A relative endoscopic fundamental lemma for unitary groups

Spencer Leslie
Duke University

Boston University-Keio University Workshop

Main objects of interest: Relative orbital integrals

$■ E / F$ be an unramified quadratic extension of p-adic fields,
$■(V, \Phi)$ (split) Hermitian space with unitary group $U(V)$.
■ Study action $U(V) \times U(V)$ on $\operatorname{End}(V)$ by

$$
(g, h) \cdot X=g X h^{-1}
$$

Relative orbital integrals:

$$
\mathrm{RO}(X, f):=\int_{T_{X} \backslash U(V) \times U(V)} f\left(g^{-1} X h\right) \frac{d(g, h)}{d t}
$$

for $f \in C_{c}^{\infty}(\operatorname{End}(V))$ and X is "regular semi-simple" in End (V).
Case of primary interest: $f=\mathbf{1}_{\operatorname{End}(\Lambda)}$ where $\Lambda \subset V$ is a self-dual lattice.

Stable orbital integrals

This action is not "stable": Two types of orbit
■ rational orbits: $X^{\prime}=g X h^{-1}$ for $(g, h) \in U(V) \times U(V)$
\square stable orbit: $X^{\prime}=g X h^{-1}$ for $(g, h) \in(U(V) \times U(V))_{\bar{F}}$. $\mathrm{RO}(X, f)$ only knows rational orbits, but stable orbits are (somehow) more natural. We set

$$
\operatorname{SRO}(X, f):=\sum_{X \sim_{s t} X^{\prime}} \operatorname{RO}\left(X^{\prime}, f\right)
$$

to be the stable relative orbital integral.

- these rational orbits are parametrized by cohomology classes

$$
\operatorname{inv}\left(X, X^{\prime}\right) \in H^{1}\left(F, T_{X}\right)
$$

What's the difference?: κ-orbital integrals

Definition

For any character $\kappa: H^{1}\left(F, T_{X}\right) \rightarrow \mathbb{C}^{\times}$and any
$f \in C_{c}^{\infty}(\operatorname{End}(V))$, define the κ-relative orbital integral to be

$$
\operatorname{RO}^{\kappa}(X, f):=\sum_{X \sim \sim_{s t} X^{\prime}} \kappa\left(i n v\left(X, X^{\prime}\right)\right) \mathrm{RO}\left(X^{\prime}, f\right) .
$$

When $\kappa=1$, we have $\mathrm{RO}^{\kappa}=$ SRO is the stable orbital integral.

$$
\mathrm{RO}(X, f)=c\left(\operatorname{SRO}(X, f)+\sum_{\kappa \neq 1} \operatorname{RO}^{\kappa}(X, f)\right)
$$

Problem of geometric stabilization

■ For global purposes, need to express κ-orbital integrals in terms of stable orbital integrals.

Goal

Find groups of smaller dimension H_{κ} acting on varieties X_{κ} so that

$$
\kappa \text {-orbital integrals of }(U(V) \times U(V), \operatorname{End}(V))
$$

may be expressed in terms of
stable orbital integrals of $\left(H_{\kappa}, X_{\kappa}\right)$.

Adjoint case: $\left(H_{\kappa}, X_{\kappa}\right)=(H, \operatorname{Lie}(H))$ is an endoscopic group acting on its Lie algebra (Langlands,Shelstad, Kottwitz, Waldspurger, Laumon, Ngô...)

Proposed endoscopic spaces

■ Decompose $V=V_{1} \oplus V_{2}$ into (split) Hermitian subspaces,

- Then $U\left(V_{1}\right) \times U\left(V_{1}\right)$ and $U\left(V_{2}\right) \times U\left(V_{2}\right)$ acts on

$$
\operatorname{End}\left(V_{1}\right) \oplus \operatorname{End}\left(V_{2}\right) \subset \operatorname{End}(V)
$$

- Call the pair

$$
\left(U\left(V_{1}\right) \times U\left(V_{1}\right), \operatorname{End}\left(V_{1}\right)\right) \oplus\left(U\left(V_{2}\right) \times U\left(V_{2}\right), \operatorname{End}\left(V_{2}\right)\right)
$$

an endoscopic space for $(U(V) \times U(V)$, End $(V))$.
Hope
Should satisfy a fundamental lemma and smooth transfer

Conjectural fundamental lemma

Recall that $\Lambda \subset V$ is our self-dual lattice.
Conjecture: Relative endoscopic fundamental lemma (L)
For a decomposition $V=V_{1} \oplus V_{2}$, we may associate a character κ and a transfer factor Δ such that, if

$$
X \in \operatorname{End}\left(V_{1}\right) \oplus \operatorname{End}\left(V_{2}\right) \subset \operatorname{End}(V)
$$

then

$$
\operatorname{SRO}\left(X, \mathbf{1}_{\operatorname{End}\left(\Lambda_{1}\right)} \oplus \mathbf{1}_{\operatorname{End}\left(\Lambda_{2}\right)}\right)=\Delta(X) \mathrm{RO}^{\kappa}\left(X, \mathbf{1}_{\mathrm{End}(\Lambda)}\right)
$$

where $\Lambda=\Lambda_{1} \oplus \Lambda_{2}$.

The case of $U(2) \times U(2)$

In low rank, we can compute both sides.

Theorem (L)

The fundamental lemma is true for $\operatorname{dim}(V)=2$.

■ First example of an endoscopic fundamental lemma for relative orbital integrals in the literature.
■ Key step: Make precise by developing the appropriate transfer factor for arbitrary $\operatorname{dim}(V)$.

"Regular" smooth transfer

We are also interested in transferring general test functions f. We can do this for many functions.

Theorem (L)

For any $\operatorname{dim} V$, there exists a transfer factor Δ such that

$$
\Delta(X) \mathrm{RO}^{\kappa}(X, f)
$$

is the stable orbital integral for some $f^{\prime} \in C_{C}^{\infty}\left(\operatorname{End}\left(V_{1}\right) \oplus \operatorname{End}\left(V_{2}\right)\right)$ whenever $\operatorname{supp}(f) \subset G L(V)$.

This is overly simplistic: we must include terms associated to non-split Hermitian spaces as well.

Transfer factors: Try to reduce to adjoint case

Lemma

The invariant map $\chi: \operatorname{End}(V) \rightarrow F^{d}$ may by factored

realizing $\mathfrak{u}(V)$ as the categorical quotient $\operatorname{End}(V) / / U(V)$.

■ Reduces the problem of defining matching and the transfer factors to the Langlands-Shelstad-Kottwitz case,
■ but not the FL or smooth transfer.

Where does this come from?

Periods of automorphic forms!

Periods of automorphic forms

■ Fix a reductive group G over \mathbb{Q}, and let $H \subset G$ be a closed algebraic subgroup.

- An automorphic representation π (always irred cuspidal) of $G(\mathbb{A})$ is H-distinguished if the period integral

$$
\mathcal{P}_{H}(\varphi):=\int_{[H]} \varphi(h) d h \neq 0
$$

for some $\varphi \in \pi$. Here $[H]:=H(\mathbb{Q}) A_{G, H}(\mathbb{A}) \backslash H(\mathbb{A})$.
■ Closely related to special values/poles of L-functions and Functorial lifting from smaller groups.

Example: Linear periods

$■$ Let V be a d-dimensional \mathbb{Q}-vector space, set $W=V \oplus V$,
■ $\mathrm{GL}(V) \times \mathrm{GL}(V) \subset \mathrm{GL}(W)$

Theorem (Friedberg-Jacquet, '95)

Let π be a cuspidal automorphic representation of $\mathrm{GL}(W)_{\mathbb{A}}$. The following are equivalent:
1π is $\mathrm{GL}(V) \times \mathrm{GL}(V)$-distinguished
$2 L\left(s, \pi, \wedge^{2}\right)$ has a pole at $s=1$
This implies that $\pi \cong \pi^{\vee}$.

Our case of interest: Unitary linear periods

- E / \mathbb{Q} a quadratic extension
$\square\left(V_{1}, \Phi_{1}\right)$ and $\left(V_{2}, \Phi_{2}\right) d$ dim'l Hermitian spaces over E
■ $W=V_{1} \oplus V_{2}, \Phi=\Phi_{1} \oplus \Phi_{2}$
■ $U\left(V_{1}\right) \times U\left(V_{2}\right) \subset U(W)$

Study representations distinguished by $U\left(V_{1}\right) \times U\left(V_{2}\right)$

For any data $\left\{W, \Phi, W=V_{1} \oplus V_{2}\right\}$, consider the distribution

$$
J(f):=\int_{\left[U\left(V_{1}\right) \times U\left(V_{2}\right)\right]} \int_{\left[U\left(V_{1}\right) \times U\left(V_{2}\right)\right]}\left(\sum_{\gamma \in U(W)(\mathbb{Q})} f\left(h^{-1} \gamma g\right)\right) d g d h .
$$

Relative trace formula

RTF

$$
\sum_{\pi} c(\pi) \sum_{\varphi}\left|\mathcal{P}_{H}(\varphi)\right|^{2} \approx J(f) \approx \sum_{\gamma} a(\gamma) \mathrm{RO}(\gamma, f)
$$

where π sums over $U\left(V_{1}\right) \times U\left(V_{2}\right)$-distiguished reps and γ sums over orbits.

Similar stability issue as before:

$$
J(f)=\underbrace{S J(f)}_{\text {Stable part of RTF }}+\underbrace{\sum_{\kappa} J^{\kappa}(f)}_{\text {endoscopic pieces }}
$$

Need to express as sum of stable distibutions on endoscopic spaces.

Motivating global result

Let σ be an automorphic representation (some local constraints...) of $U(W)$ and let $\Sigma=B C(\sigma)$ be the base change to $\mathrm{GL}(W)$.

Theorem: Pollack-Wan-Zydor ('19)

Assume $U(W)$ is quasi-split. If σ is $U\left(V_{1}\right) \times U\left(V_{2}\right)$ distinguished, then Σ is $\mathrm{GL}(V) \times \mathrm{GL}(V)$ - distinguished.

Goal: prove the converse

Show that if Σ is $\mathrm{GL}(V) \times \mathrm{GL}(V)$-distinguished, then σ is $U\left(V_{1}\right) \times U\left(V_{2}\right)$-distinguished.

Method: Comparison of relative trace formulas

Lemma

If Σ is both $\mathrm{GL}\left(V_{1}\right) \times \mathrm{GL}\left(V_{2}\right)$ - and $U(W, \Phi)$-distinguished (for some form Φ), then it is a base change $\Sigma=B C(\sigma)$ from the quasi-split unitary group $U(W)$.

This suggests the following comparison: For $f \in C_{c}^{\infty}\left(\mathrm{GL}(W)_{\mathbb{A}}\right)$,

$$
I(f):=\int_{\left[G L\left(V_{1}\right) \times \operatorname{GL}\left(V_{2}\right)\right]} \int_{[U(W)]}\left(\sum_{x \in \operatorname{GL}(W)_{\mathbb{Q}}} f\left(g^{-1} x h\right)\right) d g d h
$$

Also satisfies a (simple) relative trace formula.

Naïve comparison

Possible comparison of RTFs

Find a matching of functions $f^{\prime} \leftrightarrow f$ such that

$$
I\left(f^{\prime}\right)=J(f)
$$

by comparing geometric sides of RTFs.
■ Way too simplistic, but something "spiritually" related to this makes sense.
■ With this, standard techniques would imply the converse to Pollack-Wan-Zydor.
Problem: Can only compare to the stable part

$$
S J(f)=J(f)-\sum_{\kappa} J^{\kappa}(f) .
$$

Problem of geometric stabilization redux

Reduces to the local problem:
■ Study κ-orbital integrals of $U\left(V_{1}\right) \times U\left(V_{2}\right)$-action on

$$
\mathcal{Q}=U(W) / U\left(V_{1}\right) \times U\left(V_{2}\right)
$$

■ Standard technique: reduce to the Lie algebra $\operatorname{Lie}(\mathcal{Q})$.

Lemma

There is a natural identification

$$
\operatorname{Lie}(\mathcal{Q}) \cong \operatorname{Hom}_{E}\left(V_{1}, V_{2}\right)
$$

When $V_{1} \cong V_{2}$ are both split, we arrive at our objects of primary interest from earlier.

Conclusion

Two main steps toward geometric stabilization:
1 Establish the relative endoscopic fundamental lemma (Done for $(U(4), U(2) \times U(2))$),
2 Establish existence of transfer for all test functions (Known for "regularly supported functions").
For other global applications: still need to regularize spectral/geometric decompositions in the RTFs, relative character identities....

THANK YOU!!

