Distribution of zeros of the derivatives of the Riemann zeta function and its relations to zeros of the zeta function itself

Ade Irma Suriajaya (Chacha)

- a joint work with Fan Ge -

Kyushu University

- Faculty of Mathematics -

BU-Keio Workshop 2019

Boston University, June 26, 2019

Riemann zeta function

The Riemann zeta function $\zeta(s)$ is the analytic function on $\mathbb{C} \backslash\{1\}$ satisfying

$$
\begin{equation*}
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}} \quad \text { when } \operatorname{Re}(s)>1 \tag{1}
\end{equation*}
$$

Remarks

- $\zeta(s)$ has a simple pole at $s=1$ as its only singularity.

Riemann zeta function

The Riemann zeta function $\zeta(s)$ is the analytic function on $\mathbb{C} \backslash\{1\}$ satisfying

$$
\begin{equation*}
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}} \quad \text { when } \operatorname{Re}(s)>1 \tag{1}
\end{equation*}
$$

Remarks

- $\zeta(s)$ has a simple pole at $s=1$ as its only singularity.
- The equality $\sum_{n} n^{-s}=\prod_{p}\left(1-p^{-s}\right)^{-1}$ tells us that $\zeta(s)$ has no zeros in $\operatorname{Re}(s)>1$.

Riemann zeta function

The Riemann zeta function $\zeta(s)$ is the analytic function on $\mathbb{C} \backslash\{1\}$ satisfying

$$
\begin{equation*}
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}} \quad \text { when } \operatorname{Re}(s)>1 \tag{1}
\end{equation*}
$$

Remarks

- $\zeta(s)$ has a simple pole at $s=1$ as its only singularity.
- The equality $\sum_{n} n^{-s}=\prod_{p}\left(1-p^{-s}\right)^{-1}$ tells us that $\zeta(s)$ has no zeros in $\operatorname{Re}(s)>1$.
- Subtracting the term $(s-1)^{-1}$ from the Dirichlet series (1) and using its integral representation, we find that $\zeta(s)$ can be analytically continued to $\operatorname{Re}(s)>0(s \neq 1)$.

Functional equation and trivial zeros of $\zeta(s)$

$\zeta(s)$ satisfies the functional equation

$$
\begin{equation*}
\zeta(s)=2^{s} \pi^{s-1} \sin \left(\frac{\pi s}{2}\right) \Gamma(1-s) \zeta(1-s) \tag{2}
\end{equation*}
$$

From this we can deduce:

- Since $\zeta(s)$ is analytic on $\operatorname{Re}(s)>0(s \neq 1)$, $\sin (\pi s / 2) \Gamma(1-s) \zeta(1-s)$ is too.

Functional equation and trivial zeros of $\zeta(s)$

$\zeta(s)$ satisfies the functional equation

$$
\begin{equation*}
\zeta(s)=2^{s} \pi^{s-1} \sin \left(\frac{\pi s}{2}\right) \Gamma(1-s) \zeta(1-s) \tag{2}
\end{equation*}
$$

From this we can deduce:

- Since $\zeta(s)$ is analytic on $\operatorname{Re}(s)>0(s \neq 1)$, $\sin (\pi s / 2) \Gamma(1-s) \zeta(1-s)$ is too.
- At $s=2,4,6, \ldots, \sin (\pi s / 2)=0$ cancels out poles of $\Gamma(1-s)$.

Functional equation and trivial zeros of $\zeta(s)$

$\zeta(s)$ satisfies the functional equation

$$
\begin{equation*}
\zeta(s)=2^{s} \pi^{s-1} \sin \left(\frac{\pi s}{2}\right) \Gamma(1-s) \zeta(1-s) \tag{2}
\end{equation*}
$$

From this we can deduce:

- Since $\zeta(s)$ is analytic on $\operatorname{Re}(s)>0(s \neq 1)$, $\sin (\pi s / 2) \Gamma(1-s) \zeta(1-s)$ is too.
- At $s=2,4,6, \ldots, \sin (\pi s / 2)=0$ cancels out poles of $\Gamma(1-s)$.
- $\zeta(1-s)$ has simple zeros at $s=3,5,7, \ldots$ due to poles of $\Gamma(1-s)$.

Hence $\zeta(s)$ has trivial zeros at $s=-2,-4,-6,-8,-10, \ldots$

Zeros of $\zeta(s)$

From

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}=\prod_{p: \text { prime }} \frac{1}{1-p^{-s}} \quad(\operatorname{Re}(s)>1)
$$

we immediately find that $\zeta(s) \neq 0$ when $\operatorname{Re}(s)>1$.

Zeros of $\zeta(s)$

From

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}=\prod_{p: \text { prime }} \frac{1}{1-p^{-s}} \quad(\operatorname{Re}(s)>1)
$$

we immediately find that $\zeta(s) \neq 0$ when $\operatorname{Re}(s)>1$.

From the functional equation (2), $\zeta(s) \neq 0$ when $\operatorname{Re}(s)<0$, except when $s=-2,-4,-6,-8,-10, \ldots$.

Zeros of $\zeta(s)$

From

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}=\prod_{p: \text { prime }} \frac{1}{1-p^{-s}} \quad(\operatorname{Re}(s)>1)
$$

we immediately find that $\zeta(s) \neq 0$ when $\operatorname{Re}(s)>1$.

From the functional equation (2), $\zeta(s) \neq 0$ when $\operatorname{Re}(s)<0$, except when $s=-2,-4,-6,-8,-10, \ldots$.

Hence, zeros of $\zeta(s)$ other than $s=-2,-4,-6,-8,-10, \ldots$, if exist, should lie within $0 \leq \operatorname{Re}(s) \leq 1$.

Counting prime numbers (I)

$$
\begin{aligned}
\zeta(s) & =\sum_{n=1}^{\infty} \frac{1}{n^{s}}=\prod_{p: \text { prime }} \frac{1}{1-p^{-s}}, \quad \operatorname{Re}(s)>1, \\
& =1+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\frac{1}{4^{s}}+\frac{1}{5^{s}}+\frac{1}{6^{s}}+\frac{1}{7^{s}}+\cdots, \quad \operatorname{Re}(s)>1 \\
& =\frac{1}{1-\frac{1}{2^{s}}} \cdot \frac{1}{1-\frac{1}{3^{s}}} \cdot \frac{1}{1-\frac{1}{5^{s}}} \cdot \frac{1}{1-\frac{1}{7^{s}}} \cdots, \quad \operatorname{Re}(s)>1 .
\end{aligned}
$$

Counting prime numbers (I)

$$
\begin{aligned}
\zeta(s) & =\sum_{n=1}^{\infty} \frac{1}{n^{s}}=\prod_{p: \text { prime }} \frac{1}{1-p^{-s}}, \quad \operatorname{Re}(s)>1, \\
& =1+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\frac{1}{4^{s}}+\frac{1}{5^{s}}+\frac{1}{6^{s}}+\frac{1}{7^{s}}+\cdots, \quad \operatorname{Re}(s)>1 \\
& =\frac{1}{1-\frac{1}{2^{s}}} \cdot \frac{1}{1-\frac{1}{3^{s}}} \cdot \frac{1}{1-\frac{1}{5^{s}}} \cdot \frac{1}{1-\frac{1}{7^{s}}} \cdots, \quad \operatorname{Re}(s)>1 .
\end{aligned}
$$

\rightsquigarrow There are infinitely many prime numbers.

Counting prime numbers (II)

$$
2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61, \ldots
$$

Let $\pi(x)$ count the number of prime numbers up to x and

$$
\operatorname{Li}(x):=\int_{2}^{x} \frac{d t}{\log t}
$$

Counting prime numbers (II)

$$
2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61, \ldots
$$

Let $\pi(x)$ count the number of prime numbers up to x and

$$
\operatorname{Li}(x):=\int_{2}^{x} \frac{d t}{\log t}
$$

$$
\zeta(1+i t) \neq 0, \quad t \in \mathbb{R} \quad \Longleftrightarrow \quad \pi(x) \sim \operatorname{Li}(x)
$$

Nontrivial zeros of $\zeta(s)$
$\{-2,-4,-6,-8,-10, \cdots\}=$ the set of all trivial zeros of $\zeta(s)$

Nontrivial zeros of $\zeta(s)$

$\{-2,-4,-6,-8,-10, \cdots\}=$ the set of all trivial zeros of $\zeta(s)$
$\mathcal{Z}:=\{\rho \in \mathbb{C} \mid \zeta(\rho)=0, \rho \notin-2 \mathbb{N}\}$
$=$ the set of all nontrivial zeros of $\zeta(s)$

Nontrivial zeros of $\zeta(s)$
$\{-2,-4,-6,-8,-10, \cdots\}=$ the set of all trivial zeros of $\zeta(s)$
$\mathcal{Z}:=\{\rho \in \mathbb{C} \mid \zeta(\rho)=0, \rho \notin-2 \mathbb{N}\}$
$=$ the set of all nontrivial zeros of $\zeta(s)$
$\rho \in \mathcal{Z}:$

$$
\begin{array}{ll}
\text { 1. } \operatorname{lm}(\rho) \neq 0, & \text { 2. } 0<\operatorname{Re}(\rho)<1 \\
\text { 3. } \zeta(\bar{\rho})=0, & \text { 4. } \zeta(1-\bar{\rho})=0
\end{array}
$$

Nontrivial zeros of $\zeta(s)$
$\{-2,-4,-6,-8,-10, \cdots\}=$ the set of all trivial zeros of $\zeta(s)$
$\mathcal{Z}:=\{\rho \in \mathbb{C} \mid \zeta(\rho)=0, \rho \notin-2 \mathbb{N}\}$
$=$ the set of all nontrivial zeros of $\zeta(s)$

$$
\rho \in \mathcal{Z}:
$$

$$
\begin{array}{ll}
\text { 1. } \operatorname{Im}(\rho) \neq 0, & \text { 2. } 0<\operatorname{Re}(\rho)<1, \\
\text { 3. } \zeta(\bar{\rho})=0, & \text { 4. } \zeta(1-\bar{\rho})=0
\end{array}
$$

$$
\begin{aligned}
\mathcal{Z} & =\{\rho \in \mathbb{C} \mid \zeta(\rho)=0, \quad \operatorname{Im}(\rho) \neq 0\} \\
& =\{\rho \in \mathbb{C} \mid \zeta(\rho)=0, \quad \operatorname{Re}(\rho)>0\}
\end{aligned}
$$

Nontrivial zeros of $\zeta(s)$
$\{-2,-4,-6,-8,-10, \cdots\}=$ the set of all trivial zeros of $\zeta(s)$
$\mathcal{Z}:=\{\rho \in \mathbb{C} \mid \zeta(\rho)=0, \rho \notin-2 \mathbb{N}\}$
$=$ the set of all nontrivial zeros of $\zeta(s)$

$$
\rho \in \mathcal{Z}:
$$

$$
\begin{array}{ll}
\text { 1. } \operatorname{Im}(\rho) \neq 0, & \text { 2. } 0<\operatorname{Re}(\rho)<1, \\
\text { 3. } \zeta(\bar{\rho})=0, & \text { 4. } \zeta(1-\bar{\rho})=0 .
\end{array}
$$

$$
\begin{aligned}
\mathcal{Z} & =\{\rho \in \mathbb{C} \mid \zeta(\rho)=0, \quad \operatorname{Im}(\rho) \neq 0\} \\
& =\{\rho \in \mathbb{C} \mid \zeta(\rho)=0, \quad \operatorname{Re}(\rho)>0\}
\end{aligned}
$$

Riemann hypothesis (RH) : For any $\rho \in \mathcal{Z}, \operatorname{Re}(\rho)=1 / 2$.

Nontrivial zeros of $\zeta(s)$
$\{-2,-4,-6,-8,-10, \cdots\}=$ the set of all trivial zeros of $\zeta(s)$
$\mathcal{Z}:=\{\rho \in \mathbb{C} \mid \zeta(\rho)=0, \rho \notin-2 \mathbb{N}\}$
$=$ the set of all nontrivial zeros of $\zeta(s)$
$\rho \in \mathcal{Z}:$

$$
\begin{array}{ll}
\text { 1. } \operatorname{Im}(\rho) \neq 0, & \text { 2. } 0<\operatorname{Re}(\rho)<1, \\
\text { 3. } \zeta(\bar{\rho})=0, & \text { 4. } \zeta(1-\bar{\rho})=0
\end{array}
$$

$\mathcal{Z}=\{\rho \in \mathbb{C} \mid \zeta(\rho)=0, \quad \operatorname{Im}(\rho) \neq 0\}$
$=\{\rho \in \mathbb{C} \mid \zeta(\rho)=0, \operatorname{Re}(\rho)>0\}$
Riemann hypothesis (RH) : For any $\rho \in \mathcal{Z}, \operatorname{Re}(\rho)=1 / 2$.
Theorem (H. Koch, 1900)
RH holds $\Longleftrightarrow \pi(x)=\mathrm{Li}(x)+O\left(x^{1 / 2} \log x\right)$ is best possible.

Properties of zeros of $\zeta(s)$

Zeros of $\zeta(s)$

Equivalence for RH

Theorem (Speiser, 1935)
RH

$$
\zeta(s) \neq 0 \quad \text { in } \quad 0<\operatorname{Re}(s)<1 / 2
$$

is equivalent to

$$
\zeta^{\prime}(s) \neq 0 \quad \text { in } \quad 0<\operatorname{Re}(s)<1 / 2
$$

Equivalence for RH

Theorem (Speiser, 1935)
RH

$$
\zeta(s) \neq 0 \quad \text { in } \quad 0<\operatorname{Re}(s)<1 / 2
$$

is equivalent to

$$
\zeta^{\prime}(s) \neq 0 \quad \text { in } \quad 0<\operatorname{Re}(s)<1 / 2
$$

Theorem (Levinson and Montgomery, 1974)
$N^{-}(T)\left(\right.$ resp. $\left.N_{1}^{-}(T)\right):=$ the number of zeros of $\zeta(s)\left(\right.$ resp. $\left.\zeta^{\prime}(s)\right)$ in $\{\sigma+$ it $\mid 0<\sigma<1 / 2,0<t<T\}$, counted $\mathrm{w} /$ multiplicity.
For $T \geq 2$ we have

$$
N^{-}(T)=N_{1}^{-}(T)+O(\log T)
$$

Zeros of $\zeta(s)$ on $\operatorname{Re}(s)=1 / 2$

Riemann hypothesis (RH) : For any $\rho \in \mathcal{Z}, \operatorname{Re}(\rho)=1 / 2$.

Zeros of $\zeta(s)$ on $\operatorname{Re}(s)=1 / 2$

Riemann hypothesis (RH) : For any $\rho \in \mathcal{Z}, \operatorname{Re}(\rho)=1 / 2$.
$N(T):=$ the number of nontrivial zeros ρ of $\zeta(s)$ with $0<\operatorname{Im}(\rho)<T$, counted with multiplicity
$N_{0}(T):=$ the number of zeros $\rho_{0}=1 / 2+i \gamma$ of $\zeta(s)$ with $0<\gamma<T$, counted with multiplicity

Zeros of $\zeta(s)$ on $\operatorname{Re}(s)=1 / 2$

Riemann hypothesis (RH) : For any $\rho \in \mathcal{Z}, \operatorname{Re}(\rho)=1 / 2$.
$N(T):=$ the number of nontrivial zeros ρ of $\zeta(s)$ with $0<\operatorname{Im}(\rho)<T$, counted with multiplicity
$N_{0}(T):=$ the number of zeros $\rho_{0}=1 / 2+i \gamma$ of $\zeta(s)$ with $0<\gamma<T$, counted with multiplicity

Riemann hypothesis (RH): $N(T)=N_{0}(T)$ for all T.

Zeros of $\zeta(s)$ on $\operatorname{Re}(s)=1 / 2$

Riemann hypothesis (RH) : For any $\rho \in \mathcal{Z}, \operatorname{Re}(\rho)=1 / 2$.
$N(T):=$ the number of nontrivial zeros ρ of $\zeta(s)$ with $0<\operatorname{Im}(\rho)<T$, counted with multiplicity
$N_{0}(T):=$ the number of zeros $\rho_{0}=1 / 2+i \gamma$ of $\zeta(s)$ with $0<\gamma<T$, counted with multiplicity

Riemann hypothesis $(\mathrm{RH}): N(T)=N_{0}(T)$ for all T.
Theorem (Hardy, 1914)

$$
N_{0}(T) \rightarrow \infty \quad \text { as } \quad T \rightarrow \infty
$$

Zeros of $\zeta(s)$ on $\operatorname{Re}(s)=1 / 2$

Riemann hypothesis (RH) : For any $\rho \in \mathcal{Z}, \operatorname{Re}(\rho)=1 / 2$.
$N(T):=$ the number of nontrivial zeros ρ of $\zeta(s)$ with $0<\operatorname{Im}(\rho)<T$, counted with multiplicity
$N_{0}(T):=$ the number of zeros $\rho_{0}=1 / 2+i \gamma$ of $\zeta(s)$ with $0<\gamma<T$, counted with multiplicity

Riemann hypothesis (RH): $N(T)=N_{0}(T)$ for all T.
Theorem (Hardy, 1914)

$$
N_{0}(T) \rightarrow \infty \quad \text { as } \quad T \rightarrow \infty
$$

Theorem (Hardy and Littlewood, 1921)

$$
N_{0}(T) \gg T
$$

Simple zeros of $\zeta(s)$ on $\operatorname{Re}(s)=1 / 2$

Theorem (Selberg, 1942)
There exists $c>0$ (effective) such that $N_{0}(T)>c N(T)$.

Simple zeros of $\zeta(s)$ on $\operatorname{Re}(s)=1 / 2$

Theorem (Selberg, 1942)
There exists $c>0$ (effective) such that $N_{0}(T)>c N(T)$.

Theorem (Levinson, 1974)

$$
N_{0}(T) \geq 0.3474 N(T)
$$

Simple zeros of $\zeta(s)$ on $\operatorname{Re}(s)=1 / 2$

Theorem (Selberg, 1942)
There exists $c>0$ (effective) such that $N_{0}(T)>c N(T)$.

Theorem (Levinson, 1974)

$$
N_{0}(T) \geq 0.3474 N(T)
$$

$N_{0}^{*}(T):=$ the number of zeros $\rho_{0}=1 / 2+i \gamma$ of $\zeta(s)$ with $0<\gamma<T$ where $\zeta^{\prime}\left(\rho_{0}\right) \neq 0$

Theorem (Levinson, 1974)

$$
N_{0}^{*}(T) \geq 0.3474 N(T)
$$

More zeros of $\zeta(s)$ on $\operatorname{Re}(s)=1 / 2$

Theorem (Conrey, 1989)

$$
\begin{aligned}
& N_{0}(T) \geq 0.4088 N(T) \\
& N_{0}^{*}(T) \geq 0.4013 N(T)
\end{aligned}
$$

Theorem (Bui, Conrey and Young, 2011)

$$
\begin{aligned}
& N_{0}(T) \geq 0.4105 N(T) \\
& N_{0}^{*}(T) \geq 0.4058 N(T)
\end{aligned}
$$

Theorem (Feng, 2014(?))

$$
N_{0}(T) \geq 0.4109 N(T)
$$

Shifting zeros of $\zeta(s)$ on $\operatorname{Re}(s)=1 / 2$ by $\zeta^{\prime}(s)$

1. Study the change of argument of

$$
f(s)=\zeta(s)+\frac{\zeta^{\prime}(s)}{\log t}
$$

2. The number of zeros of $f(s)$ is essentially that of $\zeta(s)$ in $\{\sigma+i t \mid 1 / 2<\sigma<1,0<t<T\}$.

Nontrivial ($=$ non-real) zeros of $\zeta^{(k)}(s)$
A zero-free region of $\zeta^{(k)}(s)$:

$\mathcal{Z}=\{\rho \in \mathbb{C} \mid \zeta(\rho)=0, \quad \operatorname{Im}(\rho) \neq 0\}$
$\mathcal{Z}^{(k)}:=\left\{\rho \in \mathbb{C} \mid \zeta^{(k)}(\rho)=0, \quad \operatorname{Im}(\rho) \neq 0\right\}$
$=$ the set of all nontrivial zeros of $\zeta^{(k)}(s)$

Nontrivial zeros of $\zeta(s), \zeta^{\prime}(s), \zeta^{\prime \prime}(s)$

R. Spira, Zero-free regions of $\zeta^{(k)}(s)$, J. Lond. Math. Soc. 40 (1965), p. 681

RH and zeros of $\zeta^{\prime \prime}(s) \& \zeta^{\prime \prime \prime}(s)$

Theorem (Yıldırım, 1996)
RH implies

$$
\zeta^{\prime \prime}(s) \neq 0 \text { and } \zeta^{\prime \prime \prime}(s) \neq 0 \text { in } 0 \leq \operatorname{Re}(s)<1 / 2
$$

Theorem (Yıldırım, 1996)
$\zeta^{\prime \prime}(s)$ and $\zeta^{\prime \prime \prime}(s)$ have only one pair of non-real zeros in $\operatorname{Re}(s)<0$.

RH and zeros of $\zeta^{\prime \prime}(s) \& \zeta^{\prime \prime \prime}(s)$

Theorem (Yıldırım, 1996)
RH implies

$$
\zeta^{\prime \prime}(s) \neq 0 \text { and } \zeta^{\prime \prime \prime}(s) \neq 0 \text { in } 0 \leq \operatorname{Re}(s)<1 / 2
$$

Theorem (Yıldırım, 1996)
$\zeta^{\prime \prime}(s)$ and $\zeta^{\prime \prime \prime}(s)$ have only one pair of non-real zeros in $\operatorname{Re}(s)<0$.
Corollary (Yıldırım, 1996)
RH implies
$\zeta^{\prime \prime}(s)$ and $\zeta^{\prime \prime \prime}(s)$ have only one pair of non-real zeros in

$$
\operatorname{Re}(s)<1 / 2
$$

RH and non-real zeros of $\zeta^{(k)}(s)$

Theorem (Levinson and Montgomery, 1974)
Let $m \geq 0$.
$\zeta^{(m)}(s)$ has only finitely many non-real zeros in $\operatorname{Re}(s)<1 / 2$
\Rightarrow
$\zeta^{(m+j)}(s)(j \geq 1)$ also has only finitely many non-real zeros in

$$
\operatorname{Re}(s)<1 / 2 .
$$

RH and non-real zeros of $\zeta^{(k)}(s)$

Theorem (Levinson and Montgomery, 1974)
Let $m \geq 0$.
$\zeta^{(m)}(s)$ has only finitely many non-real zeros in $\operatorname{Re}(s)<1 / 2$
\Rightarrow
$\zeta^{(m+j)}(s)(j \geq 1)$ also has only finitely many non-real zeros in

$$
\operatorname{Re}(s)<1 / 2
$$

Corollary (Levinson and Montgomery, 1974)
RH \Rightarrow
$\zeta^{(k)}(s)$ has at most finitely many non-real zeros in $\operatorname{Re}(s)<1 / 2$.

Number of nontrivial zeros of $\zeta^{(k)}(s)$ (under RH)
$N(T)\left(\right.$ resp. $\left.N_{k}(T)\right):=$ the number of nontrivial zeros ρ of $\zeta(s)$ (resp. $\left.\zeta^{(k)}(s)\right)$ with $0<\operatorname{Im}(\rho)<T$, counted with multiplicity

$$
g(T):=\frac{T}{2 \pi} \log \frac{T}{2 \pi}-\frac{T}{2 \pi}, \quad h(T):=\frac{T}{2 \pi} \log \frac{T}{4 \pi}-\frac{T}{2 \pi}
$$

	$N(T)$	$N_{k}(T)$
unconditional	$g(T)+O(\log T)$ $[$ von Mangoldt, 1905]	$h(T)+O_{k}(\log T)$ [Berndt, 1970]
under RH	$g(T)+O\left(\frac{\log T}{\log \log T}\right)$	$h(T)+O_{k}\left(\frac{\log T}{(\log \log T)^{1 / 2}}\right)$
	$[$ Littlewood, 1924]	$k=1:$ [Akatsuka, 2012]
		$k \geq 2:[A . I . S ., 2015]$

An improvement by Fan Ge (under RH)

$N(T)\left(\right.$ resp. $\left.N_{k}(T)\right)=$ the number of nontrivial zeros ρ of $\zeta(s)$ (resp. $\left.\zeta^{(k)}(s)\right)$ with $0<\operatorname{Im}(\rho)<T$, counted with multiplicity

$$
g(T)=\frac{T}{2 \pi} \log \frac{T}{2 \pi}-\frac{T}{2 \pi}, \quad h(T)=\frac{T}{2 \pi} \log \frac{T}{4 \pi}-\frac{T}{2 \pi}
$$

	$N(T)$	$N_{k}(T)$
unconditional	$g(T)+O(\log T)$ [von Mangoldt, 1905]	$h(T)+O_{k}(\log T)$ [Berndt, 1970]
under RH	$g(T)+O\left(\frac{\log T}{\log \log T}\right)$ $[$ Littlewood, 1924]	$h(T)+O\left(\frac{\log T}{\log \log T}\right)$ $k=1:[G e, 2017]$ $k \geq 2:$ XoX

Theorem 1 (under RH)

$N(T)\left(\right.$ resp. $\left.N_{k}(T)\right)=$ the number of nontrivial zeros ρ of $\zeta(s)$ (resp. $\left.\zeta^{(k)}(s)\right)$ with $0<\operatorname{Im}(\rho)<T$, counted with multiplicity

$$
g(T)=\frac{T}{2 \pi} \log \frac{T}{2 \pi}-\frac{T}{2 \pi}, \quad h(T)=\frac{T}{2 \pi} \log \frac{T}{4 \pi}-\frac{T}{2 \pi}
$$

	$N(T)$	$N_{k}(T)$
uncon- ditional	$g(T)+O(\log T)$ [von Mangoldt, 1905]	$h(T)+O_{k}(\log T)$ [Berndt, 1970]
under	$g(T)+O\left(\frac{\log T}{\log \log T}\right)$	$h(T)+O_{k}\left(\frac{\log T}{\log \log T}\right)$
RH	$[$ Littlewood, 1924]	$k=1:[G e, 2017]$ $k \geq 2:[G e ~ a n d ~ A . I . S ., ~ 2019+] ~$

A more general statement (under RH)

Suppose that the error term bound in $N(T)$

$$
N(T)=\frac{T}{2 \pi} \log \frac{T}{2 \pi}-\frac{T}{2 \pi}+E_{0}(T)
$$

is $E_{0}(T)=O(\Phi(T))$ for some increasing function $\log \log T \ll \Phi(T) \ll \log T$.

Theorem 2 (Ge and A.I.S., 2019+)
Assume RH. Then

$$
N_{k}(T)=\frac{T}{2 \pi} \log \frac{T}{4 \pi}-\frac{T}{2 \pi}+O_{k}(\max \{\Phi(2 T), \sqrt{\log T} \log \log T\})
$$

A preliminary lemma

Assume RH. Let

$$
G_{k}(s):=(-1)^{k} \frac{2^{s}}{(\log 2)^{k}} \zeta^{(k)}(s)
$$

Let $T \geq 2$ satisfy $\zeta(\sigma+i T) \neq 0, \zeta^{(k)}(\sigma+i T) \neq 0\left({ }^{\forall} \sigma \in \mathbb{R}\right)$. Then
$N_{k}(T)=\frac{T}{2 \pi} \log \frac{T}{4 \pi}-\frac{T}{2 \pi}$

$$
+\frac{1}{2 \pi} \arg G_{k}\left(\frac{1}{2}+i T\right)+\frac{1}{2 \pi} \arg \zeta\left(\frac{1}{2}+i T\right)+O_{k}(1) .
$$

The arguments are taken such that $\log \zeta(s)$ and $\log G_{k}(s)$ tend to 0 as $\sigma \rightarrow \infty$, and are holomorphic on $\mathbb{C} \backslash\{\rho+\lambda \mid \zeta(\rho)=0$ or $\infty, \lambda \leq 0\}$ and $\mathbb{C} \backslash\left\{\rho+\lambda \mid \zeta^{(k)}(\rho)=0\right.$ or $\left.\infty, \lambda \leq 0\right\}$, respectively.

Sketch of proof

Assume RH. Recall the estimate

$$
N(T)=\frac{T}{2 \pi} \log \frac{T}{2 \pi}-\frac{T}{2 \pi}+\frac{1}{\pi} \arg \zeta\left(\frac{1}{2}+i T\right)+O(1)
$$

To simplify we only consider the case when

$$
\frac{1}{\pi} \arg \zeta\left(\frac{1}{2}+i T\right)=O\left(\frac{\log T}{\log \log T}\right)
$$

Hence taking into acccount

$$
\begin{aligned}
N_{k}(T)= & \frac{T}{2 \pi} \log \frac{T}{4 \pi}-\frac{T}{2 \pi} \\
& +\frac{1}{2 \pi} \arg G_{k}\left(\frac{1}{2}+i T\right)+\frac{1}{2 \pi} \arg \zeta\left(\frac{1}{2}+i T\right)+O_{k}(1)
\end{aligned}
$$

it suffices to show that

$$
\arg G_{k}\left(\frac{1}{2}+i T\right)=O_{k}\left(\frac{\log T}{\log \log T}\right)
$$

Akatsuka's method

$$
\arg G_{1}(\sigma+i T)=O\left(\frac{(\log T)^{2(1-\sigma)}}{(\log \log T)^{1 / 2}}\right), \quad \frac{1}{2} \leq \sigma \leq \frac{3}{4},
$$

which gives us

$$
N_{1}(T)=\frac{T}{2 \pi} \log \frac{T}{4 \pi}-\frac{T}{2 \pi}+O\left(\frac{\log T}{(\log \log T)^{1 / 2}}\right)
$$

Remark
$\arg G_{1}(\sigma+i T)=O\left(\frac{(\log T)^{2(1-\sigma)}}{\log \log T}\right), \quad \frac{1}{2}+\frac{(\log \log T)^{2}}{\log T} \leq \sigma \leq \frac{3}{4}$

Fan Ge's method

Write

$$
Y:=\frac{(\log \log T)^{3}}{\log T}, \quad U:=\frac{Y}{\log \log T}=\frac{(\log \log T)^{2}}{\log T}
$$

and set

$$
\begin{aligned}
& \Delta_{1}:=\Delta_{\infty+i T \rightarrow 1 / 2+U+i T} \arg G_{1}(\sigma+i T), \\
& \Delta_{2}:=\sum_{1 / 2+U+i T \rightarrow 1 / 2+i T} \arg G_{1}(\sigma+i T) .
\end{aligned}
$$

Fan Ge's method

Write

$$
Y:=\frac{(\log \log T)^{3}}{\log T}, \quad U:=\frac{Y}{\log \log T}=\frac{(\log \log T)^{2}}{\log T}
$$

and set

$$
\begin{aligned}
& \Delta_{1}:=\Delta_{\infty+i T \rightarrow 1 / 2+U+i T} \arg G_{1}(\sigma+i T), \\
& \Delta_{2}:=\underbrace{}_{1 / 2+U+i T \rightarrow 1 / 2+i T} \arg G_{1}(\sigma+i T) .
\end{aligned}
$$

Then from

$$
\arg G_{1}(\sigma+i T)=O\left(\frac{(\log T)^{2(1-\sigma)}}{\log \log T}\right), \quad \frac{1}{2}+U \leq \sigma \leq \frac{3}{4},
$$

we easily deduce

$$
\Delta_{1} \ll \frac{\log T}{\log \log T}
$$

$$
Y:=\frac{(\log \cos T)^{3}}{\log T}
$$

* $N_{J^{\prime}}(R) \ll N_{3}(\mathcal{L})$
$* \frac{G_{1}^{\prime}}{G_{1}}(s)=\sum_{\substack{\left|\operatorname{lm}\left(\rho_{1}\right)-t\right|<1, \zeta^{\prime}\left(\rho_{1}\right)=0}} \frac{1}{s-\rho_{1}}+O(\log t)$,

$$
\cdots \Delta_{2}=O\left(\frac{\log T}{\log \log T}\right)
$$

Extending to higher derivatives - Akatsuka's method

$$
\arg G_{k}(\sigma+i T)=O_{k}\left(\frac{(\log T)^{2(1-\sigma)}}{(\log \log T)^{1 / 2}}\right), \quad \frac{1}{2} \leq \sigma \leq \frac{3}{4}
$$

which again gives us

$$
N_{k}(T)=\frac{T}{2 \pi} \log \frac{T}{4 \pi}-\frac{T}{2 \pi}+O_{k}\left(\frac{\log T}{(\log \log T)^{1 / 2}}\right) .
$$

Remark

$$
\arg \frac{G_{k}}{\zeta}(\sigma+i T)=O_{k}\left(\frac{\log \log T}{\sigma-\frac{1}{2}}\right), \quad \frac{1}{2}+\frac{(\log \log T)^{2}}{\log T}<\sigma<1
$$

Extending to higher derivatives - Ge's method

We again need:

- For sufficiently large t,

$$
\operatorname{Re} \frac{\zeta^{(k)}}{\zeta^{(k-1)}}(\sigma+i t)<0, \quad 0<\sigma \leq 1 / 2, \zeta^{(k-1)}(\sigma+i t) \neq 0
$$

- For $s=\sigma+i t, 1 / 2 \leq \sigma \leq 1$,

$$
\frac{G_{k}^{\prime}}{G_{k}}(s)=\sum_{\substack{\left|\operatorname{Im}\left(\rho_{k}\right)-t\right|<1, \zeta^{(k)}\left(\rho_{k}\right)=0}} \frac{1}{s-\rho_{k}}+O_{k}(\log t) .
$$

감사합니다 cảm ơn bạn

Merci
 Tak
 Баярлалаа

Tack Euxapıøтú
Vielen Dank

Kiitos நன்றி

Terima kasih

Спасибо ขอบคุณค่ะ धन्यवाद्
Thank you
Matur nuwun
Gracias tesekkür ederim
Хвала вам
بهت شكريه
ありがとうございます

Grazie
Salamat po תודה Takk Dziękuję

