Arithmetic statistics for knots and knot invariants

Alison Miller
Harvard University
abmiller@math.harvard.edu
June 25, 2019

Knots

Knots

Definition

A 1-knot K is a embedded submanifold of S^{3} homeomorphic to S^{1}.

Knots

Definition

A 1-knot K is a embedded submanifold of S^{3} homeomorphic to S^{1}.
We can also define knots in higher dimensions:

Definition

An n-knot K is an embedded submanifold of S^{n+2} homeomorphic to S^{n}.

Knot Equivalence

There is a natural concept of knot equivalence, known as ambient isotopy.

Knot Equivalence

There is a natural concept of knot equivalence, known as ambient isotopy.

Knot theory is concerned with classifying knots up to equivalence, and with understanding invariants of knots.

Knot Equivalence

There is a natural concept of knot equivalence, known as ambient isotopy.

Knot theory is concerned with classifying knots up to equivalence, and with understanding invariants of knots.

Note

We consider knots to be oriented, which means that we keep track of the orientation on K as well as on the ambient S^{n+2}.

Arithmetic Statistics

Arithmetic Statistics

Studies distribution of the invariants of arithmetic objects, e.g. what is the class group of a random number field? rank of a random elliptic curve?

Arithmetic Statistics

Arithmetic Statistics

Studies distribution of the invariants of arithmetic objects, e.g. what is the class group of a random number field? rank of a random elliptic curve?

Cohen-Lenstra Heuristics

- The class group of a random real quadratic field is a 2-group times a finite group drawn from a given distribution

Arithmetic Statistics

Arithmetic Statistics

Studies distribution of the invariants of arithmetic objects, e.g. what is the class group of a random number field? rank of a random elliptic curve?

Cohen-Lenstra Heuristics

- The class group of a random real quadratic field is a 2-group times a finite group drawn from a given distribution(in particular the average size of the odd part is bounded).

Arithmetic Statistics

Arithmetic Statistics

Studies distribution of the invariants of arithmetic objects, e.g. what is the class group of a random number field? rank of a random elliptic curve?

Cohen-Lenstra Heuristics

- The class group of a random real quadratic field is a 2-group times a finite group drawn from a given distribution(in particular the average size of the odd part is bounded).
- The class group of a random imaginary quadratic field is a 2-group times a cyclic group $\sim 98 \%$ of the time.

Knot statistics????

- "Random" knots? (survey by Even-Zohar)

Knot statistics????

- "Random" knots? (survey by Even-Zohar)
- Studying knots in families.

Knot statistics????

- "Random" knots? (survey by Even-Zohar)
- Studying knots in families.
- Look at distribution of invariants.

Connection to arithmetic statistics

Knot statistics????

- "Random" knots? (survey by Even-Zohar)
- Studying knots in families.
- Look at distribution of invariants.

Connection to arithmetic statistics

Families of knots can be parametrized by arithmetic data.

The family of simple n-knots

Definition

An n-knot K is simple if $\pi_{i}\left(S^{n+2}-K\right)=\pi_{i}\left(S^{1}\right)$ for $i \leq(n-1) / 2$.

The family of simple n-knots

Definition

An n-knot K is simple if $\pi_{i}\left(S^{n+2}-K\right)=\pi_{i}\left(S^{1}\right)$ for $i \leq(n-1) / 2$.
All 1-knots are simple.

The family of simple n-knots

Definition

An n-knot K is simple if $\pi_{i}\left(S^{n+2}-K\right)=\pi_{i}\left(S^{1}\right)$ for $i \leq(n-1) / 2$.
All 1-knots are simple.
For large n, simple n-knots have an algebraic classification.

The family of simple n-knots

Definition

An n-knot K is simple if $\pi_{i}\left(S^{n+2}-K\right)=\pi_{i}\left(S^{1}\right)$ for $i \leq(n-1) / 2$.
All 1-knots are simple.
For large n, simple n-knots have an algebraic classification. Simple n-knots have been classified for all n other than $1,2,3,4$ and 6 .

The family of simple n-knots

Definition

An n-knot K is simple if $\pi_{i}\left(S^{n+2}-K\right)=\pi_{i}\left(S^{1}\right)$ for $i \leq(n-1) / 2$.
All 1-knots are simple.
For large n, simple n-knots have an algebraic classification. Simple n-knots have been classified for all n other than $1,2,3,4$ and 6 .

In this talk we'll focus on the case of $n=4 a+1, a>1$. (The case of $n=4 a-1$ is expected to be similar, while even dimensional cases have a different flavor.)

The family of simple n-knots

Definition

An n-knot K is simple if $\pi_{i}\left(S^{n+2}-K\right)=\pi_{i}\left(S^{1}\right)$ for $i \leq(n-1) / 2$.
All 1-knots are simple.
For large n, simple n-knots have an algebraic classification. Simple n-knots have been classified for all n other than $1,2,3,4$ and 6 .

In this talk we'll focus on the case of $n=4 a+1, a>1$. (The case of $n=4 a-1$ is expected to be similar, while even dimensional cases have a different flavor.)

Classification of simple n-knots

Theorem (Kearton-Levine-Trotter)
 For $a \geq 1$, simple $(4 a+1)-k n o t s$ are entirely classified by their Alexander module and Blanchfield pairing.

Classification of simple n-knots

Theorem (Kearton-Levine-Trotter)
 For $a \geq 1$, simple $(4 a+1)$ - knots are entirely classified by their Alexander module and Blanchfield pairing.

The Alexander module can be defined using the infinite cyclic cover C_{∞} of the knot complement $S^{3}-K$.

Classification of simple n-knots

Theorem (Kearton-Levine-Trotter)

For $a \geq 1$, simple $(4 a+1)$ - knots are entirely classified by their Alexander module and Blanchfield pairing.

The Alexander module can be defined using the infinite cyclic cover C_{∞} of the knot complement $S^{3}-K$.

Definition

The Alexander module Alex ${ }_{K}$ of a $4 a+1$-knot K is $H_{2 a+1}\left(C_{\infty}, \mathbb{Z}\right)$.

Classification of simple n-knots

Theorem (Kearton-Levine-Trotter)

For $a \geq 1$, simple $(4 a+1)$ - knots are entirely classified by their Alexander module and Blanchfield pairing.

The Alexander module can be defined using the infinite cyclic cover C_{∞} of the knot complement $S^{3}-K$.

Definition

The Alexander module Alex K of a $4 a+1$-knot K is $H_{2 a+1}\left(C_{\infty}, \mathbb{Z}\right)$. It has a natural module structure over $\mathbb{Z}\left[t, t^{-1}\right]$.

Classification of simple n-knots

Theorem (Kearton-Levine-Trotter)

For $a \geq 1$, simple $(4 a+1)$ - knots are entirely classified by their Alexander module and Blanchfield pairing.

The Alexander module can be defined using the infinite cyclic cover C_{∞} of the knot complement $S^{3}-K$.

Definition

The Alexander module Alex K of a $4 a+1$-knot K is $H_{2 a+1}\left(C_{\infty}, \mathbb{Z}\right)$. It has a natural module structure over $\mathbb{Z}\left[t, t^{-1}\right]$. It also carries a natural duality pairing, the Blanchfield pairing.

Alexander polynomial

The Alexander module Alex ${ }_{K}$ is a complicated object, but it turns out that a lot of the information from it is contained in one polynomial, namely the Alexander polynomial $\Delta_{K}(t) \in \mathbb{Z}[t]$ of a simple $4 a+1$-knot K.

Alexander polynomial

The Alexander module Alex ${ }_{K}$ is a complicated object, but it turns out that a lot of the information from it is contained in one polynomial, namely the Alexander polynomial $\Delta_{K}(t) \in \mathbb{Z}[t]$ of a simple $4 a+1$-knot K.

Properties of the Alexander Polynomial

- $\Delta_{K}(1)=1$
- $\Delta_{K}\left(t^{-1}\right)=t^{-\operatorname{deg} \Delta_{K}} \Delta_{K}(t)$.
- Δ_{K} has even degree.

Alexander polynomial

The Alexander module Alex ${ }_{K}$ is a complicated object, but it turns out that a lot of the information from it is contained in one polynomial, namely the Alexander polynomial $\Delta_{K}(t) \in \mathbb{Z}[t]$ of a simple $4 a+1$-knot K.

Properties of the Alexander Polynomial

- $\Delta_{K}(1)=1$
- $\Delta_{K}\left(t^{-1}\right)=t^{-\operatorname{deg} \Delta_{K}} \Delta_{K}(t)$.
- Δ_{K} has even degree.

If $\Delta_{K}(t)$ is a quadratic polynomial, it must have the form

$$
m t^{2}+(1-2 m) t+m
$$

for some $m \in \mathbb{Z}$.

Alexander Module vs Alexander Polynomial

Theorem (Bayer-Michel, Levine)

Let Δ be a squarefree polynomial. There are only finitely many distinct Alexander modules with Blanchfield pairing having the Alexander polynomial Δ.

Alexander Module vs Alexander Polynomial

Theorem (Bayer-Michel, Levine)

Let Δ be a squarefree polynomial. There are only finitely many distinct Alexander modules with Blanchfield pairing having the Alexander polynomial Δ. Hence, for fixed odd $q \geq 3$, there are only finitely many distinct simple knots with Alexander polynomial Δ.

Alexander Module vs Alexander Polynomial

Theorem (Bayer-Michel, Levine)

Let Δ be a squarefree polynomial. There are only finitely many distinct Alexander modules with Blanchfield pairing having the Alexander polynomial Δ. Hence, for fixed odd $q \geq 3$, there are only finitely many distinct simple knots with Alexander polynomial Δ.

Proof uses number theory!

Alexander Module vs Alexander Polynomial

Theorem (Bayer-Michel, Levine)

Let Δ be a squarefree polynomial. There are only finitely many distinct Alexander modules with Blanchfield pairing having the Alexander polynomial Δ. Hence, for fixed odd $q \geq 3$, there are only finitely many distinct simple knots with Alexander polynomial Δ.

Proof uses number theory!

Goal

Obtain a quantitative form of this finiteness statement.

Seifert hypersurfaces and Seifert pairings

Our main tool is the theory of Seifert (hyper)surfaces.

Seifert hypersurfaces and Seifert pairings

Our main tool is the theory of Seifert (hyper)surfaces.

Seifert hypersurfaces and Seifert pairings

Our main tool is the theory of Seifert (hyper)surfaces.

Definition

A Seifert hypersurface for an n-knot K is a $n+1$-manifold V^{n+1} embedded in $S^{2 n+2}$ with boundary $\partial V=K$.

Seifert hypersurfaces and Seifert pairings

Our main tool is the theory of Seifert (hyper)surfaces.

Definition

A Seifert hypersurface for an n-knot K is a $n+1$-manifold V^{n+1} embedded in $S^{2 n+2}$ with boundary $\partial V=K$.

Seifert hypersurfaces exist for all knots, but are not unique.

Seifert hypersurfaces and Seifert pairings

Our main tool is the theory of Seifert (hyper)surfaces.

Definition

A Seifert hypersurface for an n-knot K is a $n+1$-manifold V^{n+1} embedded in $S^{2 n+2}$ with boundary $\partial V=K$.

Seifert hypersurfaces exist for all knots, but are not unique. We say that V^{n+1} is a simple Seifert hypersurface if V is $\left\lfloor\frac{n}{2}\right\rfloor$-connected. Simple Seifert hypersurfaces exist for all simple knots.

The Seifert Pairing

Now specialize to $n=4 a+1$.

The Seifert Pairing

Now specialize to $n=4 a+1$.
A simple Seifert hypersurface $V^{4 a+2}$ comes with a bilinear pairing \langle,$\rangle on$ $H_{2 a+1}(V, \mathbb{Z}) \cong \mathbb{Z}^{2 g}$, known as the Seifert pairing.

The Seifert Pairing

Now specialize to $n=4 a+1$.
A simple Seifert hypersurface $V^{4 a+2}$ comes with a bilinear pairing \langle,$\rangle on$ $H_{2 a+1}(V, \mathbb{Z}) \cong \mathbb{Z}^{2 g}$, known as the Seifert pairing.
In the $a \geq 1$ case, simple Seifert hypersurfaces are entirely classified by their pairing.

The Seifert Pairing

Now specialize to $n=4 a+1$.
A simple Seifert hypersurface $V^{4 a+2}$ comes with a bilinear pairing \langle,$\rangle on$ $H_{2 a+1}(V, \mathbb{Z}) \cong \mathbb{Z}^{2 g}$, known as the Seifert pairing.
In the $a \geq 1$ case, simple Seifert hypersurfaces are entirely classified by their pairing.
The Seifert pairing is neither symmetric nor skew-symmetric.

The Seifert Pairing

Now specialize to $n=4 a+1$.
A simple Seifert hypersurface $V^{4 a+2}$ comes with a bilinear pairing \langle,$\rangle on$ $H_{2 a+1}(V, \mathbb{Z}) \cong \mathbb{Z}^{2 g}$, known as the Seifert pairing.
In the $a \geq 1$ case, simple Seifert hypersurfaces are entirely classified by their pairing.
The Seifert pairing is neither symmetric nor skew-symmetric. However, its skew-symmetric part is equal to the intersection pairing on $H_{2 a+1}(V, \mathbb{Z})$.

The Seifert Pairing

Now specialize to $n=4 a+1$.
A simple Seifert hypersurface $V^{4 a+2}$ comes with a bilinear pairing \langle,$\rangle on$ $H_{2 a+1}(V, \mathbb{Z}) \cong \mathbb{Z}^{2 g}$, known as the Seifert pairing.
In the $a \geq 1$ case, simple Seifert hypersurfaces are entirely classified by their pairing.
The Seifert pairing is neither symmetric nor skew-symmetric. However, its skew-symmetric part is equal to the intersection pairing on $H_{2 a+1}(V, \mathbb{Z})$. (Any pairing whose skew-symmetric part is unimodular can be realized as a Seifert pairing.)

The Seifert Pairing

Now specialize to $n=4 a+1$.
A simple Seifert hypersurface $V^{4 a+2}$ comes with a bilinear pairing \langle,$\rangle on$ $H_{2 a+1}(V, \mathbb{Z}) \cong \mathbb{Z}^{2 g}$, known as the Seifert pairing.
In the $a \geq 1$ case, simple Seifert hypersurfaces are entirely classified by their pairing.
The Seifert pairing is neither symmetric nor skew-symmetric. However, its skew-symmetric part is equal to the intersection pairing on $H_{2 a+1}(V, \mathbb{Z})$. (Any pairing whose skew-symmetric part is unimodular can be realized as a Seifert pairing.)
If you pick a basis for $H_{2 a+1}(V, \mathbb{Z})$ in which the intersection pairing has matrix equal to the standard skew-symmetric matrix J, the matrix P of the Seifert pairing will satisfy $P-P^{t}=J$.

Seifert pairing and Alexander module

Theorem (Kearton, Levine)

If $V^{4 a+2}$ is a Seifert surface for $K^{4 a+1}$ with nondegenerate Seifert matrix P, then the $\mathbb{Z}\left[t, t^{-1}\right]$-module Alex ${ }_{K}$ is presented by the matrix

$$
t P-P^{t}
$$

Seifert pairing and Alexander module

Theorem (Kearton, Levine)

If $V^{4 a+2}$ is a Seifert surface for $K^{4 a+1}$ with nondegenerate Seifert matrix P, then the $\mathbb{Z}\left[t, t^{-1}\right]$-module Alex ${ }_{K}$ is presented by the matrix

$$
t P-P^{t}
$$

and there is a similar explicit formula for the Blanchfield pairing.

Seifert pairing and Alexander module

Theorem (Kearton, Levine)

If $V^{4 a+2}$ is a Seifert surface for $K^{4 a+1}$ with nondegenerate Seifert matrix P, then the $\mathbb{Z}\left[t, t^{-1}\right]$-module Alex ${ }_{K}$ is presented by the matrix

$$
t P-P^{t}
$$

and there is a similar explicit formula for the Blanchfield pairing.

Corollary

$$
\Delta_{K}(t)=\operatorname{det}\left(t P-P^{t}\right)
$$

Seifert pairing and Alexander module

Theorem (Kearton, Levine)

If $V^{4 a+2}$ is a Seifert surface for $K^{4 a+1}$ with nondegenerate Seifert matrix P, then the $\mathbb{Z}\left[t, t^{-1}\right]$-module Alex ${ }_{K}$ is presented by the matrix

$$
t P-P^{t}
$$

and there is a similar explicit formula for the Blanchfield pairing.

Corollary

$$
\Delta_{K}(t)=\operatorname{det}\left(t P-P^{t}\right)
$$

Caution!

We've seen that the equivalence class of a simple $4 a+1$-knot, $a \geq 1$, is completely determined by the Seifert matrix.

Caution!

We've seen that the equivalence class of a simple $4 a+1$-knot, $a \geq 1$, is completely determined by the Seifert matrix. But we have a choice of Seifert matrices!

Caution!

We've seen that the equivalence class of a simple $4 a+1$-knot, $a \geq 1$, is completely determined by the Seifert matrix. But we have a choice of Seifert matrices!
Different choices of Seifert surface for the same knot can have non-isomorphic Seifert pairings.

Caution!

We've seen that the equivalence class of a simple $4 a+1$-knot, $a \geq 1$, is completely determined by the Seifert matrix. But we have a choice of Seifert matrices!
Different choices of Seifert surface for the same knot can have non-isomorphic Seifert pairings. That is, the Seifert matrices that are not equivalent up to change of basis.

$$
\left(\begin{array}{ll}
2 & 0 \\
1 & 3
\end{array}\right),\left(\begin{array}{cc}
2 & -1 \\
0 & 3
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
1 & 6
\end{array}\right)
$$

Seifert pairings and orbits

If you pick a basis for $H_{q}(V, \mathbb{Z})$ in which the intersection pairing has matrix equal to the standard skew-symmetric matrix J, the matrix P of the Seifert pairing will satisfy $P-P^{t}=J$.

Observation

Isomorphism classes of Seifert pairings are equivalent to orbits of the group $\mathrm{Sp}_{2 g}(\mathbb{Z})$ on the set of $2 g \times 2 g$ - matrices P with $P-P^{t}=J$. (Here $X \in \operatorname{Sp}_{2 g}(\mathbb{Z})$ acts by $P \mapsto X P X^{t}$.)

Seifert pairings and orbits

If you pick a basis for $H_{q}(V, \mathbb{Z})$ in which the intersection pairing has matrix equal to the standard skew-symmetric matrix J, the matrix P of the Seifert pairing will satisfy $P-P^{t}=J$.

Observation

Isomorphism classes of Seifert pairings are equivalent to orbits of the group $\mathrm{Sp}_{2 g}(\mathbb{Z})$ on the set of $2 g \times 2 g$ - matrices P with $P-P^{t}=J$. (Here $X \in \operatorname{Sp}_{2 g}(\mathbb{Z})$ acts by $P \mapsto X P X^{t}$.)

If we change variables to $Q=P+P^{t}$, we see that these are also in bijective correspondence with $\mathrm{Sp}_{2 g}$-orbits on $2 g \times 2 g$ symmetric matrices (with a parity condition).

Seifert pairings and orbits

If you pick a basis for $H_{q}(V, \mathbb{Z})$ in which the intersection pairing has matrix equal to the standard skew-symmetric matrix J, the matrix P of the Seifert pairing will satisfy $P-P^{t}=J$.

Observation

Isomorphism classes of Seifert pairings are equivalent to orbits of the group $\mathrm{Sp}_{2 g}(\mathbb{Z})$ on the set of $2 g \times 2 g$ - matrices P with $P-P^{t}=J$. (Here $X \in \mathrm{Sp}_{2 g}(\mathbb{Z})$ acts by $P \mapsto X P X^{t}$.)

If we change variables to $Q=P+P^{t}$, we see that these are also in bijective correspondence with $\mathrm{Sp}_{2 g}$-orbits on $2 g \times 2 g$ symmetric matrices (with a parity condition).

Conclusion

Isomomorphism classes of Seifert pairings are orbits for the representation $\operatorname{Sym}^{2}(2 g)$ of $\mathrm{Sp}_{2 g}(\mathbb{Z})$!

The case $g=1$

When $g=1, \mathrm{Sp}_{2 g}=\mathrm{SL}_{2}$, and the arithmetic invariant theory reduces to the question of binary quadratic forms with odd discriminant.

The case $g=1$

When $g=1, \mathrm{Sp}_{2 g}=\mathrm{SL}_{2}$, and the arithmetic invariant theory reduces to the question of binary quadratic forms with odd discriminant.

Seifert hypersurfaces

Simple Seifert hypersurfaces with Alexander polynomial $m t^{2}+(1-2 m) t+m$ are in one-to-one correspondence with binary quadratic forms over \mathbb{Z} of discriminant $1-4 m$,

The case $g=1$

When $g=1, \mathrm{Sp}_{2 g}=\mathrm{SL}_{2}$, and the arithmetic invariant theory reduces to the question of binary quadratic forms with odd discriminant.

Seifert hypersurfaces

Simple Seifert hypersurfaces with Alexander polynomial $m t^{2}+(1-2 m) t+m$ are in one-to-one correspondence with binary quadratic forms over \mathbb{Z} of discriminant $1-4 m$, or with narrow ideal classes of the ring $\mathbb{Z}\left[\gamma_{m}\right]$ where $\gamma_{m}=\frac{1+\sqrt{1-4 m}}{2}$.

The case $g=1$

When $g=1, \mathrm{Sp}_{2 g}=\mathrm{SL}_{2}$, and the arithmetic invariant theory reduces to the question of binary quadratic forms with odd discriminant.

Seifert hypersurfaces

Simple Seifert hypersurfaces with Alexander polynomial $m t^{2}+(1-2 m) t+m$ are in one-to-one correspondence with binary quadratic forms over \mathbb{Z} of discriminant $1-4 m$, or with narrow ideal classes of the ring $\mathbb{Z}\left[\gamma_{m}\right]$ where $\gamma_{m}=\frac{1+\sqrt{1-4 m}}{2}$.

Knots

Simple knots with Alexander polynomial $m t^{2}+(1-2 m) t+m$ are in one-to-one correspondence with narrow ideal classes of the ring $\mathbb{Z}\left[\frac{1}{m}\right]\left[\frac{1+\sqrt{1-4 m}}{2}\right]$.

The case $g=1$

When $g=1, \mathrm{Sp}_{2 g}=\mathrm{SL}_{2}$, and the arithmetic invariant theory reduces to the question of binary quadratic forms with odd discriminant.

Seifert hypersurfaces

Simple Seifert hypersurfaces with Alexander polynomial $m t^{2}+(1-2 m) t+m$ are in one-to-one correspondence with binary quadratic forms over \mathbb{Z} of discriminant $1-4 m$, or with narrow ideal classes of the ring $\mathbb{Z}\left[\gamma_{m}\right]$ where $\gamma_{m}=\frac{1+\sqrt{1-4 m}}{2}$.

Knots

Simple knots with Alexander polynomial $m t^{2}+(1-2 m) t+m$ are in one-to-one correspondence with narrow ideal classes of the ring $\mathbb{Z}\left[\frac{1}{m}\right]\left[\frac{1+\sqrt{1-4 m}}{2}\right]$.
There is also a generalization to higher degree Alexander polynomials.

Asymptotics: Genus 1 Seifert pairings/ hypersurfaces

Counting Seifert pairings of genus one is the same as counting SL_{2}-orbits of binary quadratic forms of odd discriminant. We know how to do this, at least for definite forms.

Asymptotics: Genus 1 Seifert pairings/ hypersurfaces

Counting Seifert pairings of genus one is the same as counting SL_{2}-orbits of binary quadratic forms of odd discriminant. We know how to do this, at least for definite forms.

Theorem (Gauss-Lipschitz-Mertens)

The number of SL_{2}-orbits of binary quadratic forms of discriminant $1-4 m$ with $m \in[0, X]$ is $\sim X^{3 / 2}$.

Asymptotics: Genus 1 Seifert pairings/ hypersurfaces

Counting Seifert pairings of genus one is the same as counting SL_{2}-orbits of binary quadratic forms of odd discriminant. We know how to do this, at least for definite forms.

Theorem (Gauss-Lipschitz-Mertens)

The number of SL_{2}-orbits of binary quadratic forms of discriminant $1-4 m$ with $m \in[0, X]$ is $\sim X^{3 / 2}$.

In the indefinite case, we can only do this counting weighted by the regulator, but we still have the following heuristic for the unweighted count:

Asymptotics: Genus 1 Seifert pairings/ hypersurfaces

Counting Seifert pairings of genus one is the same as counting SL_{2}-orbits of binary quadratic forms of odd discriminant. We know how to do this, at least for definite forms.

Theorem (Gauss-Lipschitz-Mertens)

The number of SL_{2}-orbits of binary quadratic forms of discriminant $1-4 m$ with $m \in[0, X]$ is $\sim X^{3 / 2}$.

In the indefinite case, we can only do this counting weighted by the regulator, but we still have the following heuristic for the unweighted count:

Heuristic (Hooley)

The number of SL_{2}-orbits of binary quadratic forms of discriminant $1-4 m$ with $m \in[0, X]$ is $\sim X \log ^{2} X$.

Asymptotics: Genus 1 Seifert pairings/ hypersurfaces

Counting Seifert pairings of genus one is the same as counting SL_{2}-orbits of binary quadratic forms of odd discriminant. We know how to do this, at least for definite forms.

Theorem (Gauss-Lipschitz-Mertens)

The number of SL_{2}-orbits of binary quadratic forms of discriminant $1-4 m$ with $m \in[0, X]$ is $\sim X^{3 / 2}$.

In the indefinite case, we can only do this counting weighted by the regulator, but we still have the following heuristic for the unweighted count:

Heuristic (Hooley)

The number of SL_{2}-orbits of binary quadratic forms of discriminant $1-4 m$ with $m \in[0, X]$ is $\sim X \log ^{2} X$.

So we get the same results for isomorphism classes of Seifert pairings, or of simple Seifert hypersurfaces.

Asymptotics: Genus 1 Alexander modules/knots

Average-case counting simple knots of genus 1 , equivalently genus 1 Alexander modules with Blanchfield pairing, is harder because we need to know the average size of the narrow class group of $R_{\Delta}=\mathbb{Z}\left[\frac{1}{m}\right]\left[\frac{1+\sqrt{1-4 m}}{2}\right]$.

Asymptotics: Genus 1 Alexander modules/knots

Average-case counting simple knots of genus 1, equivalently genus 1 Alexander modules with Blanchfield pairing, is harder because we need to know the average size of the narrow class group of $R_{\Delta}=\mathbb{Z}\left[\frac{1}{m}\right]\left[\frac{1+\sqrt{1-4 m}}{2}\right]$.

Case: $|m|$ is prime

Then m factors as a product of principal prime ideals $(m)=(\gamma)(\bar{\gamma})$, so the map $\mathrm{NCl}\left(\mathbb{Z}\left[\gamma_{m}\right]\right) \rightarrow \mathrm{NCl}\left(R_{m}\right)$ is an isomorphism.

Asymptotics: Genus 1 Alexander modules/knots

Average-case counting simple knots of genus 1, equivalently genus 1 Alexander modules with Blanchfield pairing, is harder because we need to know the average size of the narrow class group of $R_{\Delta}=\mathbb{Z}\left[\frac{1}{m}\right]\left[\frac{1+\sqrt{1-4 m}}{2}\right]$.

Case: $|m|$ is prime

Then m factors as a product of principal prime ideals $(m)=(\gamma)(\bar{\gamma})$, so the map $\mathrm{NCl}\left(\mathbb{Z}\left[\gamma_{m}\right]\right) \rightarrow \mathrm{NCl}\left(R_{m}\right)$ is an isomorphism.

Case: $|m|$ is composite
For any $p\left||m|\right.$, the ideal $\left(p, \gamma_{m}\right)^{2}$ lies in the kernel of the map $\mathrm{NCI}\left(\mathbb{Z}\left[\gamma_{m}\right]\right) \rightarrow \mathrm{NCl}\left(R_{m}\right)$

Our Heuristic

Heuristic

- There are $\sim X^{3 / 2} / \log X$ isomorphism classes of simple $2 q-1$ knots whose Alexander polynomial has the form $p t^{2}+(1-2 p) t+p$ for some prime p in the range $[1, X]$.

Our Heuristic

Heuristic

- There are $\sim X^{3 / 2} / \log X$ isomorphism classes of simple $2 q-1$ knots whose Alexander polynomial has the form $p t^{2}+(1-2 p) t+p$ for some prime p in the range $[1, X]$.
- There are $\sim X \log X$ isomorphism classes of simple $2 q-1$ knots whose Alexander polynomial has the form $m t^{2}+(1-2 m) t+m$ for some $m \in[-X, X]$ such m is not a positive prime.

Bounds on contribution from the prime case

Theorem

The total number of isotopy classes of simple $4 a+1$-knots having Alexander polynomial equal to Δ_{p} for $0 \leq p \leq X$ is $\gg\left(X^{3 / 2-\epsilon}\right)$ for all $\epsilon>0$.

Theorem

The total number of isotopy classes of simple $4 a+1$-knots having Alexander polynomial equal to Δ_{p} for p running over all primes in the range $[1, X]$ is (unconditionally) bounded above by $O\left(X^{3 / 2} / \log X\right)$.

Bounds on total

The lower bound for the contribution of primes also gives us a lower bound for the total:

Theorem

The total number of isotopy classes of simple $4 a+1$-knots having Alexander polynomial equal to Δ_{m} for $|m|<\leq X$ is $\gg\left(X^{3 / 2-\epsilon}\right)$ for all $\epsilon>0$.

Bounds on total

The lower bound for the contribution of primes also gives us a lower bound for the total:

Theorem

The total number of isotopy classes of simple $4 a+1$-knots having Alexander polynomial equal to Δ_{m} for $|m|<\leq X$ is $\gg\left(X^{3 / 2-\epsilon}\right)$ for all $\epsilon>0$.

Theorem

The total number of isotopy classes of simple $4 a+1$-knots having Alexander polynomial equal to Δ_{m} for $|m| \leq X$ is (unconditionally) bounded above by o $\left(X^{3 / 2}\right)$.

Asymptotics: in higher genus?

For higher genus Seifert pairings, need an ordering!

Asymptotics: in higher genus?

For higher genus Seifert pairings, need an ordering! We'll use

$$
\operatorname{ht}\left(e_{Q}\right)=\max _{i}\left(c_{2 i}^{1 / i}\right)
$$

for

$$
e_{Q}(x)=\operatorname{det}(x J-Q)=x^{2 g}+c_{2} x^{2 g-2}+\ldots+c_{2 g}
$$

as before.

Asymptotics: in higher genus?

For higher genus Seifert pairings, need an ordering! We'll use

$$
\operatorname{ht}\left(e_{Q}\right)=\max _{i}\left(c_{2 i}^{1 / i}\right)
$$

for

$$
e_{Q}(x)=\operatorname{det}(x J-Q)=x^{2 g}+c_{2} x^{2 g-2}+\ldots+c_{2 g}
$$

as before.

Work in progress

The total number of $\mathrm{Sp}_{2 \mathrm{~g}}$-orbits of symmetric matrices Q such that $h t\left(e_{Q}\right)<X$ is asymptotic to $X^{g\left(g+\frac{1}{2}\right)}$.
As in quadratic case, most orbits come from the cases when the stabilizer of Q finite, when happens when $\mathbb{Q}[x] / e_{Q}(x)$ is a CM field. Can also count the other orbits weighted by regulator.

Asymptotics: in higher genus?

For higher genus Seifert pairings, need an ordering! We'll use

$$
\operatorname{ht}\left(e_{Q}\right)=\max _{i}\left(c_{2 i}^{1 / i}\right)
$$

for

$$
e_{Q}(x)=\operatorname{det}(x J-Q)=x^{2 g}+c_{2} x^{2 g-2}+\ldots+c_{2 g}
$$

as before.

Work in progress

The total number of $\mathrm{Sp}_{2 \mathrm{~g}}$-orbits of symmetric matrices Q such that $h t\left(e_{Q}\right)<X$ is asymptotic to $X^{g\left(g+\frac{1}{2}\right)}$.
As in quadratic case, most orbits come from the cases when the stabilizer of Q finite, when happens when $\mathbb{Q}[x] / e_{Q}(x)$ is a CM field. Can also count the other orbits weighted by regulator.

For the knot question, expect again largest contribution when $c_{2 g}$ is prime.

Thank you!

