A relative endoscopic fundamental lemma for unitary groups

Spencer Leslie

Duke University

Boston University-Keio University Workshop

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Main objects of interest: Relative orbital integrals

- E/F be an unramified quadratic extension of *p*-adic fields,
- (V, Φ) (split) Hermitian space with unitary group U(V).
- Study action $U(V) \times U(V)$ on End(V) by

$$(g,h)\cdot X = gXh^{-1}.$$

Relative orbital integrals:

$$\operatorname{RO}(X,f) := \int_{\mathcal{T}_X \setminus U(V) \times U(V)} f(g^{-1}Xh) \frac{d(g,h)}{dt},$$

for $f \in C_c^{\infty}(\text{End}(V))$ and X is "regular semi-simple" in End(V).

Case of primary interest: $f = \mathbf{1}_{End(\Lambda)}$ where $\Lambda \subset V$ is a self-dual lattice.

Stable orbital integrals

This action is not "stable": Two types of orbit

a rational orbits: $X' = gXh^{-1}$ for $(g, h) \in U(V) \times U(V)$

stable orbit: $X' = gXh^{-1}$ for $(g, h) \in (U(V) \times U(V))_{\overline{F}}$.

RO(X, f) only knows rational orbits, but stable orbits are (somehow) more natural. We set

$$\operatorname{SRO}(X, f) := \sum_{X \sim_{st} X'} \operatorname{RO}(X', f)$$

to be the stable relative orbital integral.

 these rational orbits are parametrized by cohomology classes

$$inv(X, X') \in H^1(F, T_X).$$

(日) (日) (日) (日) (日) (日) (日)

What's the difference?: κ-orbital integrals

Definition

For any character $\kappa : H^1(F, T_X) \to \mathbb{C}^{\times}$ and any $f \in C_c^{\infty}(\text{End}(V))$, define the κ -relative orbital integral to be

$$\mathrm{RO}^{\kappa}(X,f) := \sum_{X \sim_{st} X'} \kappa(\mathit{inv}(X,X')) \mathrm{RO}(X',f).$$

When $\kappa = 1$, we have $RO^{\kappa} = SRO$ is the stable orbital integral.

$$\operatorname{RO}(X, f) = c\left(\operatorname{SRO}(X, f) + \sum_{\kappa \neq 1} \operatorname{RO}^{\kappa}(X, f)\right)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Relative orbital integrals

Problem of geometric stabilization

For global purposes, need to express κ-orbital integrals in terms of stable orbital integrals.

Goal

Find groups of smaller dimension H_{κ} acting on varieties X_{κ} so that

 κ -orbital integrals of $(U(V) \times U(V), End(V))$

may be expressed in terms of

stable orbital integrals of (H_{κ}, X_{κ}) .

Adjoint case: $(H_{\kappa}, X_{\kappa}) = (H, \text{Lie}(H))$ is an **endoscopic group** acting on its Lie algebra (Langlands,Shelstad, Kottwitz, Waldspurger, Laumon, Ngô...)

Proposed endoscopic spaces

Decompose V = V₁ ⊕ V₂ into (split) Hermitian subspaces,
 Then U(V₁) × U(V₁) and U(V₂) × U(V₂) acts on

 $\operatorname{End}(V_1) \oplus \operatorname{End}(V_2) \subset \operatorname{End}(V).$

Call the pair

 $(U(V_1) \times U(V_1), \operatorname{End}(V_1)) \oplus (U(V_2) \times U(V_2), \operatorname{End}(V_2))$

an endoscopic space for $(U(V) \times U(V), End(V))$.

Hope

Should satisfy a fundamental lemma and smooth transfer

Relative orbital integrals

Conjectural fundamental lemma

Recall that $\Lambda \subset V$ is our self-dual lattice.

Conjecture: Relative endoscopic fundamental lemma (L)

For a decomposition $V = V_1 \oplus V_2$, we may associate a character κ and a transfer factor Δ such that, if

$$X \in \operatorname{End}(V_1) \oplus \operatorname{End}(V_2) \subset \operatorname{End}(V),$$

then

$$\operatorname{SRO}(X, \mathbf{1}_{\operatorname{End}(\Lambda_1)} \oplus \mathbf{1}_{\operatorname{End}(\Lambda_2)}) = \Delta(X) \operatorname{RO}^{\kappa}(X, \mathbf{1}_{\operatorname{End}(\Lambda)}),$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

where $\Lambda = \Lambda_1 \oplus \Lambda_2$.

The case of U(2) imes U(2)

In low rank, we can compute both sides.

Theorem (L)

The fundamental lemma is true for $\dim(V) = 2$.

- First example of an endoscopic fundamental lemma for relative orbital integrals in the literature.
- Key step: Make precise by developing the appropriate transfer factor for arbitrary dim(V).

"Regular" smooth transfer

We are also interested in transferring general test functions f. We can do this for many functions.

Theorem (L)

For any dim V, there exists a transfer factor Δ such that

 $\Delta(X) \operatorname{RO}^{\kappa}(X, f)$

is the stable orbital integral for some $f' \in C_c^{\infty}(\operatorname{End}(V_1) \oplus \operatorname{End}(V_2))$ whenever $\operatorname{supp}(f) \subset \operatorname{GL}(V)$.

This is overly simplistic: we must include terms associated to non-split Hermitian spaces as well.

Transfer factors: Try to reduce to adjoint case

Lemma

The invariant map $\chi : End(V) \rightarrow F^d$ may by factored

realizing $\mathfrak{u}(V)$ as the categorical quotient $\operatorname{End}(V)//U(V)$.

- Reduces the problem of defining matching and the transfer factors to the Langlands-Shelstad-Kottwitz case,
- but not the FL or smooth transfer.

Relative orbital integrals

Where does this come from?

Periods of automorphic forms!

-Global motivation

Periods of automorphic forms

- Fix a reductive group G over Q, and let H ⊂ G be a closed algebraic subgroup.
- An automorphic representation π (always irred cuspidal) of G(A) is H-distinguished if the period integral

$$\mathcal{P}_{H}(arphi) := \int_{[H]} arphi(h) dh
eq 0$$

for some $\varphi \in \pi$. Here $[H] := H(\mathbb{Q})A_{G,H}(\mathbb{A}) \setminus H(\mathbb{A})$.

 Closely related to special values/poles of *L*-functions and Functorial lifting from smaller groups.

Example: Linear periods

Let V be a d-dimensional Q-vector space, set W = V ⊕ V,
GL(V) × GL(V) ⊂ GL(W)

Theorem (Friedberg-Jacquet, '95)

Let π be a cuspidal automorphic representation of $GL(W)_{\mathbb{A}}$. The following are equivalent:

1 π is GL(V) × GL(V)-distinguished

2
$$L(s, \pi, \wedge^2)$$
 has a pole at $s = 1$

This implies that $\pi \cong \pi^{\vee}$.

Global motivation

Our case of interest: Unitary linear periods

- E/\mathbb{Q} a quadratic extension
- (V_1, Φ_1) and $(V_2, \Phi_2) d$ dim'l Hermitian spaces over E

$$\blacksquare W = V_1 \oplus V_2, \Phi = \Phi_1 \oplus \Phi_2$$

Study representations distinguished by $U(V_1) \times U(V_2)$

For any data $\{W, \Phi, W = V_1 \oplus V_2\}$, consider the distribution

$$J(f) := \int_{[U(V_1) \times U(V_2)]} \int_{[U(V_1) \times U(V_2)]} \left(\sum_{\gamma \in U(W)(\mathbb{Q})} f(h^{-1} \gamma g) \right) dg dh.$$

-Global motivation

Relative trace formula

RTF

$$\sum_{\pi} c(\pi) \sum_{\varphi} |\mathcal{P}_{\mathcal{H}}(\varphi)|^2 \approx J(f) \approx \sum_{\gamma} a(\gamma) \operatorname{RO}(\gamma, f),$$

where π sums over $U(V_1) \times U(V_2)$ -distiguished reps and γ sums over orbits.

Similar stability issue as before:

$$J(f) = \underbrace{SJ(f)}_{\text{Stable part of RTF}} + \underbrace{\sum_{\kappa} J^{\kappa}(f)}_{\text{endoscopic pieces}}$$

Need to express as sum of stable distibutions on endoscopic spaces.

-Global motivation

Motivating global result

Let σ be an automorphic representation (some local constraints...) of U(W) and let $\Sigma = BC(\sigma)$ be the base change to GL(W).

Theorem: Pollack-Wan-Zydor ('19)

Assume U(W) is quasi-split. If σ is $U(V_1) \times U(V_2)$ distinguished, then Σ is $GL(V) \times GL(V)$ - distinguished.

Goal: prove the converse

Show that if Σ is $GL(V) \times GL(V)$ -distinguished, then σ is $U(V_1) \times U(V_2)$ -distinguished.

Method: Comparison of relative trace formulas

Lemma

If Σ is both $GL(V_1) \times GL(V_2)$ - and $U(W, \Phi)$ -distinguished (for some form Φ), then it is a base change $\Sigma = BC(\sigma)$ from the quasi-split unitary group U(W).

This suggests the following comparison: For $f \in C_c^{\infty}(GL(W)_{\mathbb{A}})$,

$$I(f) := \int_{[\mathsf{GL}(V_1) \times \mathsf{GL}(V_2)]} \int_{[U(W)]} \left(\sum_{x \in \mathsf{GL}(W)_{\mathbb{Q}}} f(g^{-1}xh) \right) dgdh$$

(日) (日) (日) (日) (日) (日) (日)

Also satisfies a (simple) relative trace formula.

Naïve comparison

Possible comparison of RTFs

Find a matching of functions $f' \leftrightarrow f$ such that

I(f')=J(f),

by comparing geometric sides of RTFs.

- Way too simplistic, but something "spiritually" related to this makes sense.
- With this, standard techniques would imply the converse to Pollack-Wan-Zydor.

Problem: Can only compare to the stable part

$$SJ(f) = J(f) - \sum J^{\kappa}(f).$$

(日) (日) (日) (日) (日) (日) (日)

Relative trace formulas

Problem of geometric stabilization redux

Reduces to the local problem:

Study κ -orbital integrals of $U(V_1) \times U(V_2)$ -action on

 $\mathcal{Q} = U(W)/U(V_1) \times U(V_2)$

Standard technique: reduce to the Lie algebra Lie(Q).

Lemma

There is a natural identification

 $\operatorname{Lie}(\mathcal{Q}) \cong \operatorname{Hom}_{E}(V_{1}, V_{2}).$

When $V_1 \cong V_2$ are both split, we arrive at our objects of primary interest from earlier.

Two main steps toward geometric stabilization:

- 1 Establish the relative endoscopic fundamental lemma (Done for $(U(4), U(2) \times U(2)))$,
- 2 Establish existence of transfer for all test functions (Known for "regularly supported functions").

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

For other global applications: still need to regularize spectral/geometric decompositions in the RTFs, relative character identities....

Relative trace formulas

THANK YOU!!

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●