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Knots

Definition

A 1-knot K is a embedded submanifold of S3 homeomorphic to S1.

We can also define knots in higher dimensions:

Definition

An n-knot K is an embedded submanifold of Sn+2 homeomorphic to Sn.
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Knot Equivalence

There is a natural concept of knot equivalence, known as ambient isotopy.

Knot theory is concerned with classifying knots up to equivalence, and
with understanding invariants of knots.

Note

We consider knots to be oriented, which means that we keep track of the
orientation on K as well as on the ambient Sn+2.
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Arithmetic Statistics

Arithmetic Statistics

Studies distribution of the invariants of arithmetic objects, e.g. what is the
class group of a random number field? rank of a random elliptic curve?

Cohen-Lenstra Heuristics

The class group of a random real quadratic field is a 2-group times a
finite group drawn from a given distribution(in particular the average
size of the odd part is bounded).

The class group of a random imaginary quadratic field is a 2-group
times a cyclic group ∼ 98% of the time.
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Knot statistics????

“Random” knots? (survey by Even-Zohar)

Studying knots in families.

Look at distribution of invariants.

Connection to arithmetic statistics

Families of knots can be parametrized by arithmetic data.
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The family of simple n-knots

Definition

An n-knot K is simple if πi (S
n+2 − K ) = πi (S

1) for i ≤ (n − 1)/2.

All 1-knots are simple.
For large n, simple n-knots have an algebraic classification.
Simple n-knots have been classified for all n other than 1, 2, 3, 4 and 6.

In this talk we’ll focus on the case of n = 4a + 1, a > 1. (The case of
n = 4a− 1 is expected to be similar, while even dimensional cases have a
different flavor.)
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Classification of simple n-knots

Theorem (Kearton-Levine-Trotter)

For a ≥ 1, simple (4a + 1)− knots are entirely classified by their Alexander
module and Blanchfield pairing.

The Alexander module can be defined using the infinite cyclic cover C∞ of
the knot complement S3 − K .

Definition

The Alexander module AlexK of a 4a + 1-knot K is H2a+1(C∞,Z). It has
a natural module structure over Z[t, t−1]. It also carries a natural duality
pairing, the Blanchfield pairing.
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Alexander polynomial

The Alexander module AlexK is a complicated object, but it turns out
that a lot of the information from it is contained in one polynomial,
namely the Alexander polynomial ∆K (t) ∈ Z[t] of a simple 4a + 1-knot K .

Properties of the Alexander Polynomial

∆K (1) = 1

∆K (t−1) = t− deg ∆K ∆K (t).

∆K has even degree.

If ∆K (t) is a quadratic polynomial, it must have the form

mt2 + (1− 2m)t + m

for some m ∈ Z.
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Alexander Module vs Alexander Polynomial

Theorem (Bayer-Michel, Levine)

Let ∆ be a squarefree polynomial. There are only finitely many distinct
Alexander modules with Blanchfield pairing having the Alexander
polynomial ∆.

Hence, for fixed odd q ≥ 3, there are only finitely many
distinct simple knots with Alexander polynomial ∆.

Proof uses number theory!

Goal

Obtain a quantitative form of this finiteness statement.
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Seifert hypersurfaces and Seifert pairings

Our main tool is the theory of Seifert (hyper)surfaces.

Definition

A Seifert hypersurface for an n-knot K is a n + 1-manifold V n+1

embedded in S2n+2 with boundary ∂V = K .

Seifert hypersurfaces exist for all knots, but are not unique.
We say that V n+1 is a simple Seifert hypersurface if V is bn2c-connected.
Simple Seifert hypersurfaces exist for all simple knots.
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The Seifert Pairing

Now specialize to n = 4a + 1.

A simple Seifert hypersurface V 4a+2 comes with a bilinear pairing 〈, 〉 on
H2a+1(V ,Z) ∼= Z2g , known as the Seifert pairing.
In the a ≥ 1 case, simple Seifert hypersurfaces are entirely classified by
their pairing.
The Seifert pairing is neither symmetric nor skew-symmetric. However, its
skew-symmetric part is equal to the intersection pairing on H2a+1(V ,Z).
(Any pairing whose skew-symmetric part is unimodular can be realized as
a Seifert pairing.)
If you pick a basis for H2a+1(V ,Z) in which the intersection pairing has
matrix equal to the standard skew-symmetric matrix J, the matrix P of
the Seifert pairing will satisfy P − Pt = J.
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Seifert pairing and Alexander module

Theorem (Kearton, Levine)

If V 4a+2 is a Seifert surface for K 4a+1 with nondegenerate Seifert matrix
P, then the Z[t, t−1]-module AlexK is presented by the matrix

tP − Pt

and there is a similar explicit formula for the Blanchfield pairing.

Corollary

∆K (t) = det(tP − Pt)
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Caution!

We’ve seen that the equivalence class of a simple 4a + 1-knot, a ≥ 1, is
completely determined by the Seifert matrix.

But we have a choice of
Seifert matrices!
Different choices of Seifert surface for the same knot can have
non-isomorphic Seifert pairings. That is, the Seifert matrices that are not
equivalent up to change of basis.

( 2 0
1 3 ) ,

(
2 −1
0 3

)
, ( 1 0

1 6 )
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Seifert pairings and orbits

If you pick a basis for Hq(V ,Z) in which the intersection pairing has
matrix equal to the standard skew-symmetric matrix J, the matrix P of
the Seifert pairing will satisfy P − Pt = J.

Observation

Isomorphism classes of Seifert pairings are equivalent to orbits of the
group Sp2g (Z) on the set of 2g × 2g - matrices P with P − Pt = J. (Here
X ∈ Sp2g (Z) acts by P 7→ XPX t .)

If we change variables to Q = P + Pt , we see that these are also in
bijective correspondence with Sp2g -orbits on 2g × 2g symmetric matrices
(with a parity condition).

Conclusion

Isomomorphism classes of Seifert pairings are orbits for the representation
Sym2(2g) of Sp2g (Z)!
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The case g = 1

When g = 1, Sp2g = SL2, and the arithmetic invariant theory reduces to
the question of binary quadratic forms with odd discriminant.

Seifert hypersurfaces

Simple Seifert hypersurfaces with Alexander polynomial
mt2 + (1− 2m)t + m are in one-to-one correspondence with binary
quadratic forms over Z of discriminant 1− 4m, or with narrow ideal

classes of the ring Z[γm] where γm = 1+
√

1−4m
2 .

Knots

Simple knots with Alexander polynomial mt2 + (1− 2m)t + m are in
one-to-one correspondence with narrow ideal classes of the ring

Z[ 1
m ][ 1+

√
1−4m
2 ].

There is also a generalization to higher degree Alexander polynomials.
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Asymptotics: Genus 1 Seifert pairings/ hypersurfaces

Counting Seifert pairings of genus one is the same as counting SL2-orbits
of binary quadratic forms of odd discriminant. We know how to do this, at
least for definite forms.

Theorem (Gauss-Lipschitz-Mertens)

The number of SL2-orbits of binary quadratic forms of discriminant
1− 4m with m ∈ [0,X ] is ∼ X 3/2.

In the indefinite case, we can only do this counting weighted by the
regulator, but we still have the following heuristic for the unweighted
count:

Heuristic (Hooley)

The number of SL2-orbits of binary quadratic forms of discriminant
1− 4m with m ∈ [0,X ] is ∼ X log2 X .

So we get the same results for isomorphism classes of Seifert pairings, or
of simple Seifert hypersurfaces.
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Asymptotics: Genus 1 Alexander modules/knots

Average-case counting simple knots of genus 1, equivalently genus 1
Alexander modules with Blanchfield pairing, is harder because we need to

know the average size of the narrow class group of R∆ = Z[ 1
m ][ 1+

√
1−4m
2 ].

Case: |m| is prime

Then m factors as a product of principal prime ideals (m) = (γ)(γ), so the
map NCl(Z[γm])→ NCl(Rm) is an isomorphism.

Case: |m| is composite

For any p | |m|, the ideal (p, γm)2 lies in the kernel of the map
NCl(Z[γm])→ NCl(Rm)
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Our Heuristic

Heuristic

There are ∼ X 3/2/ logX isomorphism classes of simple 2q − 1 knots
whose Alexander polynomial has the form pt2 + (1− 2p)t + p for
some prime p in the range [1,X ].

There are ∼ X logX isomorphism classes of simple 2q − 1 knots
whose Alexander polynomial has the form mt2 + (1− 2m)t + m for
some m ∈ [−X ,X ] such m is not a positive prime.
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Bounds on contribution from the prime case

Theorem

The total number of isotopy classes of simple 4a + 1-knots having
Alexander polynomial equal to ∆p for 0 ≤ p ≤ X is � (X 3/2−ε) for all
ε > 0.

Theorem

The total number of isotopy classes of simple 4a + 1-knots having
Alexander polynomial equal to ∆p for p running over all primes in the
range [1,X ] is (unconditionally) bounded above by O(X 3/2/ logX ).
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Bounds on total

The lower bound for the contribution of primes also gives us a lower bound
for the total:
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Asymptotics: in higher genus?

For higher genus Seifert pairings, need an ordering!

We’ll use

ht(eQ) = max
i

(
c

1/i
2i

)
for

eQ(x) = det(xJ − Q) = x2g + c2x
2g−2 + ...+ c2g

as before.

Work in progress

The total number of Sp2g -orbits of symmetric matrices Q such that

ht(eQ) < X is asymptotic to X g(g+ 1
2

).
As in quadratic case, most orbits come from the cases when the stabilizer
of Q finite, when happens when Q[x ]/eQ(x) is a CM field. Can also count
the other orbits weighted by regulator.

For the knot question, expect again largest contribution when c2g is prime.
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Thank you!
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