On algebraic cycles with modulus

BU-KEIO Workshop 2019
June 25 2019, Boston University

RIKEN iTHEMS
Hiroyasu MIYAZAKI

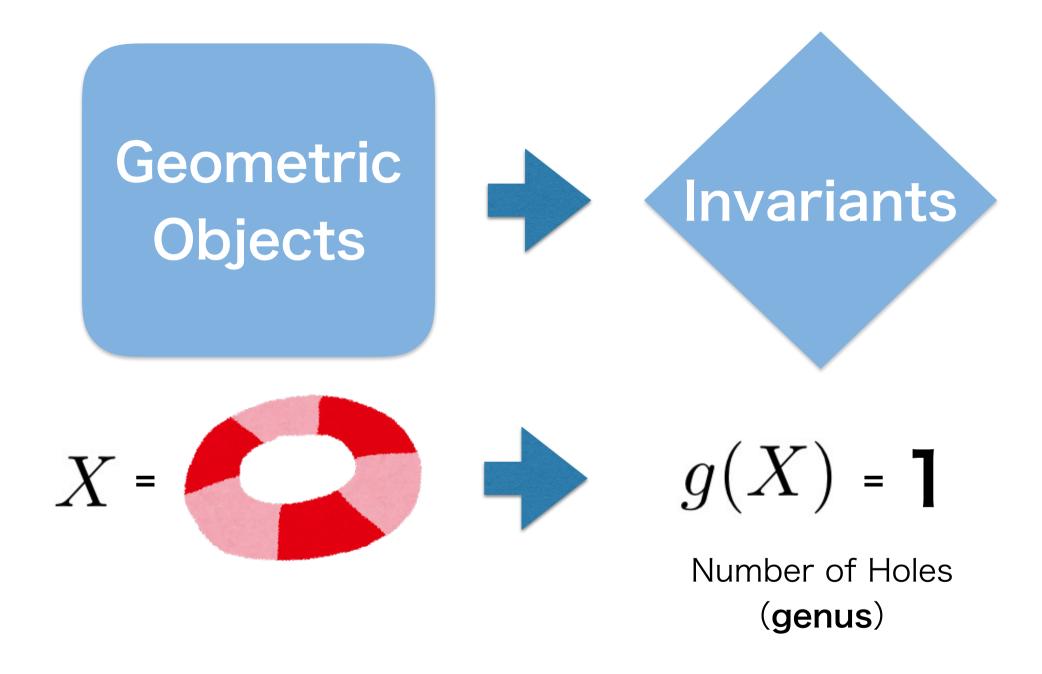
Key words

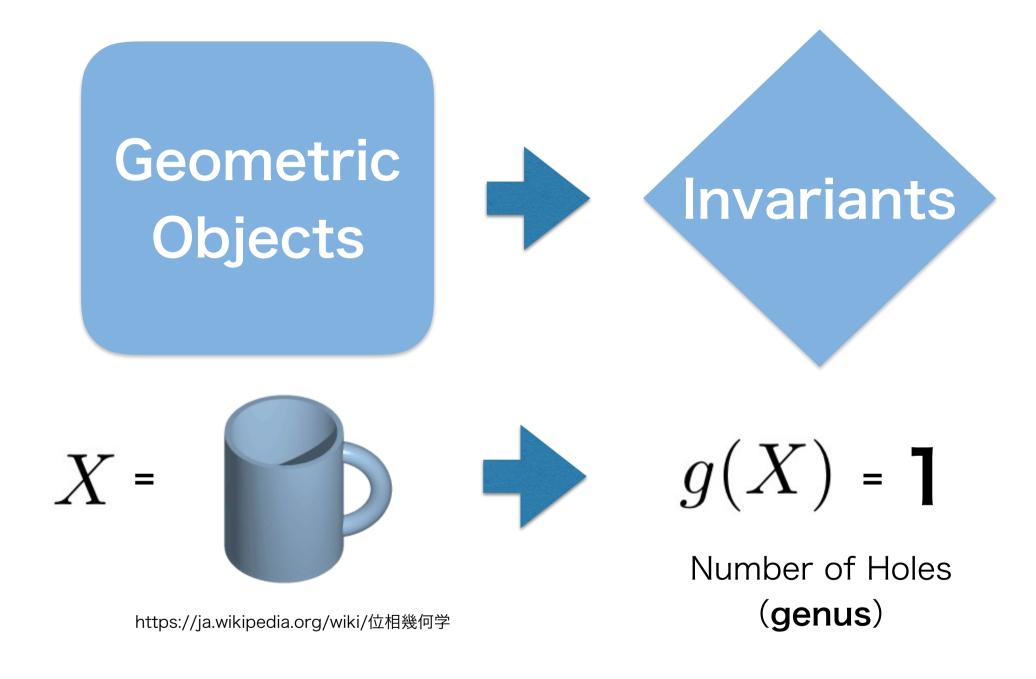
Motives

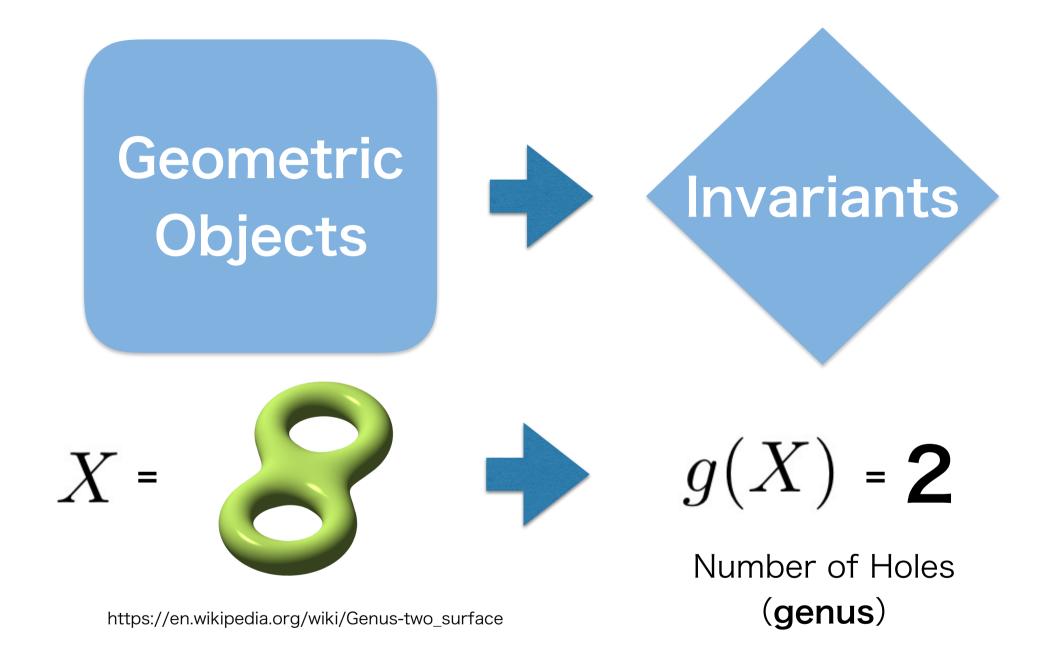
Motives with modulus

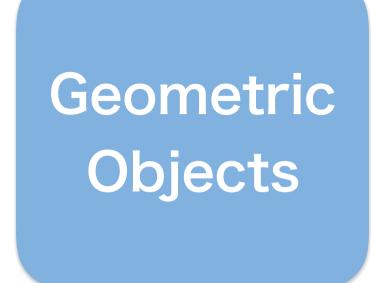
Higher Chow group with modulus

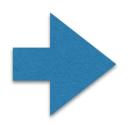
Invariants







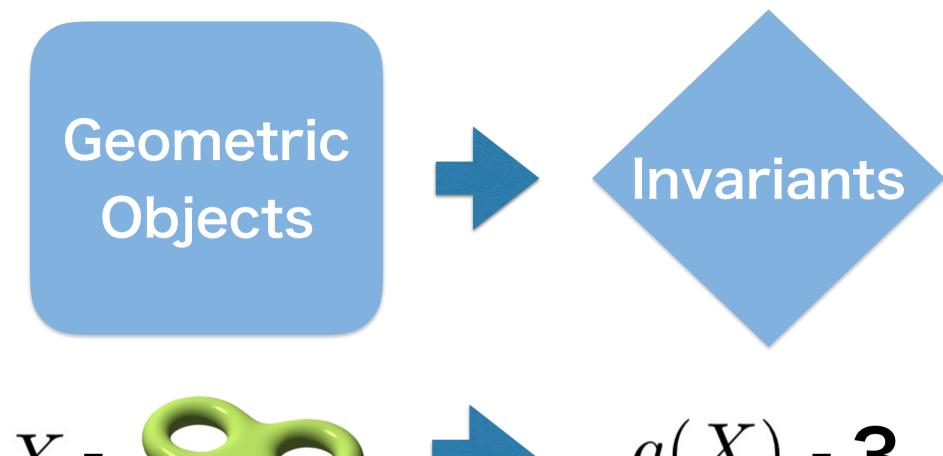




Invariants

$$g(X)$$
 = 3

Number of Holes (genus)



https://en.wikipedia.org/wiki/Genus_g_surface#Genus_3

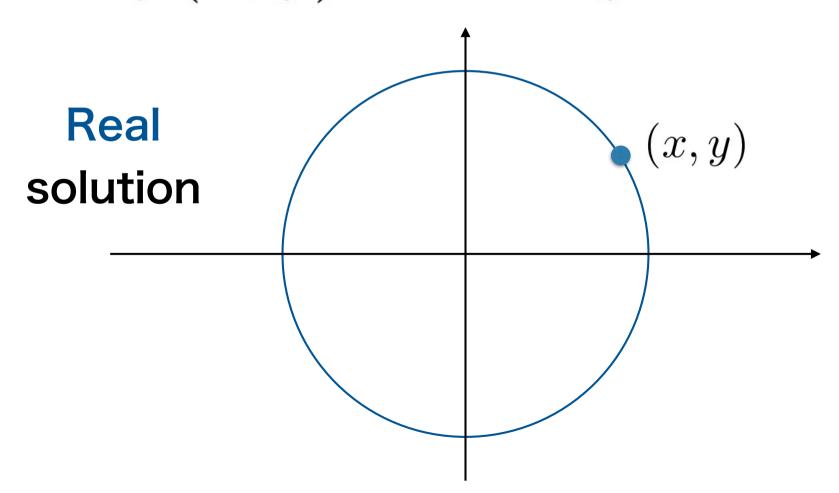
$$g(X)$$
 = 3

Number of Holes (genus)

Arithmetic Geometry

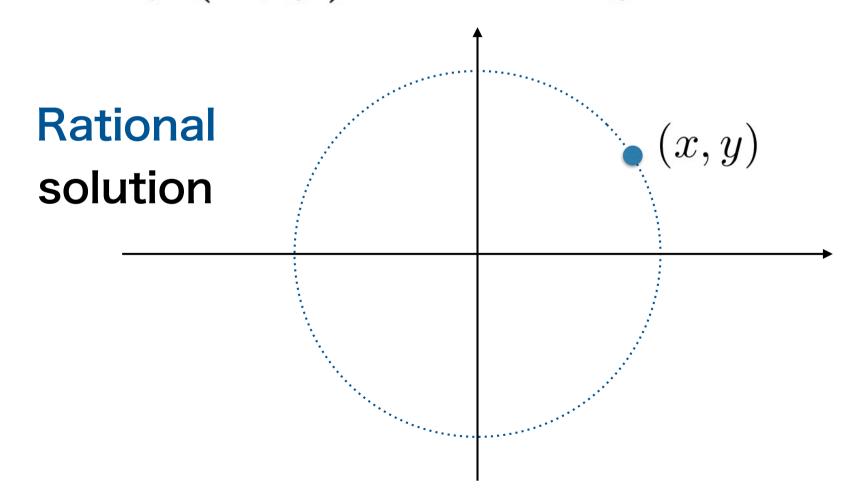
are the main subjects

$$f(x,y) = x^2 + y^2 - 1$$



are the main subjects

$$f(x,y) = x^2 + y^2 - 1$$



are the main subjects

$$f(x,y) = x^2 + y^2 - 1$$

Integer

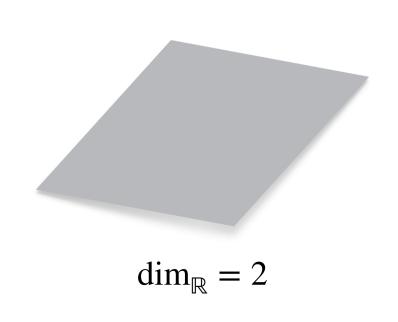
solution

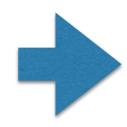
are the main subjects

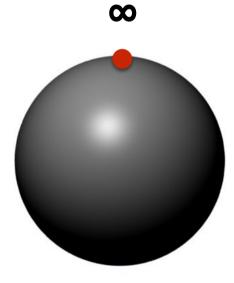
$$f(x,y) = x^2 + y^2 - 1$$

Complex

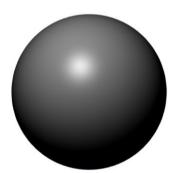
solution

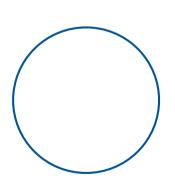


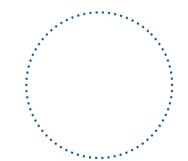




Polynomial $f(x,y) = x^2 + y^2 - 1$



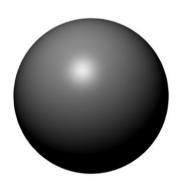


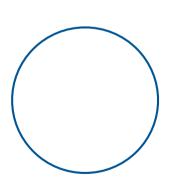


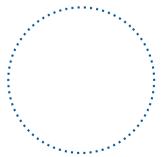
$$f(x,y) = x^2 + y^2 - 1$$

Algebraic Variety

A space independent of the area of solutions







 $X(\mathbb{C})$

 $X(\mathbb{R})$

Rational

Complex points

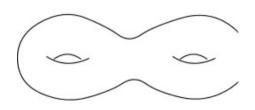
Real points

Rational points

Polynomial

$$f(x,y) = x^{\mathbf{n}} + y^{\mathbf{n}} - 1$$

A space independent of the area of solutions



$$X(\mathbb{C})$$
 Genus

$$X(\mathbb{C})$$
 Genus $\frac{(n-1)(n-2)}{2}$

$$\#X(\mathbb{Q})$$

Complex points

of Rational points

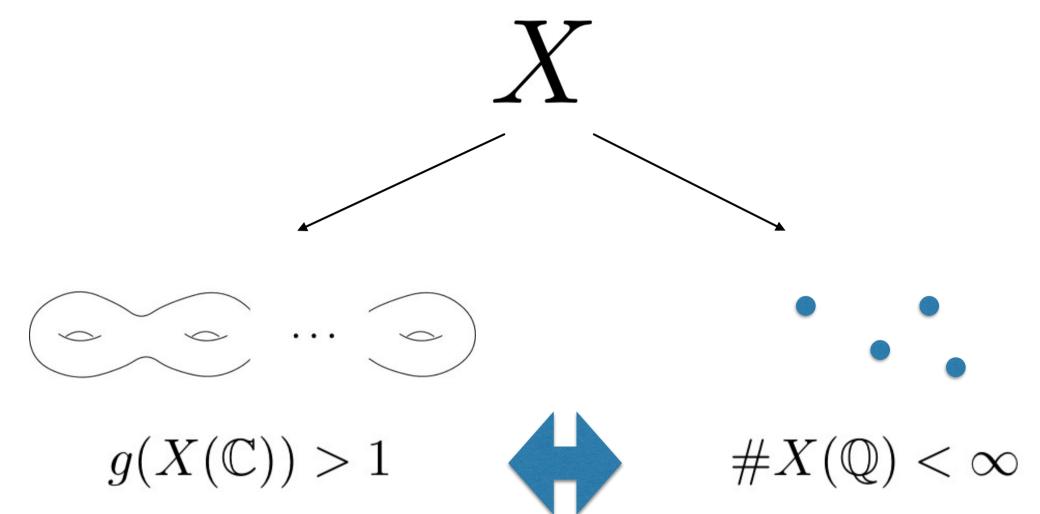
Faltings's theorem

X (smooth projective) algebraic curve $/\mathbb{Q}$

$$g(X(\mathbb{C})) > 1 \implies \#X(\mathbb{Q}) < \infty$$

If genus (number of holes) is greater than 1 then there are only finitely many rational solutions

(Also called Modell's conjecture)



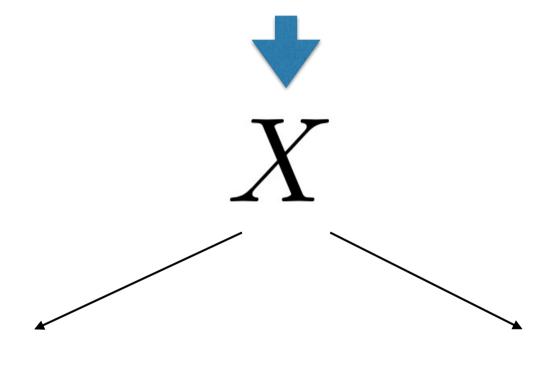
topological data mysterious
relation between
Invariants

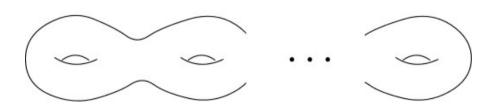
arithmetic data

$$n \ge 3$$
 $f(x,y) = x^n + y^n - 1$
 X
 X
 $g(X(\mathbb{C})) > 1$ $X(\mathbb{Q})$

$$n \ge 3$$

$$f(x,y) = x^n + y^n - 1$$



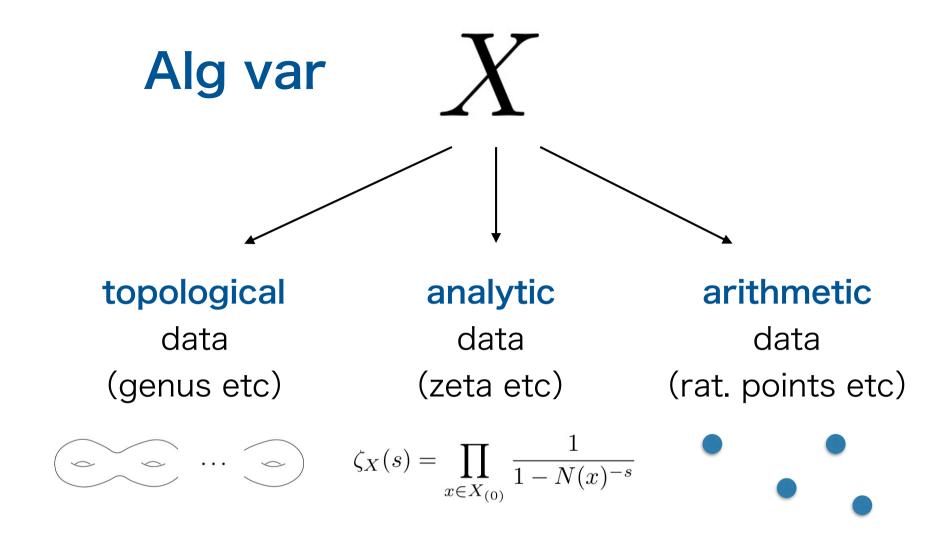


(Fermat's conjecture)

$$g(X(\mathbb{C})) > 1$$

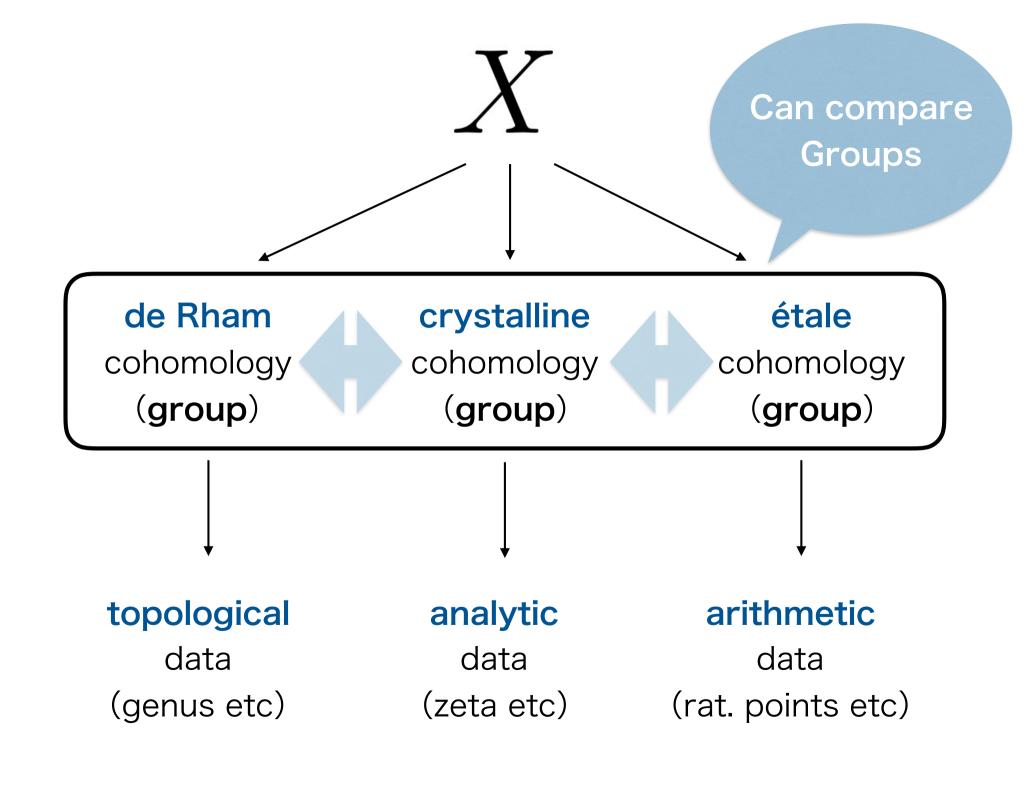
 $X(\mathbb{Q}) = \{ \text{trivial solutions} \}$

Motif



Mysteriously related invariants.

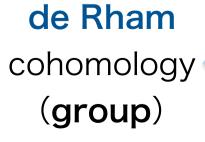
Difficult to compare because they look too different



There should be a universal cohomology

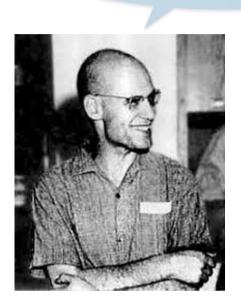


https://en.wikipedia.org/wiki/Alexander_Grothendieck



There should be a universal cohomology

We can construct it



A. Grothendieck

https://en.wikipedia.org/wiki/Alexander_Grothendieck

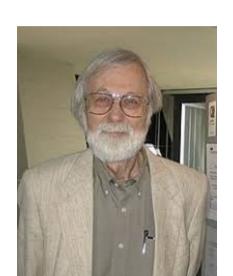
V. Voevodsky

https://en.wikipedia.org/wiki/Vladimir_Voevodsky

de Rham cohomology (group) crystalline cohomology (group)

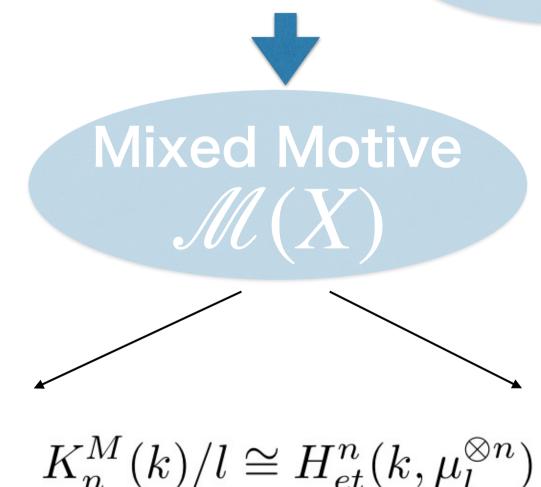
étale cohomology (**group**)

New connection through motives



J. W. Milnor

https://en.wikipedia.org/wiki/John_Milnor



V. Voevodsky

https://en.wikipedia.org/wiki/Vladimir_Voevodsky

étale cohomology

Milnor's conjecture (l=2) Bloch-Kato conjecture

Homotopy invariance

• For concrete applications, we must compute them.

$X \rightarrow \mathcal{M}(X)$

The most important property of motives is

Homotopy invariance (HI)

$$\mathcal{M}(X) \cong \mathcal{M}(X \times \mathbb{A}^1)$$

 \mathbb{A}^1 is a replacement of [0,1]

HI is strong!

- It enables us to catch geometric information well.
- It makes motives computable.

Th (Voevodsky)

For any smooth X and Y, we have

$$\operatorname{Hom}_{\mathbf{DM}}(\mathscr{M}(X)[n],\mathscr{M}(Y)) \stackrel{\simeq}{\to} \operatorname{CH}^{\dim Y}(X \times Y, n)$$

Higher Chow group (concrete group)

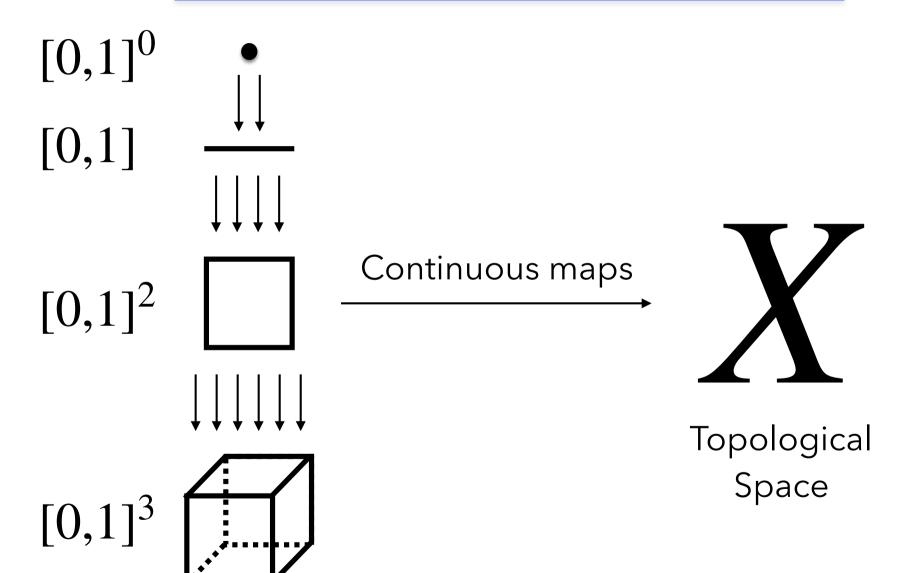
Higher Chow group satisfies **HI**, too (Bloch).

$$CH^r(X, n) \cong CH^r(X \times \mathbb{A}^1, n)$$

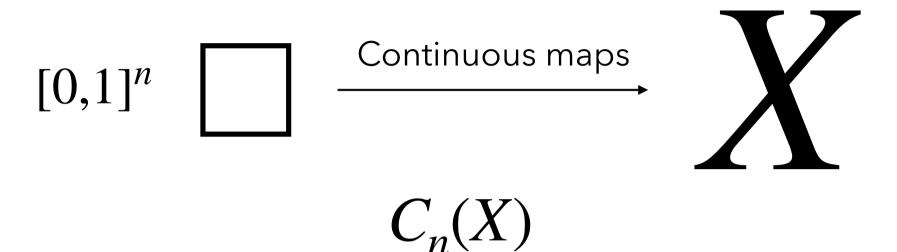
This is the most fundamental property.

What is higher Chow?

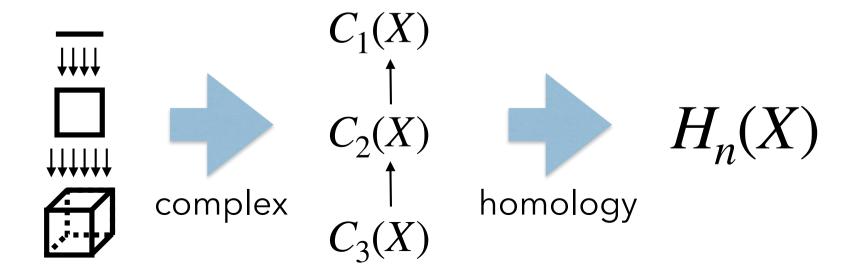
Singular (co)homology?



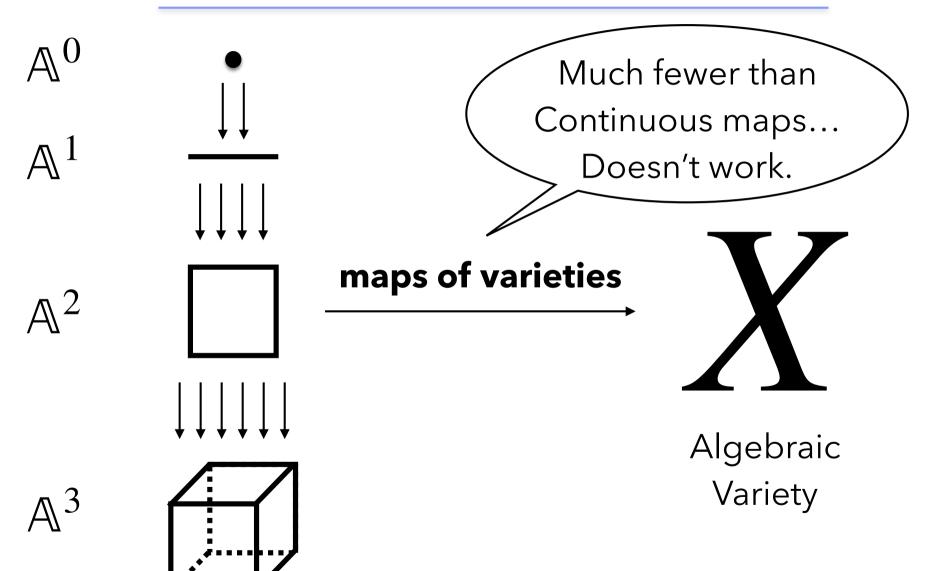
Singular (co)homology?



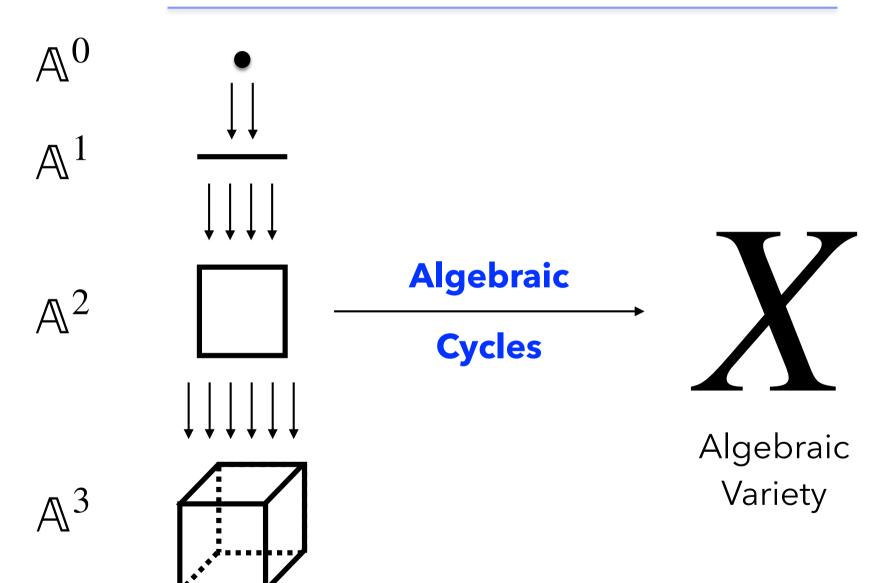
 $:= \mathbb{Z} \{ \text{continuous maps from } \mathbb{A}^n \text{ to } X \}$



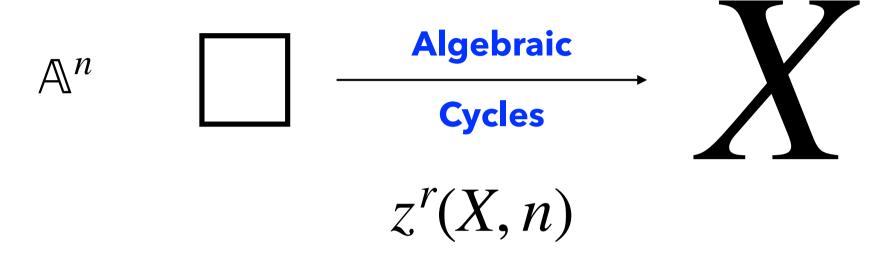
Higher Chow group?



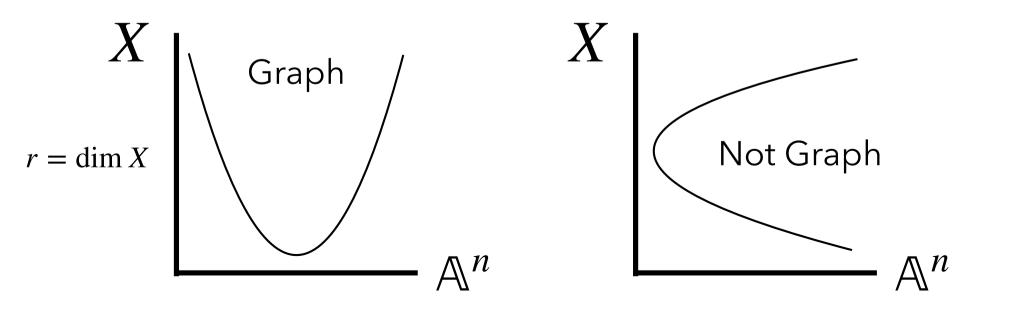
Higher Chow group?



Higher Chow group?

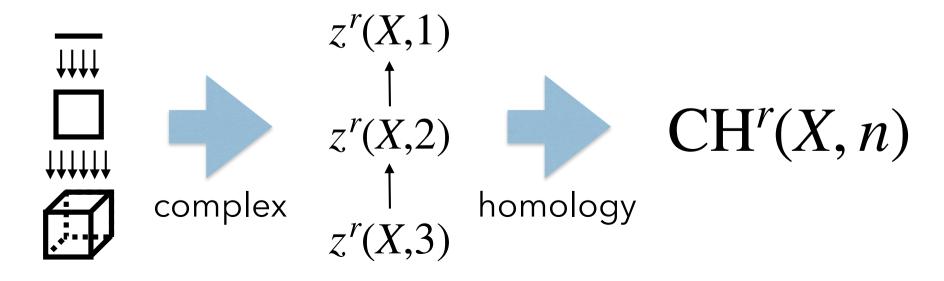


 $:= \mathbb{Z} \{ \text{closed subvarieties of } X \times \mathbb{A}^n \text{ of codim } r \text{ at good position} \}$



Higher Chow group?

 $:= \mathbb{Z} \{ \text{closed subvarieties of } X \times \mathbb{A}^n \text{ of codim } r \text{ at good position} \}$



Back to the story

HI is strong!

- It enables us to catch geometric information well.
- It makes motives computable.

Th (Voevodsky)

For any smooth X and Y, we have

$$\operatorname{Hom}_{\mathbf{DM}}(\mathcal{M}(X)[n], \mathcal{M}(Y)) \xrightarrow{\simeq} \operatorname{CH}^{\dim Y}(X \times Y, n)$$

Higher Chow group is connected to many other invariants.

HI is too strong!

It disables us from catching arithmetic information.

E.g.
$$X \rightarrow \pi_1^{ab}(X)$$

Arithmetic fundamental group (knows ramifications)

 $\pi_1^{ab}(X)$ does not satisfy homotopy invariance. It cannot be captured by motives!

How?

Motives ('00 Voevodsky) Higher Chow group ('86, Bloch)

$$\operatorname{Hom}_{\mathbf{DM}}(\mathscr{M}(X)[n],\mathscr{M}(Y)) \stackrel{\simeq}{\to} \operatorname{CH}^{\dim Y}(X \times Y, n)$$

Abstract side

Concrete side

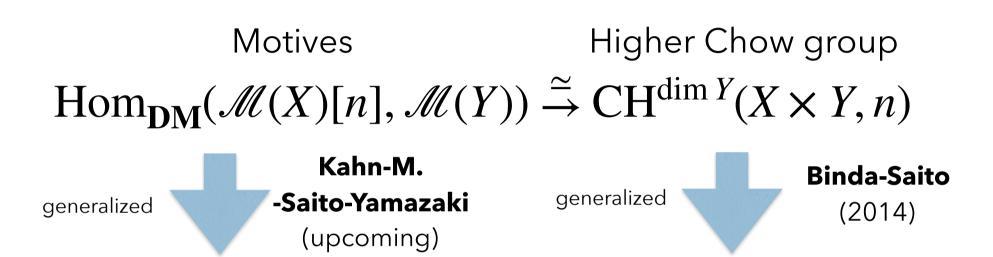
Motives ('00 Voevodsky) Higher Chow group ('86, Bloch)

$$\operatorname{Hom}_{\mathbf{DM}}(\mathscr{M}(X)[n],\mathscr{M}(Y)) \stackrel{\simeq}{\to} \operatorname{CH}^{\dim Y}(X \times Y, n)$$

Higher Chow group with modulus

Concrete side

Abstract side



Motives with modulus

Abstract side

Higher Chow group with modulus

Concrete side

Motives Higher Chow group $\operatorname{Hom}_{\mathbf{DM}}(\mathscr{M}(X)[n],\mathscr{M}(Y)) \xrightarrow{\simeq} \operatorname{CH}^{\dim Y}(X \times Y,n)$

generalized **Kahn-M.**-Saito-Yamazaki (upcoming)

generalized Binda-Saito (2014)

Motives with modulus

Abstract side

Higher Chow group with modulus

Concrete side

First thing to study!

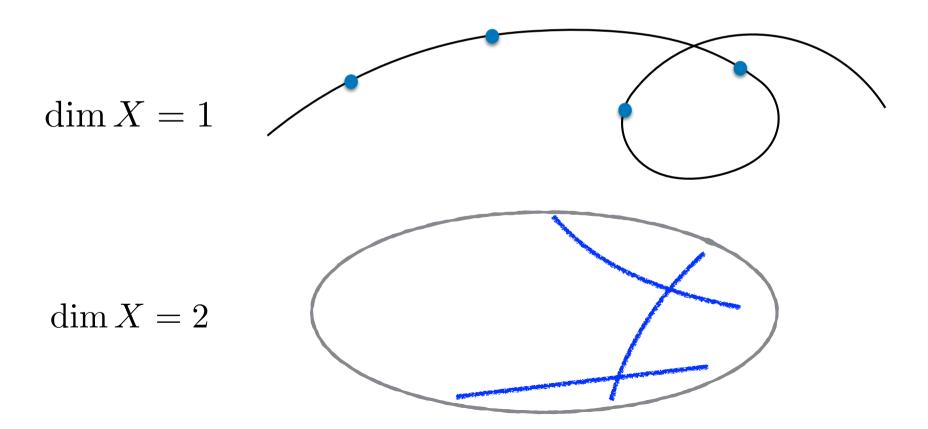
Higher Chow group with modulus

Basic idea is to replace X with

$$X$$
 with

$$\mathcal{X} = (X, D)$$
 "Pair of spaces"

Precisely, D is a Cartier divisor on X.



Basic idea is to replace with

$$X$$
 with

$$\mathscr{X} = (X, D)$$
 "Pair of spaces"

Precisely, D is a Cartier divisor on X.

$$CH^r(\mathcal{X}, n) = CH^r(X, D, n)$$

Higher Chow group with modulus

$$CH^r(\mathcal{X}, n) = CH^r(X, D, n)$$

E.g.

$$CH^r(X, \emptyset, n) = CH^r(X, n)$$

$$CH^r(X \times \mathbb{A}^1, m(X \times \{0\}), n) = TCH^r(X, n; m)$$

Additive higher Chow group (Bloch-Esnault, Park)

Computes de Rham-Witt complex $\ \mathbb{W}_*\Omega^{ullet}$

non-HI

Th (Kerz-Saito)

For any X smooth over a finite field, we have

$$\pi_1^{ab}(X)^{\text{geo}} \cong \lim_{\longleftarrow} CH^{\dim X}(\overline{X}, mD, 0)^{\deg=0}$$
 $m \ge 1$

where $X \subset \overline{X}$ is a compactification s.t. $D = \overline{X} \setminus X$ is Cartier.

Chow with modulus captures

ramifications!

- Higher Chow group with modulus (CHM) is good.
- But it does not satisfy homotopy invariance.

- Higher Chow group with modulus (CHM) is good.
- But it does not satisfy homotopy invariance.
- Q1. How far is CHM from HI?
- Q2. How does CHM depend on multiplicities of D?
- Q3. Is there a generalization of HI for CHM?

Main Results

"Cube invariance of higher Chow groups with modulus"

(J. Algebraic Geometry **28** (2019) 339-390)

How far is **CHM** from **HI**?

<u>Th</u> (M.)

Obstruction to HI

1) There exists a canonical splitting

$$CH^{r}(\mathcal{X} \times \mathbb{A}^{1}, n) \cong CH^{r}(\mathcal{X}, n) \oplus NCH^{r}(\mathcal{X}, n)$$
$$\mathcal{X} \times \mathbb{A}^{1} := (X \times \mathbb{A}^{1}, D \times \mathbb{A}^{1})$$

2) NCH^r(\mathcal{X} , n) is a p-group when ch(k) = p > 0

Cor

$$CH^r(\mathcal{X}, n) \otimes \mathbb{Z}[1/p] \cong CH^r(\mathcal{X} \times \mathbb{A}^1, n) \otimes \mathbb{Z}[1/p]$$

"Non-HI part" is p-primary torsion

(Known by Binda-Cao-Kai-Sugiyama for $r = \dim X$, n = 0, X proper).

How does **CHM** depend on D?

<u>Th</u> (M.)

If
$$ch(k) = p > 0$$

$$CH^r(X, D, n) \otimes \mathbb{Z}[1/p] \cong CH^r(X, mD, n) \otimes \mathbb{Z}[1/p] \ \forall m \ge 1$$

Only p-primary torsion part depends on multiplicity of D

Remark: 3 similar results in charactetristic 0.

(Known by Binda-Cao-Kai-Sugiyama for $r = \dim X$, n = 0, X proper).

Generalization of HI?

<u>Th</u> (M.)

For any $\mathcal{X} = (X, D)$, we have a caonical isomorphsim

$$CH^r(\mathcal{X}, n) \cong CH^r(\mathcal{X} \times \overline{\square}^{\vee}, n)$$

where
$$\overline{\square}^{\vee} = (\mathbb{P}^1, -\infty)$$
.

If $D = \emptyset$, then this coincides with HI of higher Chow group.

Remark: Motives with modulus satisfy the same property.

This suggest the connection between MwM and CHM.

Future?

Motives Higher Chow group $\operatorname{Hom}_{\mathbf{DM}}(\mathscr{M}(X)[n],\mathscr{M}(Y))\stackrel{\simeq}{\to} \operatorname{CH}^{\dim Y}(X\times Y,n)$ Saito-Yamazaki (upcoming)

Higher Chow group $\cong \operatorname{CH}^{\dim Y}(X\times Y,n)$ Binda-Saito (2014)

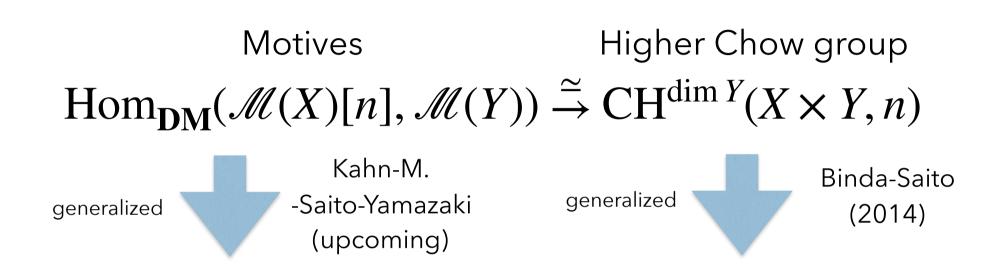
Motives with modulus

Abstract side

Higher Chow group with modulus

Concrete side

Future?



Motives with modulus

Abstract side

???

Higher Chow group with modulus

Concrete side

 \rightarrow Better control of π_1 , K-group etc.

Thank you very much!