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Riemann zeta function

The Riemann zeta function ((s) is the analytic function on C\{1}
satisfying

C(s) = Z% when Re(s) > 1. (1)
n=1

*Remarks*

» ((s) has a at s = 1 as its only singularity.
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The Riemann zeta function ((s) is the analytic function on C\{1}
satisfying

oo
1
() =) pe when Re(s) > 1. (1)
n=1
*Remarks*
» ((s) has a at s = 1 as its only singularity.

» The equality >, n=° =]],(1 - p~°)~1 tells us that ¢(s)

» Subtracting the term (s — 1)~ from the Dirichlet series (1) and
using its integral representation, we find that ((s)



Functional equation and trivial zeros of ((s)

((s) satisfies the functional equation
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Functional equation and trivial zeros of ((s)

((s) satisfies the functional equation

¢(s) = 2575 Lsin (%S)F(l —s)¢(1—s). (2)

From this we can deduce:

» Since ((s) is analytic on Re(s) > 0 (s # 1),
sin (ws/2)[(1 — s){(1 — s) is too.

> Ats=2,4,6,...,sin(ms/2) = 0 cancels out poles of ['(1—5s).

> has due to poles of
r1-s).

Hence ((s) has trivial zeros at s = —2, -4, —6, -8, —10, .. ..
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Zeros of ((s)

From

== 1] 1  Re(s)>1)

we immediately find that {(s) # 0 when Re(s) > 1.

From the functional equation (2), {(s) # 0 when Re(s) < 0,
except when s = -2, -4, —6, -8, —10,....

Hence, zeros of ((s) other than s = —2, —4, -6, -8, -10,.. .,

exist, should lie within 0 < Re(s) < 1.
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Counting prime numbers (1)
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Counting prime numbers (1)

9]
1 1
C(S):Z;: H 1_p_57 Re(s)>1
n=1 p:prime
1 1 1 1 1 1
=lt ettt te Tt Re(s)>1
1 1 1 1
= - - - - T, Re(s)>1

~> There are infinitely many prime numbers.



Counting prime numbers (I1)

2,3,5,7,11,13,17,19,23,29, 31,37, 41, 43,47, 53,59, 61, . ..

Let m(x) count the number of prime numbers up to x and
X dt

Li = .
i) 5 logt



Counting prime numbers (I1)

2,3,5,7,11,13,17,19,23,29, 31,37, 41, 43,47, 53,59, 61, . ..

Let m(x) count the number of prime numbers up to x and
X dt

Li = .
i) 5 logt

C1+it)#0, teR <= =w(x)~ Li(x).
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Nontrivial zeros of ((s)
{—2,—4,-6,—8,—10,- - } = the set of all trivial zeros of {(s)

Z:={peC|(p)=0, p¢ —2N}
= the set of all nontrivial zeros of ((s)

pEZ:
1. Im(p) # 0, 2.0 < Re(p) <1,

3.((p) = 0, 4.¢(1-7)=0.

Z ={peCl((p)=0, Im(p) # 0}
={peC[d(p) =0, Re(p) >0}

Riemann hypothesis (RH): For any p € Z, Re(p) = 1/2.

Theorem (H. Koch, 1900)
RH holds <= 7(x) =Li(x)+ O (X1/2 log x) is best possible.



Properties of zeros of ((s)
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Zeros of ((s)
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Equivalence for RH

Theorem (Speiser, 1935)

RH
C(s)#0 in 0<Re(s)<1/2

is equivalent to

('(s)#0 in 0<Re(s) <1/2.



Equivalence for RH

Theorem (Speiser, 1935)

RH
((s)#0 in 0<Re(s)<1/2

is equivalent to

('(s)#0 in 0<Re(s) <1/2.

Theorem (Levinson and Montgomery, 1974)

N=(T) ( Ny (T)) := the number of zeros of ((s) ( ¢'(s))
in{o+it|0<o<1/2, 0<t< T}, counted w/ multiplicity.
For T > 2 we have

N=(T)=N;(T)+ O(log T).
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Zeros of ((s) on Re(s) =1/2
Riemann hypothesis (RH): For any p € Z, Re(p) = 1/2.

N(T) := the number of nontrivial zeros p of {(s) with
0 <Im(p) < T, counted with multiplicity

No(T) := the number of zeros pg = 1/2 + i~y of {(s) with
0 <y < T, counted with multiplicity

Riemann hypothesis (RH): N(T) = No(T) for all T.
Theorem (Hardy, 1914)

No(T) o0 as T — oo.

Theorem (Hardy and Littlewood, 1921)

No(T) >T
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Simple zeros of ((s) on Re(s) =1/2

Theorem (Selberg, 1942)
There exists ¢ > 0 (effective) such that No(T) > ¢ N(T).

Theorem (Levinson, 1974)

No(T) > 0.3474 N(T)

Ng(T) := the number of zeros pg = 1/2 + iy of ((s) with
0 <~ < T where ('(pg) #0

Theorem (Levinson, 1974)

No(T) > 0.3474 N(T)



More zeros of ((s) on Re(s) =1/2

Theorem (Conrey, 1989)
No(T) > 0.4088 N(T)

Ny(T) > 0.4013 N(T)

Theorem (Bui, Conrey and Young, 2011)
No(T) > 0.4105 N(T)

Ny(T) > 0.4058 N(T)

Theorem (Feng, 2014(7?))

No(T) > 0.4109 N(T)



Shifting zeros of ((s) on Re(s) = 1/2 by ((s)

1. Study the change of argument of

2. The number of zeros of f(s) is essentially that of {(s) in
{o+it|l/2<0o<1, 0<t< T}



Nontrivial (= non-real) zeros of ((¥)(s)

A zero-free region of ¢(¥)(s):

@ 0] =N
k T2

Z={peCJ((p) =0, Im(p) # 0}

20 = {peC|¢W(p)=0, Im(p) #0}
= the set of all nontrivial zeros of ¢(¥)(s)




Nontrivial zeros of ((s), ¢'(s), ¢"(s)
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RH and zeros of ("(s) & ¢"(s)

Theorem (Yildirim, 1996)
RH implies

¢"(s) #0 and ¢"(s) #0in 0 < Re(s) < 1/2.

Theorem (Yildirim, 1996)

¢"(s) and ¢"'(s) have only one pair of non-real zeros in Re(s) < 0.



RH and zeros of ("(s) & ¢"(s)

Theorem (Yildirim, 1996)
RH implies

¢"(s) #0 and ¢"(s) #0in 0 < Re(s) < 1/2.

Theorem (Yildirim, 1996)

¢"(s) and ¢"'(s) have only one pair of non-real zeros in Re(s) < 0.

Corollary (Yildirnm, 1996)
RH implies

¢"(s) and ¢"'(s) have only one pair of non-real zeros in
Re(s) < 1/2.



RH and non-real zeros of ((¥)(s)

Theorem (Levinson and Montgomery, 1974)
Let m > 0.

¢(m(s) has only finitely many non-real zeros in Re(s) < 1/2
=

¢(m+)(s) (j > 1) also has only finitely many non-real zeros in
Re(s) < 1/2.



RH and non-real zeros of ((¥)(s)

Theorem (Levinson and Montgomery, 1974)

Let m > 0.
¢(m(s) has only finitely many non-real zeros in Re(s) < 1/2
=

¢(m+)(s) (j > 1) also has only finitely many non-real zeros in
Re(s) < 1/2.

Corollary (Levinson and Montgomery, 1974)
RH =

¢(K)(s) has at most finitely many non-real zeros in Re(s) < 1/2.



Number of nontrivial zeros of (()(s) (under RH)

N(T) ( Ni(T)) := the number of nontrivial zeros p of ((s)
( ¢ (s)) with 0 < Im(p) < T, counted with multiplicity

T T T T T T
N(T) Ni(T)
unconditional g(T)+ O(log T) h(T)+ Ok(log T)
[von Mangoldt, 1905] [Berndt, 1970]
under RH g(T)+ 0 (efar) | T+ 0 (0 %7 )
[Littlewood, 1924] k = 1: [Akatsuka, 2012]
k>2:[A.LS., 2015]




An improvement by Fan Ge (under RH)

N(T) (

(

¢()(s)) with 0 < Im(p) < T, counted with multiplicity

T T

g(T)=5_log 5~

T
o’

WT) = -

log — —
27rg

T T

Nk(T)) = the number of nontrivial zeros p of ((s)

N(T)

Ni(T)

unconditional

g(T)+ O(log T)
[von Mangoldt, 1905]

h(T)+ Ok(log T)
[Berndt, 1970]

under RH

log T
g(T) +0 (Iogﬁ)g T)
[Littlewood, 1924]

h(T) + O (btr

k=1:[Ge, 2017]
k> 2: XoX

)




Theorem 1 (under RH)

N(T) ( Ni(T)) = the number of nontrivial zeros p of ((s)
( ¢ (s)) with 0 < Im(p) < T, counted with multiplicity

T T T T T T

g(T) = gg—ga h(T) = 27r|gﬂ_§
N(T) Ni(T)
uncon- g(T)+ O(log T) h(T)+ Ok(log T)
ditional | [von Mangoldt, 1905] [Berndt, 1970]
under g(T)+ O (|o|go|go;—T> h(T)+ Ok (lolgolgé)gTT)
RH [Littlewood, 1924] k=1:[Ge, 2017
k >2:[Ge and A.LS., 2019+]




A more general statement (under RH)

Suppose that the error term bound in N(T)

T T T

0g -— — ~— + Eo(T)

N(T) =5 log o — o0

is Eo(T) = O(®(T)) for some increasing function
loglog T < &(T) < log T.

Theorem 2 (Ge and A.l.S., 2019+)
Assume RH. Then

Ne(T) = % log % _2l+ok (max{®(2T), /log Tloglog T } ).



A preliminary lemma

Assume RH. Let
K2
(log2)k

Gi(s) == (=1) ¢M(s)

Let T > 2 satisfy ((o+iT) # 0, (K (0 +iT) #0 (Yo € R). Then

T T T
N(T) = — log— — —
k() 271'0g47r 27
! G 1—I—'T —|—i ¢ }—l—'T +O(1)
—|—27Targ k 5 / 2Warg‘ 5 / k .

The arguments are taken such that log {(s) and log Gi(s) tend to 0 as o — oo,
and are holomorphic on C\{p+ A\ | ((p) =0 or co, A <0} and
C\{p+ M| ¢¥(p) =0 or oo, A < 0}, respectively.



Sketch of proof

Assume RH. Recall the estimate
T T T 1

N(T)— Iog2—2+arg(< +/T> + O(1).

To simplify we only consider the case when

1arg(<1+lT> O(IOgT>.
loglog T

Hence taking into acccount

T T T
N (T log — — —
W(T) = 21 ar 2
1 1 1 1
+2argGk< +/T>+zarg(< +/T>+Ok(1),
n s

it suffices to show that

1 . log T
G| =+1iT ) = —= ).
56 (5+7) = O (igig7)



Akatsuka's method

3
<o< -
_0_4

i

2(1-0)
g Galo 11T = O ((Iog T) ) o

(log log T)1/2

which gives us

T T T log T
Ni(T) = —log — — —+0 &L )
() o 84r 2n ' ((Ioglog T)1/2>

*Remark*

<o<

W

2(1—0) 2
arg Gi(c +iT)=0 ((Iog 7) ) 1+7(|0g log T)

loglog T 2 log T



Fan Ge's method

Write
Y (loglog T)3 U Y _ (loglog T)?
' log T " loglog T log T
and set
A= A arg Gi(o +iT),
coiT—1/2+U+iT
Ay = A arg Gi(o +iT).

1/24U+iT—1/2+iT



Fan Ge's method

Write
Y (loglog T)3 U Y  (loglog T)?
" log T " loglog T logT
and set
A= A arg Gi(o +iT),
0oHiT—1/24U+iT
Ay = A arg Gi(o +iT).
1/24 U+iT—1/2+iT
Then from
, (log T)(1=2) 1 3
G N=0|——"— ~+U<o<-
arg G +iT) ( loglog T ==y

we easily deduce
log T

L —.
! loglog T
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Extending to higher derivatives — Akatsuka's method

, (log T)(1=2) 1 3
G T)=0| ————— —<og<-.
arg C(o +1T) g ((Ioglog T2 )’ 2=7=71
which again gives us
T T T log T
N(T)=—log— — —+ 0k | — 1 |.
K(T) = o 8ar op T ((Ioglog T)1/2>
*Remark*
<0<l

arg GCk(J +iT) = O (1



Extending to higher derivatives — Ge's method
We again need:

» For sufficiently large t,

C(k)

I:\>C(k1

(c4it) <0, 0<o<1/2, ¢k D(g+it)#0.

» Fors=o0+it 1/2<0 <1,

Cgy= T Slpk + Oc(log t).

Gk

[1m(pk)—t[<1,
() (px)=0
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