Arithmetic statistics for knots and knot invariants

Alison Miller

Harvard University

abmiller@math.harvard.edu

June 25, 2019

Alison Miller (Harvard)

イロト イヨト イヨト イヨト

A 1-knot K is a embedded submanifold of S^3 homeomorphic to S^1 .

A 1-knot K is a embedded submanifold of S^3 homeomorphic to S^1 .

We can also define knots in higher dimensions:

Definition

An *n*-knot K is an embedded submanifold of S^{n+2} homeomorphic to S^n .

There is a natural concept of knot equivalence, known as ambient isotopy.

There is a natural concept of knot equivalence, known as ambient isotopy.

Knot theory is concerned with classifying knots up to equivalence, and with understanding invariants of knots.

There is a natural concept of knot equivalence, known as *ambient isotopy*.

Knot theory is concerned with classifying knots up to equivalence, and with understanding invariants of knots.

Note

We consider knots to be *oriented*, which means that we keep track of the orientation on K as well as on the ambient S^{n+2} .

Studies distribution of the invariants of arithmetic objects, e.g. what is the class group of a random number field? rank of a random elliptic curve?

Studies distribution of the invariants of arithmetic objects, e.g. what is the class group of a random number field? rank of a random elliptic curve?

Cohen-Lenstra Heuristics

• The class group of a random real quadratic field is a 2-group times a finite group drawn from a given distribution

Studies distribution of the invariants of arithmetic objects, e.g. what is the class group of a random number field? rank of a random elliptic curve?

Cohen-Lenstra Heuristics

• The class group of a random real quadratic field is a 2-group times a finite group drawn from a given distribution(in particular the average size of the odd part is bounded).

Studies distribution of the invariants of arithmetic objects, e.g. what is the class group of a random number field? rank of a random elliptic curve?

Cohen-Lenstra Heuristics

- The class group of a random real quadratic field is a 2-group times a finite group drawn from a given distribution(in particular the average size of the odd part is bounded).
- The class group of a random imaginary quadratic field is a 2-group times a cyclic group \sim 98% of the time.

• "Random" knots? (survey by Even-Zohar)

- "Random" knots? (survey by Even-Zohar)
- Studying knots in families.

- "Random" knots? (survey by Even-Zohar)
- Studying knots in families.
- Look at distribution of invariants.

Connection to arithmetic statistics

- "Random" knots? (survey by Even-Zohar)
- Studying knots in families.
- Look at distribution of invariants.

Connection to arithmetic statistics

Families of knots can be parametrized by arithmetic data.

An *n*-knot K is simple if $\pi_i(S^{n+2} - K) = \pi_i(S^1)$ for $i \leq (n-1)/2$.

An *n*-knot K is simple if $\pi_i(S^{n+2} - K) = \pi_i(S^1)$ for $i \leq (n-1)/2$.

All 1-knots are simple.

An *n*-knot K is simple if
$$\pi_i(S^{n+2} - K) = \pi_i(S^1)$$
 for $i \leq (n-1)/2$.

All 1-knots are simple.

For large *n*, simple *n*-knots have an algebraic classification.

An *n*-knot K is simple if
$$\pi_i(S^{n+2} - K) = \pi_i(S^1)$$
 for $i \leq (n-1)/2$.

All 1-knots are simple.

For large n, simple n-knots have an algebraic classification. Simple n-knots have been classified for all n other than 1, 2, 3, 4 and 6.

An *n*-knot K is simple if
$$\pi_i(S^{n+2} - K) = \pi_i(S^1)$$
 for $i \leq (n-1)/2$.

All 1-knots are simple.

For large n, simple n-knots have an algebraic classification. Simple n-knots have been classified for all n other than 1, 2, 3, 4 and 6.

In this talk we'll focus on the case of n = 4a + 1, a > 1. (The case of n = 4a - 1 is expected to be similar, while even dimensional cases have a different flavor.)

An *n*-knot K is simple if
$$\pi_i(S^{n+2} - K) = \pi_i(S^1)$$
 for $i \leq (n-1)/2$.

All 1-knots are simple.

For large n, simple n-knots have an algebraic classification. Simple n-knots have been classified for all n other than 1, 2, 3, 4 and 6.

In this talk we'll focus on the case of n = 4a + 1, a > 1. (The case of n = 4a - 1 is expected to be similar, while even dimensional cases have a different flavor.)

For a \geq 1, simple (4a + 1) – knots are entirely classified by their Alexander module and Blanchfield pairing.

For a \geq 1, simple (4a + 1) – knots are entirely classified by their Alexander module and Blanchfield pairing.

The Alexander module can be defined using the infinite cyclic cover C_{∞} of the knot complement $S^3 - K$.

For a \geq 1, simple (4a + 1) – knots are entirely classified by their Alexander module and Blanchfield pairing.

The Alexander module can be defined using the infinite cyclic cover C_{∞} of the knot complement $S^3 - K$.

Definition

The Alexander module Alex_{K} of a 4a + 1-knot K is $H_{2a+1}(C_{\infty}, \mathbb{Z})$.

For a \geq 1, simple (4a + 1) – knots are entirely classified by their Alexander module and Blanchfield pairing.

The Alexander module can be defined using the infinite cyclic cover C_{∞} of the knot complement $S^3 - K$.

Definition

The Alexander module Alex_{K} of a 4a + 1-knot K is $H_{2a+1}(C_{\infty}, \mathbb{Z})$. It has a natural module structure over $\mathbb{Z}[t, t^{-1}]$.

For a \geq 1, simple (4a + 1) – knots are entirely classified by their Alexander module and Blanchfield pairing.

The Alexander module can be defined using the infinite cyclic cover C_{∞} of the knot complement $S^3 - K$.

Definition

The Alexander module Alex_{K} of a 4a + 1-knot K is $H_{2a+1}(C_{\infty}, \mathbb{Z})$. It has a natural module structure over $\mathbb{Z}[t, t^{-1}]$. It also carries a natural duality pairing, the Blanchfield pairing.

The Alexander module $Alex_K$ is a complicated object, but it turns out that a lot of the information from it is contained in one polynomial, namely the Alexander polynomial $\Delta_K(t) \in \mathbb{Z}[t]$ of a simple 4a + 1-knot K. The Alexander module $Alex_K$ is a complicated object, but it turns out that a lot of the information from it is contained in one polynomial, namely the Alexander polynomial $\Delta_K(t) \in \mathbb{Z}[t]$ of a simple 4a + 1-knot K.

Properties of the Alexander Polynomial

• $\Delta_{\mathcal{K}}(1) = 1$

•
$$\Delta_{\mathcal{K}}(t^{-1}) = t^{-\deg \Delta_{\mathcal{K}}} \Delta_{\mathcal{K}}(t).$$

• Δ_K has even degree.

The Alexander module $Alex_K$ is a complicated object, but it turns out that a lot of the information from it is contained in one polynomial, namely the Alexander polynomial $\Delta_K(t) \in \mathbb{Z}[t]$ of a simple 4a + 1-knot K.

Properties of the Alexander Polynomial

• $\Delta_{\mathcal{K}}(1) = 1$

•
$$\Delta_{\mathcal{K}}(t^{-1}) = t^{-\deg \Delta_{\mathcal{K}}} \Delta_{\mathcal{K}}(t).$$

• Δ_K has even degree.

If $\Delta_{\mathcal{K}}(t)$ is a quadratic polynomial, it must have the form

$$mt^2 + (1-2m)t + m$$

for some $m \in \mathbb{Z}$.

Let Δ be a squarefree polynomial. There are only finitely many distinct Alexander modules with Blanchfield pairing having the Alexander polynomial Δ .

Let Δ be a squarefree polynomial. There are only finitely many distinct Alexander modules with Blanchfield pairing having the Alexander polynomial Δ . Hence, for fixed odd $q \geq 3$, there are only finitely many distinct simple knots with Alexander polynomial Δ .

Let Δ be a squarefree polynomial. There are only finitely many distinct Alexander modules with Blanchfield pairing having the Alexander polynomial Δ . Hence, for fixed odd $q \ge 3$, there are only finitely many distinct simple knots with Alexander polynomial Δ .

Proof uses number theory!

Let Δ be a squarefree polynomial. There are only finitely many distinct Alexander modules with Blanchfield pairing having the Alexander polynomial Δ . Hence, for fixed odd $q \ge 3$, there are only finitely many distinct simple knots with Alexander polynomial Δ .

Proof uses number theory!

Goal

Obtain a quantitative form of this finiteness statement.

Seifert hypersurfaces and Seifert pairings

Our main tool is the theory of Seifert (hyper)surfaces.

Seifert hypersurfaces and Seifert pairings

Our main tool is the theory of Seifert (hyper)surfaces.

Seifert hypersurfaces and Seifert pairings

Our main tool is the theory of Seifert (hyper)surfaces.

Definition

A Seifert hypersurface for an *n*-knot K is a n + 1-manifold V^{n+1} embedded in S^{2n+2} with boundary $\partial V = K$.
Seifert hypersurfaces and Seifert pairings

Our main tool is the theory of Seifert (hyper)surfaces.

Definition

A Seifert hypersurface for an *n*-knot K is a n + 1-manifold V^{n+1} embedded in S^{2n+2} with boundary $\partial V = K$.

Seifert hypersurfaces exist for all knots, but are not unique.

Seifert hypersurfaces and Seifert pairings

Our main tool is the theory of Seifert (hyper)surfaces.

Definition

A Seifert hypersurface for an *n*-knot K is a n + 1-manifold V^{n+1} embedded in S^{2n+2} with boundary $\partial V = K$.

Seifert hypersurfaces exist for all knots, but are not unique. We say that V^{n+1} is a *simple Seifert hypersurface* if V is $\lfloor \frac{n}{2} \rfloor$ -connected. Simple Seifert hypersurfaces exist for all simple knots.

Alison Miller (Harvard)

Arithmetic knot statistics

The Seifert Pairing

Now specialize to n = 4a + 1.

Image: Image:

э

A simple Seifert hypersurface V^{4a+2} comes with a bilinear pairing \langle,\rangle on $H_{2a+1}(V,\mathbb{Z}) \cong \mathbb{Z}^{2g}$, known as the *Seifert pairing*.

A simple Seifert hypersurface V^{4a+2} comes with a bilinear pairing \langle,\rangle on $H_{2a+1}(V,\mathbb{Z}) \cong \mathbb{Z}^{2g}$, known as the *Seifert pairing*.

In the $a \ge 1$ case, simple Seifert hypersurfaces are entirely classified by their pairing.

A simple Seifert hypersurface V^{4a+2} comes with a bilinear pairing \langle,\rangle on $H_{2a+1}(V,\mathbb{Z}) \cong \mathbb{Z}^{2g}$, known as the *Seifert pairing*.

In the $a \ge 1$ case, simple Seifert hypersurfaces are entirely classified by their pairing.

The Seifert pairing is neither symmetric nor skew-symmetric.

A simple Seifert hypersurface V^{4a+2} comes with a bilinear pairing \langle,\rangle on $H_{2a+1}(V,\mathbb{Z}) \cong \mathbb{Z}^{2g}$, known as the *Seifert pairing*.

In the $a \ge 1$ case, simple Seifert hypersurfaces are entirely classified by their pairing.

The Seifert pairing is neither symmetric nor skew-symmetric. However, its skew-symmetric part is equal to the intersection pairing on $H_{2a+1}(V, \mathbb{Z})$.

A simple Seifert hypersurface V^{4a+2} comes with a bilinear pairing \langle,\rangle on $H_{2a+1}(V,\mathbb{Z}) \cong \mathbb{Z}^{2g}$, known as the *Seifert pairing*.

In the $a \ge 1$ case, simple Seifert hypersurfaces are entirely classified by their pairing.

The Seifert pairing is neither symmetric nor skew-symmetric. However, its skew-symmetric part is equal to the intersection pairing on $H_{2a+1}(V, \mathbb{Z})$. (Any pairing whose skew-symmetric part is unimodular can be realized as a Seifert pairing.)

A simple Seifert hypersurface V^{4a+2} comes with a bilinear pairing \langle,\rangle on $H_{2a+1}(V,\mathbb{Z}) \cong \mathbb{Z}^{2g}$, known as the *Seifert pairing*.

In the $a \ge 1$ case, simple Seifert hypersurfaces are entirely classified by their pairing.

The Seifert pairing is neither symmetric nor skew-symmetric. However, its skew-symmetric part is equal to the intersection pairing on $H_{2a+1}(V,\mathbb{Z})$. (Any pairing whose skew-symmetric part is unimodular can be realized as a Seifert pairing.)

If you pick a basis for $H_{2a+1}(V, \mathbb{Z})$ in which the intersection pairing has matrix equal to the standard skew-symmetric matrix J, the matrix P of the Seifert pairing will satisfy $P - P^t = J$.

If V^{4a+2} is a Seifert surface for K^{4a+1} with nondegenerate Seifert matrix P, then the $\mathbb{Z}[t, t^{-1}]$ -module Alex_K is presented by the matrix

 $tP - P^t$

If V^{4a+2} is a Seifert surface for K^{4a+1} with nondegenerate Seifert matrix *P*, then the $\mathbb{Z}[t, t^{-1}]$ -module Alex_{K} is presented by the matrix

 $tP - P^t$

and there is a similar explicit formula for the Blanchfield pairing.

If V^{4a+2} is a Seifert surface for K^{4a+1} with nondegenerate Seifert matrix *P*, then the $\mathbb{Z}[t, t^{-1}]$ -module Alex_{K} is presented by the matrix

 $tP - P^t$

and there is a similar explicit formula for the Blanchfield pairing.

Corollary

$$\Delta_{\mathcal{K}}(t) = \det(tP - P^t)$$

If V^{4a+2} is a Seifert surface for K^{4a+1} with nondegenerate Seifert matrix *P*, then the $\mathbb{Z}[t, t^{-1}]$ -module Alex_{K} is presented by the matrix

 $tP - P^t$

and there is a similar explicit formula for the Blanchfield pairing.

Corollary

$$\Delta_{\mathcal{K}}(t) = \det(tP - P^t)$$

We've seen that the equivalence class of a simple 4a + 1-knot, $a \ge 1$, is completely determined by the Seifert matrix.

We've seen that the equivalence class of a simple 4a + 1-knot, $a \ge 1$, is completely determined by the Seifert matrix. But we have a choice of Seifert matrices!

We've seen that the equivalence class of a simple 4a + 1-knot, $a \ge 1$, is completely determined by the Seifert matrix. But we have a choice of Seifert matrices! Different choices of Seifert surface for the same knot can have non-isomorphic Seifert pairings.

We've seen that the equivalence class of a simple 4a + 1-knot, $a \ge 1$, is completely determined by the Seifert matrix. But we have a choice of Seifert matrices!

Different choices of Seifert surface for the same knot can have non-isomorphic Seifert pairings. That is, the Seifert matrices that are not equivalent up to change of basis.

 $\left(\begin{smallmatrix}2&0\\1&3\end{smallmatrix}\right), \left(\begin{smallmatrix}2&-1\\0&3\end{smallmatrix}\right), \left(\begin{smallmatrix}1&0\\1&6\end{smallmatrix}\right)$

Seifert pairings and orbits

If you pick a basis for $H_q(V, \mathbb{Z})$ in which the intersection pairing has matrix equal to the standard skew-symmetric matrix J, the matrix P of the Seifert pairing will satisfy $P - P^t = J$.

Observation

Isomorphism classes of Seifert pairings are equivalent to orbits of the group $\operatorname{Sp}_{2g}(\mathbb{Z})$ on the set of $2g \times 2g$ - matrices P with $P - P^t = J$. (Here $X \in \operatorname{Sp}_{2g}(\mathbb{Z})$ acts by $P \mapsto XPX^t$.)

Seifert pairings and orbits

If you pick a basis for $H_q(V, \mathbb{Z})$ in which the intersection pairing has matrix equal to the standard skew-symmetric matrix J, the matrix P of the Seifert pairing will satisfy $P - P^t = J$.

Observation

Isomorphism classes of Seifert pairings are equivalent to orbits of the group $\operatorname{Sp}_{2g}(\mathbb{Z})$ on the set of $2g \times 2g$ - matrices P with $P - P^t = J$. (Here $X \in \operatorname{Sp}_{2g}(\mathbb{Z})$ acts by $P \mapsto XPX^t$.)

If we change variables to $Q = P + P^t$, we see that these are also in bijective correspondence with Sp_{2g} -orbits on $2g \times 2g$ symmetric matrices (with a parity condition).

Seifert pairings and orbits

If you pick a basis for $H_q(V, \mathbb{Z})$ in which the intersection pairing has matrix equal to the standard skew-symmetric matrix J, the matrix P of the Seifert pairing will satisfy $P - P^t = J$.

Observation

Isomorphism classes of Seifert pairings are equivalent to orbits of the group $\operatorname{Sp}_{2g}(\mathbb{Z})$ on the set of $2g \times 2g$ - matrices P with $P - P^t = J$. (Here $X \in \operatorname{Sp}_{2g}(\mathbb{Z})$ acts by $P \mapsto XPX^t$.)

If we change variables to $Q = P + P^t$, we see that these are also in bijective correspondence with Sp_{2g} -orbits on $2g \times 2g$ symmetric matrices (with a parity condition).

Conclusion

Isomomorphism classes of Seifert pairings are orbits for the representation $Sym^2(2g)$ of $Sp_{2g}(\mathbb{Z})!$

When g = 1, $Sp_{2g} = SL_2$, and the arithmetic invariant theory reduces to the question of binary quadratic forms with odd discriminant.

When g = 1, $Sp_{2g} = SL_2$, and the arithmetic invariant theory reduces to the question of binary quadratic forms with odd discriminant.

Seifert hypersurfaces

Simple Seifert hypersurfaces with Alexander polynomial $mt^2 + (1-2m)t + m$ are in one-to-one correspondence with binary quadratic forms over \mathbb{Z} of discriminant 1 - 4m,

When g = 1, $Sp_{2g} = SL_2$, and the arithmetic invariant theory reduces to the question of binary quadratic forms with odd discriminant.

Seifert hypersurfaces

Simple Seifert hypersurfaces with Alexander polynomial $mt^2 + (1-2m)t + m$ are in one-to-one correspondence with binary quadratic forms over \mathbb{Z} of discriminant 1 - 4m, or with narrow ideal classes of the ring $\mathbb{Z}[\gamma_m]$ where $\gamma_m = \frac{1+\sqrt{1-4m}}{2}$.

When g = 1, $Sp_{2g} = SL_2$, and the arithmetic invariant theory reduces to the question of binary quadratic forms with odd discriminant.

Seifert hypersurfaces

Simple Seifert hypersurfaces with Alexander polynomial $mt^2 + (1-2m)t + m$ are in one-to-one correspondence with binary quadratic forms over \mathbb{Z} of discriminant 1 - 4m, or with narrow ideal classes of the ring $\mathbb{Z}[\gamma_m]$ where $\gamma_m = \frac{1+\sqrt{1-4m}}{2}$.

Knots

Simple knots with Alexander polynomial $mt^2 + (1-2m)t + m$ are in one-to-one correspondence with narrow ideal classes of the ring $\mathbb{Z}[\frac{1}{m}][\frac{1+\sqrt{1-4m}}{2}].$

A D F A B F A B F A B

When g = 1, $Sp_{2g} = SL_2$, and the arithmetic invariant theory reduces to the question of binary quadratic forms with odd discriminant.

Seifert hypersurfaces

Simple Seifert hypersurfaces with Alexander polynomial $mt^2 + (1-2m)t + m$ are in one-to-one correspondence with binary quadratic forms over \mathbb{Z} of discriminant 1 - 4m, or with narrow ideal classes of the ring $\mathbb{Z}[\gamma_m]$ where $\gamma_m = \frac{1+\sqrt{1-4m}}{2}$.

Knots

Simple knots with Alexander polynomial $mt^2 + (1-2m)t + m$ are in one-to-one correspondence with narrow ideal classes of the ring $\mathbb{Z}[\frac{1}{m}][\frac{1+\sqrt{1-4m}}{2}].$

There is also a generalization to higher degree Alexander polynomials.

< □ > < □ > < □ > < □ > < □ > < □ >

Counting Seifert pairings of genus one is the same as counting SL_2 -orbits of binary quadratic forms of odd discriminant. We know how to do this, at least for definite forms.

Counting Seifert pairings of genus one is the same as counting SL_2 -orbits of binary quadratic forms of odd discriminant. We know how to do this, at least for definite forms.

Theorem (Gauss-Lipschitz-Mertens)

The number of SL₂-orbits of binary quadratic forms of discriminant 1 - 4m with $m \in [0, X]$ is $\sim X^{3/2}$.

Counting Seifert pairings of genus one is the same as counting SL_2 -orbits of binary quadratic forms of odd discriminant. We know how to do this, at least for definite forms.

Theorem (Gauss-Lipschitz-Mertens)

The number of SL₂-orbits of binary quadratic forms of discriminant 1 - 4m with $m \in [0, X]$ is $\sim X^{3/2}$.

In the indefinite case, we can only do this counting weighted by the regulator, but we still have the following heuristic for the unweighted count:

Counting Seifert pairings of genus one is the same as counting SL_2 -orbits of binary quadratic forms of odd discriminant. We know how to do this, at least for definite forms.

Theorem (Gauss-Lipschitz-Mertens)

The number of SL₂-orbits of binary quadratic forms of discriminant 1 - 4m with $m \in [0, X]$ is $\sim X^{3/2}$.

In the indefinite case, we can only do this counting weighted by the regulator, but we still have the following heuristic for the unweighted count:

Heuristic (Hooley)

The number of SL₂-orbits of binary quadratic forms of discriminant 1 - 4m with $m \in [0, X]$ is $\sim X \log^2 X$.

Counting Seifert pairings of genus one is the same as counting SL_2 -orbits of binary quadratic forms of odd discriminant. We know how to do this, at least for definite forms.

Theorem (Gauss-Lipschitz-Mertens)

The number of SL₂-orbits of binary quadratic forms of discriminant 1 - 4m with $m \in [0, X]$ is $\sim X^{3/2}$.

In the indefinite case, we can only do this counting weighted by the regulator, but we still have the following heuristic for the unweighted count:

Heuristic (Hooley)

The number of SL₂-orbits of binary quadratic forms of discriminant 1 - 4m with $m \in [0, X]$ is $\sim X \log^2 X$.

So we get the same results for isomorphism classes of Seifert pairings, or of simple Seifert hypersurfaces.

Alison Miller (Harvard)

Arithmetic knot statistics

June 25, 2019 16 / 22

Average-case counting simple knots of genus 1, equivalently genus 1 Alexander modules with Blanchfield pairing, is harder because we need to know the average size of the narrow class group of $R_{\Delta} = \mathbb{Z}[\frac{1}{m}][\frac{1+\sqrt{1-4m}}{2}]$. Average-case counting simple knots of genus 1, equivalently genus 1 Alexander modules with Blanchfield pairing, is harder because we need to know the average size of the narrow class group of $R_{\Delta} = \mathbb{Z}[\frac{1}{m}][\frac{1+\sqrt{1-4m}}{2}]$.

Case: |m| is prime

Then *m* factors as a product of principal prime ideals $(m) = (\gamma)(\overline{\gamma})$, so the map $NCl(\mathbb{Z}[\gamma_m]) \to NCl(R_m)$ is an isomorphism.

Average-case counting simple knots of genus 1, equivalently genus 1 Alexander modules with Blanchfield pairing, is harder because we need to know the average size of the narrow class group of $R_{\Delta} = \mathbb{Z}[\frac{1}{m}][\frac{1+\sqrt{1-4m}}{2}]$.

Case: |m| is prime

Then *m* factors as a product of principal prime ideals $(m) = (\gamma)(\overline{\gamma})$, so the map $NCl(\mathbb{Z}[\gamma_m]) \to NCl(R_m)$ is an isomorphism.

Case: |m| is composite

For any $p \mid |m|$, the ideal $(p, \gamma_m)^2$ lies in the kernel of the map $NCI(\mathbb{Z}[\gamma_m]) \rightarrow NCI(R_m)$

Heuristic

 There are ~ X^{3/2}/ log X isomorphism classes of simple 2q − 1 knots whose Alexander polynomial has the form pt² + (1 − 2p)t + p for some prime p in the range [1, X].

Heuristic

- There are ~ X^{3/2}/ log X isomorphism classes of simple 2q − 1 knots whose Alexander polynomial has the form pt² + (1 − 2p)t + p for some prime p in the range [1, X].
- There are ~ X log X isomorphism classes of simple 2q − 1 knots whose Alexander polynomial has the form mt² + (1 − 2m)t + m for some m ∈ [−X, X] such m is not a positive prime.

Theorem

The total number of isotopy classes of simple 4a + 1-knots having Alexander polynomial equal to Δ_p for $0 \le p \le X$ is $\gg (X^{3/2-\epsilon})$ for all $\epsilon > 0$.

Theorem

The total number of isotopy classes of simple 4a + 1-knots having Alexander polynomial equal to Δ_p for p running over all primes in the range [1, X] is (unconditionally) bounded above by $O(X^{3/2}/\log X)$.
The lower bound for the contribution of primes also gives us a lower bound for the total:

Theorem

The total number of isotopy classes of simple 4a + 1-knots having Alexander polynomial equal to Δ_m for $|m| \le X$ is $\gg (X^{3/2-\epsilon})$ for all $\epsilon > 0$.

The lower bound for the contribution of primes also gives us a lower bound for the total:

Theorem

The total number of isotopy classes of simple 4a + 1-knots having Alexander polynomial equal to Δ_m for $|m| \le X$ is $\gg (X^{3/2-\epsilon})$ for all $\epsilon > 0$.

Theorem

The total number of isotopy classes of simple 4a + 1-knots having Alexander polynomial equal to Δ_m for $|m| \leq X$ is (unconditionally) bounded above by $o(X^{3/2})$.

For higher genus Seifert pairings, need an ordering!

For higher genus Seifert pairings, need an ordering! We'll use

$$\mathsf{ht}(e_Q) = \max_i \left(c_{2i}^{1/i}
ight)$$

for

$$e_Q(x) = \det(xJ - Q) = x^{2g} + c_2 x^{2g-2} + ... + c_{2g}$$

as before.

For higher genus Seifert pairings, need an ordering! We'll use

$$\mathsf{ht}(e_Q) = \max_i \left(c_{2i}^{1/i}
ight)$$

for

$$e_Q(x) = \det(xJ - Q) = x^{2g} + c_2 x^{2g-2} + ... + c_{2g}$$

as before.

Work in progress

The total number of Sp_{2g} -orbits of symmetric matrices Q such that $\text{ht}(e_Q) < X$ is asymptotic to $X^{g(g+\frac{1}{2})}$.

As in quadratic case, most orbits come from the cases when the stabilizer of Q finite, when happens when $\mathbb{Q}[x]/e_Q(x)$ is a CM field. Can also count the other orbits weighted by regulator.

For higher genus Seifert pairings, need an ordering! We'll use

$$\mathsf{ht}(e_Q) = \max_i \left(c_{2i}^{1/i}
ight)$$

for

$$e_Q(x) = \det(xJ - Q) = x^{2g} + c_2 x^{2g-2} + ... + c_{2g}$$

as before.

Work in progress

The total number of Sp_{2g} -orbits of symmetric matrices Q such that $\text{ht}(e_Q) < X$ is asymptotic to $X^{g(g+\frac{1}{2})}$.

As in quadratic case, most orbits come from the cases when the stabilizer of Q finite, when happens when $\mathbb{Q}[x]/e_Q(x)$ is a CM field. Can also count the other orbits weighted by regulator.

For the knot question, expect again largest contribution when c_{2g} is prime.

Thank you!