0) given
in affine coordinates (z, w) by the equation

w3 = z(z − 1)(z − x0)(z − y0)
for [x0 : y0 : 1] in the space

M := {[x0 : y0 : 1] ∈ P2(C) : x0y0(x0 − 1)(y0 − 1)(x0 − y0) 6= 0}
are genus 3 compact curves known as Picard curves. Notice that if
ρ = exp(2πi/3), (z, w) 7→ (z, ρw) gives an automorphism of C(x0, y0).
The parameter space for this family is none other than the moduli
spaceM0,5 of genus 0 curves with 5 marked points since (as in the case
of the complex model of M0,4) one can use the cross ratio to see that
it is isomorphic to

(P1\{0, 1,∞})2\∆
where ∆ = {(z, z) ∈ P2(C) : z ∈ P1\{0, 1,∞}}. Now, as in the elliptic
curve case discussed in §1.2 above, analytic continuation along paths
in the parameter space M0,5 gives rise to an action on periods of the
Picard curves, which could also be viewed as an action on a homology
basis for H1(C(x0, y0),Z) for some fixed (x0, y0) ∈M0,5. In particular,
suppose that {A1, A2, A3, B1, B2, B3} is such a basis with the standard
intersection matrix, and {ω1, ω2, ω3} is a basis of abelian differentials
of the first kind on C(x0, y0) for which∫

Aj

ωi = δij.

The period matrix Ω =
(∫

Bj
ωi

)
was computed by Picard. This gives a

map ofM0,5 into the Siegel upper half space H3 of symmetric matrices
with positive definite imaginary part.

An example of a suitable basis for H1(C(x0, y0),Z) was given explicitly
by Shiga in [16]. Using his basis, dw

z
is a holomorphic differential on

C(x0, y0) which is not among the ωj, j = 1, 2, 3. Then set

η0 =

∫
A1

dw

z
η1 = −ρ2

∫
B1

dw

z
η2 =

∫
A2

dw

z

and write
v =

η1
η0

and u =
η2
η0
.

Picard gave the period matrix in terms of (u, v) and in this way we can
view the period mapping (x0, y0) 7→ (u, v) as a map fromM0,5 into the
complex hyperbolic space (the complex 2-ball) H2

C which is given by

{(u, v) ∈ C2 : 2Re(v) + |u|2 < 0}.



10 sheldon joyner

It is known that the image is open and dense in H2
C, cf. [16].

As in the elliptic curve case, analytic continuation deforms this pe-
riod mapping by post-composition by an automorphism of the covering
space - in this case by an element of PU(2, 1;Z[ρ]), the projectivization
of the unitary group of matrices g with tgJg = J where

(8) J =

 0 0 1
0 1 0
1 0 0

 ,

with coefficients in Z[ρ].

Here the image of the monodromy representation is the subgroup

Γ1 := {g ∈ PU(2, 1;Z[ρ]) : g ≡ I mod (
√

3iI).

A major difference from theM0,4 case is that this representation is not
faithful.

Now the automorphism group ofM0,4 is the anharmonic group Λλ ' S3

while that ofM0,5 is S5. But there is also a natural S4 action onM0,5

induced by the S4 action on the points p1 = [0 : 0 : 1], p2 = [0 : 1 : 0],
p3 = [1 : 0 : 0] and p4 = [1 : 1 : 1] of P2, and this turns out to
be the suitable action to consider in giving a sort of extension of the
monodromy representation to mimic that in the M0,4 case, because
here we have the short exact sequence

1→ Γ1 → PU(2, 1;Z[ρ])→ S4 → 1.

(It’s also the case that the blowup of P2 at the four points p1, p2, p3 and
p4 coincides with a certain compactification ofM0,5.) Based upon this
S4 action, in [12] an ad hoc S4 action on those tangential basepoints of
M0,5 based at the “points at infinity” p1, p2, p3 and p4 is given. Using
a presentation for PU(2, 1;Z[ρ]) given in [6], the S4 action is paired
with an explicit version of the surjection PU(2, 1;Z[ρ])→ S4 to define
an explicit group of paths on (P1\{0, 1,∞})2\∆ which surjects onto
PU(2, 1;Z[ρ]), in an analogue of the mapping to the group of paths G01
in P1\{0, 1,∞} described above. For the details see [12]. Unfortunately
the group of paths we obtain is free, so an analogue of the association
of trivial paths (like (st−1)3 = 1) in G01 with relations on the period
polynomials would not have any content in theM0,5 setting using this
explicit group of paths.

2.2. Picard period polynomials. Following [16], define a Picard
modular form (respectively a Picard meromorphic modular form) of
weight k relative to a subgroup G of PU(2, 1;Z[ρ]) to be any holo-
morphic (respectively meromorphic) function f(z1, z2) on H2

C which
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satisfies

(9) f(g(z1, z2)) = (det g)−k(g20z1 + g21z2 + g22)
3kf(z1, z1)

for any g = (gij)i,j=0,1,2 ∈ G.Here g(z1, z2) is defined via the action of
g on [η0 : η1 : η2] ∈ P2(C) with the identifications z1 = η0

η2
and z2 = η1

η2
.

As Shiga points out, one checks that

(10)
∂(g(z1, z2))

∂(z1, z2)
=

det g

(g20z1 + g21z2 + g22)3
=: jg(z1, z2).

In other words, (9) is of the form

(11) f(z1, z2) = jkg (z1, z2)f(g(z1, z2))

where jg denotes the Jacobian determinant given by (10).

The (left) action induced by the transpose of the inverse tg−1, multi-
plied by a cubed root of det g, turns out to give a suitable action of g =
(gij)i,j=0,1,2 ∈ PU(2, 1;Z[ρ]) on the polynomial ring Z[ρ][X0, X1, X2]3n
of homogeneous polynomials in the variables X0, X1 and X2 of degree
3n for some fixed n ≥ 1 with coefficients in Z[ρ]. Given a general
element A = (aij)i,j=0,1,2 of PU(2, 1;Z[ρ]) the inverse is

A−1 =

 a22 a12 a02
a21 a11 a01
a20 a10 a00


-i.e. A−1 = (bij)i,j=0,1,2 where bij = a(2−j)(2−i). Hence this action is
given by:

(12) Xk 7→ (det g)1/3
2∑
j=0

g(2−k)(2−j)Xj

for k = 0, 1, 2. Here det g is some sixth root of unity for any g ∈
PU(2, 1;Z[ρ]) but notice that since we are working only with the action
on homogeneous polynomials of degree divisible by 3, the choice of the
cubed root is irrelevant. Also, since the sixth roots of unity lie in Z[ρ]
we don’t need to enlarge the ring of coefficients.

Suppose that f(z1, z2) denotes a Picard modular form of weight k rel-
ative to a subgroup G of PU(2, 1;Z[ρ]). By combining (9), (10) and
(12) one checks that

f(z1, z2;X0, X1, X2)dz1∧dz2 := f(z1, z2)(z1X0+z2X1+X2)
3k−3dz1∧dz2

is invariant under the action of G.

To determine Picard modular forms as defined above for the full group
PU(2, 1;Z[ρ]) and not merely subgroups thereof Runge in [15] used a
method he developed to determine rings of Siegel modular forms. In
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doing so, it was necessary to introduce a new feature: his rings of mod-
ular forms are each associated to some specific element, say M , of finite
order in Sp(3,Z), and accordingly are called Picard modular forms of
Picard type M . Using the period mapping and a correspondence given
by Holzapfel in [9] between PU(2, 1;Z[ρ]) and a subgroup of Sp(3,Z)
one can show that Runge’s modular forms of a certain Picard type
MPic satisfy the condition of (11) for all g in PU(2, 1;Z[ρ]). Runge
found the ring of Picard modular forms of type MPic is a polynomial
ring in certain homogeneous polynomials in the theta constants

(13) fk(Ω) := θ

[
k
0

]
(0, 2Ω) :=

∑
n∈Z3

exp(2πi t(n + k)Ω(n + k))

where Ω ∈ H3 and k is one of

1 :=

 1
0
0

 , 2 :=

 0
1
0

 , or 3 :=

 1
1
0

 .
Again thanks to the period mapping, these functions may be regarded
as functions of H2

C.

Runge also gave a method to determine the ring of Picard modu-
lar forms of Picard type MPic explicitly, which I carried out using
Macaulay2 and reported on in the Appendix to [12].

The final ingredient before we can define the Picard period polynomials
is the domain D in H2

C over which we will integrate - in other words
the analogue of the path i∞→ 0 in H.

There is a representation of PSL(2,Z) on a subgroup of PU(2, 1;Z[ρ])
given by the following map:

S 7→

 0 0 1
0 −1 0
1 0 0

 =: R T 7→

 1 1 ρ
0 ρ −ρ
0 0 1

 =: P

Adjoining

R1 :=

 1 0 0
0 −ρ2 0
0 0 1


to this representation, we find that PU(2, 1;Z[ρ]) is generated by R,P
and R1 with the presentation

PU(2, 1;Z[ρ]) =< R,P,R1|R2 = (RP )6 = R6
1 = [R1, R] = PR−11 P−1R−11 P = I >

(see Proposition 5.10 in [6]).

Now R is a reflection about the isometric sphere SR of R:

SR := {z ∈ H2
C : | < q∞, z > | = | < q∞, Rz > |}.
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where as in [6] q∞ denotes the point [1 : 0 : 0] at infinity for H2
C and

< ·, · > is the Hermitian form < r, s >:= s∗Jr with J as in (8) above.
This is a precise analogue of the action of S on PSL(2,Z) with respect
to the geodesic arc |z| = 1 in the upper half space H: indeed, define
the Hermitian form < w, z >= wz for w, z in H, consider 1 as a cusp
of H and then set

US := {z ∈ H : < 1, z >=< 1, Sz >}.

It’s clear that US is the upper half of the circle |z| = 1 and that S,
which acts on H by z 7→ −1

z
is a reflection across this arc.

One checks that

SR = {[z1 : z2 : 1] ∈ H2
C : |z1| = 1; |z2| ≤

√
2}

and R fixes the set i3 of points of SR with z1 = −1. Not only is i ∈ US
fixed by S in the same way that the points of i3 ∈ SR are fixed by
R; but the S-action interchanges the center 0 of US and i∞, while the
R-action switches the center [0 : 0 : 1] of the isometric sphere SR and
q∞.

Next we consider fixed points of the other generators. In the PSL(2,Z)
case, T fixes i∞ and the path of integration for the period polynomials
is comprised of the path from i∞ (the fixed point of T ) to i (the fixed
point of S on US), together with the image thereof under S itself. In
the PU(2, 1;Z[ρ]) setting, one checks that P similarly fixes q∞, and
R1 fixes both [0 : 0 : 1] and q∞, and shares with R the fixed point
[−1 : 0 : 1] ∈ i3. This might suggest that we should integrate over
the geodesic from q∞ to [−1 : 0 : 1] together with the image of the
geodesic from [−1 : 0 : 1] to q∞ under R. The geometry resulting
from this choice is not very interesting. Instead, we will integrate
over a 2-simplex found by considering fixed points of other elements of
PU(2, 1;Z[ρ]).

To this end, we set R2 = R−1R−11 PR and R3 = PR−11 . Under the
homotopy representation computed by Shiga, RR2

2R
−1 corresponds to

a loop in M0,5 based at x0 about y0 for some fixed (x0, y0) ∈ M0,5

with 1 < x0 < y0 < ∞ and RR2
3R
−1 corresponds to a loop about 0

based at x0 (cf. [16]). Then {R1, R2, R3} is also a generating set for
PU(2, 1;Z[ρ]) and we also have that R2

1 = RR2
1R
−1 corresponds to a

loop about 1 based at x0. Then R2 fixes [0 : 0 : 1] and [−1 : −ρ : 1] ∈ i3
while R3 fixes q∞ and [−1 : 1 : 1] ∈ i3.
Within i3 consider the path j3 from the fixed point [−1 : −ρ : 1] of
R3 to the fixed point [−1 : 0 : 1] of R1, followed by the geodesic from
[−1 : 0 : 1] to the fixed point [−1 : 1 : 1] of R2.



14 sheldon joyner

Now define the domain D in H2
C, which is to serve as the analogue of

the line from i∞ through i to 0 in H, to consist of the union of all
geodesics from q∞ to the points of j3, together with the union of the
images of these lines under the R-action, each oriented from a point of
j3 to [0 : 0 : 1]. Using the explicit description of geodesics in H2

C given
in [6], it is possible to visualize D in affine coordinates as two sides of
the surface of a triangular prism in R×C which extends from infinity
along the negative real axis towards the omitted vertex (0, 0).

Finally we define the Picard period polynomial associated to the Picard
modular form f of type M and weight k as

Pf (X0, X1, X2) :=

∫
D

f(z1, z2)(z1X0 + z2X1 +X2)
3k−3 dz1 ∧ dz2.

Then we can prove the

Proposition 2.1. The integral Pf (X0, X1, X2) converges.

(See [12] for the proof.)

Guided by the way in which the usual period polynomials satisfy re-
lations arising from those on PSL(2,Z), one can now determine the
relations on the Picard period polynomials. Again in [12] I prove the
following theorem, working in the covering space H2

C rather than in
M0,5 itself (since the monodromy representation is not faithful):

Theorem 2.2. The period polynomial Pf (X0, X1, X2) for the Picard
modular form f of type M and weight k satisfies the following relations
corresponding to defining relations on PU(2, 1;Z[ρ]) :

(14) Pf (X0, X1, X2) = −Pf (X2,−X1, X0)

corresponding to R2 = I;

(15)

Pf (X0, X1, X2) + (−ρ2)k−1Pf (X0,−ρX1, X2) + ρk−1Pf (X0, ρ
2X1, X2)

+(−1)k−1Pf (X0,−X1, X2)+ρ
2k−2Pf (X0, ρX1, X2)+(−ρ)k−1Pf (X0,−ρ2X1, X2) = 0

corresponding to R6
1 = I;

(16) Pf (X0, X1, X2) + ρk−1Pf (ρ
2X0 +X1 +X2, ρ

2X0 − ρ2X1, X0)

+ ρ2k−2Pf (ρ
2X2, ρ

2X2 −X1, ρ
2X0 +X1 +X2) = 0

corresponding to (RP )3 = I;
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(17) Pf (X2, ρX1, X0) + Pf (X0,−ρX1, X2) = 0

coming from [R,R1] = I; and the pair of relations

(18) Pf (X0, X1, X2) + ρk−1Pf (X0,−ρ2X0 + ρ2X1, ρ
2X0 +X1 +X2)

= (−ρ2)k−1Pf (X0, ρX0 − ρX1, ρ
2X0 +X1 +X2)

and

(19) Pf (X0, X1, X2) + ρ2k−2Pf (X0, X0 + ρX1, ρX0 − ρX1 +X2)

= (−ρ)k−1Pf (X0,−ρX0 − ρ2X1, ρX0 − ρX1 +X2)

coming from PR−11 P−1R−11 P = I.

Notice that the equation (17) is clearly equivalent to (14).

Equation (16) is the Picard period polynomial analogue of the Manin
equation (4).

Equations (18) and (19) are hexagonal-type equations similar to the
Manin relation (16) but which come out of the pentagonal equation
(??) on PU(2, 1;Z[ρ]). There is a geometric reason that we would not
expect a pentagonal equation to be faithfully represented on the sym-
metry relations satisfied by the Pf (X0, X1, X2): as Ihara explains in
[10], the pentagonal relation on paths in M0,5 runs between 5 specific
tangential basepoints which are permuted by the action of a 5-cycle in
S5 on the canonical S5-action on the space. Consequently the S4-orbit
of any of these tangential basepoints does not include all of the others.
Because PU(2, 1;Z[ρ]) is the image of the monodromy representation
of the orbifold fundamental group of the orbifold [M0,5/S4] (cf. [16]),
any pentagonal path inM0,5 which gives rise to the pentagonal relation
on GT will not give rise to a five term relation on the Picard period
polynomials.

The computations needed for the proof show that the 2-simplex P (D)
and the 2-simplex (P−1R−11 P )(D) are complex conjugates of one an-
other. This gives the following further (non-trivial) relation on period
polynomials for Picard modular forms:

Pf (X0,−ρ2X0+ρ
2X1, ρ

2X0+X1+X2) = Pf (X0,−ρX0−ρ2X1, ρX0−ρX1+X2)

where Pf denotes complex conjugation.

Finally we remark that since we know that every relation on PU(2, 1;Z[ρ])
yields a relation on the period polynomials for Picard modular forms,
the relations coming from the presentation of PU(2, 1;Z[ρ]) using the
generators R1, R2 and R3 do so as well. For example, since R3 = PR−11 ,
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one can deduce R6
3 = I from R6

1 = I along with repeated application
of PR−11 P−1R−11 P = I - indeed, P−1R1 = PR−11 P−1 so

I = P−1R6
1P = (P−1R1)R

5
1P

= (PR−11 P−1)R5
1P = (PR−11 )(PR−11 P−1)R4

1P

= · · · = (PR−11 )6 = R6
3.

Consequently, through repeated application of 18 and 19 to 15, the
equation corresponding to R6

3 = I would result, namely

0 = Pf (X0, X1, X2) + Pf (X0,−ρ2X0 − ρX1, ρ
2X0 − ρ2X1 +X2)

+ Pf (X0, (1− ρ2)X0 + ρ2X1, (ρ
2 − 1)X0 + (1− ρ2)X1 +X2)

+ Pf (X0, 2X0 −X1,−2X0 + 2X1 +X2)

+ Pf (X0, (1− ρ)X0 + ρX1, (ρ− 1)X0 + (1− ρ)X1 +X2)

+ Pf (X0,−ρX0 − ρ2X1, ρX0 − ρX1 +X2).

Combining Theorem 2.2 with the monodromy mapping from §2.1 gives
the

Corollary 2.3. Every contractible path in π1((P1\{0, 1,∞})2\∆, (−→01,
−→
01)

gives a relation on Pf (X0, X1, X2) in the sense that one or more of the
equations in Theorem 2.2 can be associated with the path once it is
mapped into PU(2, 1;Z[ρ]).

Appendix A. The Grothendieck-Teichmüller Group

The absolute Galois group Gal(Q/Q) =: GQ of the rationals, which
is the group of automorphisms of an algebraic closure Q of Q, is one
of the central objects of study in number theory. Because it encodes
information pertaining to all polynomial equations in integer coeffi-
cients, at once, it is immensely complicated. A lot is known about
GQ: for example, the abelian extensions of Q in Q are handled by the
beautiful edifice of class field theory; and the study of Galois represen-
tations gives a very productive approach to understanding the group.
Yet, there is still much to learn about GQ. In fact the only known de-
scription of any element of this profinite group other than the identity
automorphism and complex conjugation, would have to reference the
restriction to each of infinitely many field extensions of Q.4 We can
“name” an absolute Frobenius element above a prime p of Z but this
is defined as an element of GQ only up to its action on an algebraic
closure of the finite field of p elements (viewed as a quotient of the

4This is essentially due to a Theorem of Artin which asserts that up to conju-
gation, the identity and complex conjugation are the only elements of GQ of finite
order.



Period polynomials for picard modular forms 17

integral closure of Z in Q by a maximal ideal p dividing p). Other
than such approximations explicit descriptions of elements of GQ are
not known.

In the 1980s, through work of Belyi, Grothendieck, Drinfel’d, Ihara and
others, it became known that GQ embeds into a finitely presented group
with geometric origins, the so-called Grothendieck-Teichmüller group
GT . Whether this embedding is a surjection remains an important
open question, but in any event GT is a fundamental object which
could shed light on GQ.

While GT is an essentially geometric object, serving as it does as the
group of automorphisms of the tower of (profinite completions of) fun-
damental groupoids with basepoints at infinity of the moduli spaces
M0,n of genus 0 curves with n marked points, in [5], Drinfel’d mo-
tivated the definition of GT based on purely algebraic constructions,
namely via perturbations of the structures on quasitriangular quasi-
Hopf algebras. A quasi-Hopf algebra on a set A is a Hopf algebra
in which the coassociativity axiom is replaced by a weaker condition
coming from a so-called associator Φ which lies in A ⊗ A ⊗ A; and
a quasitriangular quasi-Hopf algebra has the comultiplication adjusted
by an element R of A⊗A (called an R-matrix). It is possible to perturb
these structures in such a way that the defining axioms are unchanged
- in other words to produce a new quasitriangular quasi-Hopf algebra
which differs from the old only in that Φ and R are changed. This
imposes conditions on the automorphisms of tensor products of repre-
sentations of the quasitriangular quasi-Hopf algebra (V1⊗V2)⊗V3 and
V1 ⊗ V2, which amount to the following hexagonal relation:

(20) f(X3, X1)X
m
3 f(X2, X3)X

m
2 f(X1, X2)X

m
1 = 1

together with

(21) f(X, Y ) = f(Y,X)−1

where f ∈ F2, the free group on two generators X and Y , X1X2X3 = 1
and m ∈ Z.
In addition, preserving the usual type of pentagonal commutative di-
agram for coassociativity in representations of Hopf algebras in this
context of perturbation of structures gives rise to the pentagonal rela-
tion:
(22)
f(x12, x23x24)f(x13x23, x34) = f(x23, x34)f(x12x13, x24x34)f(x12, x23).

Here the xij with 1 ≤ i < j ≤ 4 are standard generators of the colored
braid group K(0, 4) (the kernel of the natural map of the Artin braid
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group B4 to S4). These satisfy the relations

(x12, x34) = (x14, x23) = 1

(x13, x
−1
12 x24x12) = 1

and

(aijk, xij) = (aijk, xik) = (aijk, xjk) = 1

where i < j < k and aijk = xijxikxjk. For our purposes we may regard
the xij and x−1ij as formal variables satisfying the above relations along

with xijx
−1
ij = 1.
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