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Zeros of polynomials
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Polynomial f(z,y)

v v

=z ' 4+y —1

Algebraic X A space independent of

Variety

X((C) Genus (n—1)(n —2)

. 2
Complex points

the area of solutions

#X(Q)

# of Rational points



Faltings's theorem

X (smooth projective) algebraic curve /()
g(X(C)) >1 = #X(Q) <oo

If genus (humber of holes) is greater than |
then there are only finitely many rational solutions

(Also called Modell’s conjecture)



9(X(C)) > 1

topological
data

N

mysterious
relation between
Invariants

#X(Q) < o0

arithmetic
data






(Fermat’s conjecture)

X (Q) = {trivial solutions}



Motif



Algvar X

topological analytic arithmetic
data data data
(genus etc) (zeta etc) (rat. points etc)

= s T *

z€X(0)

Mysteriously related invariants.

Difficult to compare
because they look too different
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A. Grothendieck
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A. Grothendieck

V. Voevodsk

~
de Rham crystalline étale
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J. W. Milnor V. Voevodsky

Milnor’s KM(k)/l ~ n(k @n) étale
K-group n T el 7/'Ll cohomology

Milnor’s conjecture (I=2)
Bloch-Kato conjecture



Homotopy
invariance



. Voevodsky’s construction of motives is abstract.

. For concrete applications, we must compute them.



X & MMX)

The most important property of motives is

Homotopy invariance (HIl)

MX) = MX XA

Alis a replacement of [0,1]



Hl is strong!

. It enables us to catch geometric information well.

. It makes motives computable.

ﬁ_h (Voevodsky) \

For any smooth X and Y, we have

KHomDM(/%(X) [n], H(Y)) > CHI™Y(X x ¥, n)J

Higher Chow group (concrete group)



Higher Chow group satisfies HI, too (Bloch).

CH'(X,n) =~ CH' (X x Al, n)

This is the most fundamental property.



What is higher Chow?



Singular (co)homology?
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Singular (co)homology?

Continuous maps
o1y [ | == il %

C,(X)
:= Z {continuous maps from A" to X}
% C1(€()
i %) H,(X)

4—/| complex homology

2 Cy(X)



Higher Chow group?

Much fewer than
Continuous maps...
Doesn’t work.

Algebraic
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Higher Chow group?
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Higher Chow group?

AR D Algebraic
Cycles
Z'(X,n)

:= Z {closed subvarieties of X x A" of codim r at good position }

X Graph X
r=dimX v @h
A" A"




Higher Chow group?

AR D Algebraic
Cycles

Z'(X, n)
:= Z {closed subvarieties of X x A" of codim r at good position }
o zr()T(,l)
H X2 CH'(X, n)
complex (X3) homology



Back to the story



Hl is strong!

. It enables us to catch geometric information well.

. It makes motives computable.

ﬁ_h (Voevodsky) N

For any smooth X and Y, we have

KHomDM(/%(X) [n], M(Y)) > CHI™Y(X x ¥, n)J

Higher Chow group is connected to many other invariants.



HIl is too strong!

. It disables us from catching arithmetic information.

s X ﬂ?b( X)

Arithmetic fundamental group
(knows ramifications)

72°(X) does not satisfy homotopy invariance.
It cannot be captured by motives!



We have to generalize motives.

How?
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We have to generalize motives.

Motives

Higher Chow group

Homypw (A (X)[n], #(Y)) > CHI™Y(X X Y, n)

Kahn-M.

generalized
(upcoming)

Motives
with modulus

Abstract side

-Saito-Yamazaki

Binda-Saito
(2014)

generalized

. Higher Chow group |
with modulus |

Concrete side
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First thing to study!



Higher Chow group
with modulus



Basic idea is to replace 8 with

Q%. — (X . D) “Pair of spaces”

Precisely, D is a Cartier divisor on X.

dim X = 2




Basic idea is to replace % with

Q%. — (X . D) “Pair of spaces”

Precisely, D is a Cartier divisor on X.

CH'(X',n) = CH'(X, D, n)

Higher Chow group with modulus



CH'(Z',n) = CH' (X, D, n)
E.g.
CH (X, 3,n) = CH'(X, n)

CH' (X x Al, m(X x {0}), n) = TCH (X, n; m)
Additive higher Chow group (Bloch-Esnault, Park)
Computes de Rham-Witt complex W, {2°®

non-H|



ﬁ_h (Kerz-Saito)

For any X smooth over a finite field, we have

720(X)g0 ~ lim CHI™ X(X, mD,(0)d¢e=0
I «—

m>1

~

there X C X is a compactification s.t. D = X\X is Cartierj

Chow with modulus
captures
ramifications!



. Higher Chow group with modulus (CHM) is good.

. But it does not satisfy homotopy invariance.



. Higher Chow group with modulus (CHM) is good.

. But it does not satisfy homotopy invariance.

.- Q1. How far is CHM from HI?

. Q2. How does CHM depend on multiplicities of D?

. Q3. Is there a generalization of HI for CHM?



Main Results

“Cube invariance of higher Chow groups with modulus”

(J. Algebraic Geometry 28 (2019) 339-390)



How far is CHM from HI ?

(" ThM,)

1) There exists a canonical splitting
CH'(Z x A',n) = CH'(Z,n) & NCH(Z, n)
L xAl:=Xx A, Dx A

K 2) NCH'(Z,n)is a p-group when ch(k) = p > 0

Cor
CH(Z,n) ® Z[1/p] =~ CH(X x Al,n) ® Z[1/p]
“Non-HI part” is p-primary torsion

(Known by Binda-Cao-Kai-Sugiyama for r = dim X, n = 0, X proper).



How does CHM depend on D ?
Th (M.) N

If ch(k)=p >0
CH'(X,D,n)Q Z[1/p] = CH'(X,mD,n) ® Z[1/p] Vm > 1

-
\_ J

Only p-primary torsion part
depends on multiplicity of D

Remark: 3 similar results in charactetristic O.

(Known by Binda-Cao-Kai-Sugiyama for r = dim X, n = 0, X proper).



Generalization of HI ?

(" ThM,)

where

~

Forany & = (X, D), we have a caonical isomorphsim

CH'(Z,n) &~ CH(Z x 1. n)

V= (P!, - ).

KIfD = @, then this coincides with HI of higher Chow groupj

Remark: Motives with modulus satisfy the same property.

This suggest the connection between MwM and CHM.
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Future?

Motives Higher Chow group
Homypw (A (X)[n], #(Y)) > CHI™Y(X X Y, n)
Kahn-M. Binda-Saito
generalized -Saito-Yamazaki generalized (2014)

(upcoming)

Motives Higher Chow group
with modulus NS with modulus
]
Abstract side 09 Concrete side

— Better control of z;, K-group etc.



Thank you very much!



